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CRAMER TYPE LARGE DEVIATIONS FOR LINEAR
COMBINATIONS OF ORDER STATISTICS

M. VANDEMAELE AND N. VERAVERBEKE

Limburgs Universitair Centrum, Belgium

Let T» = n' ¥7-1 cXin be a linear combination of order statistics and
put Ty = (T, — E(T,))/vVar(T,). Sufficient conditions on the c,, and on the
moments of the underlying distribution are established under which the ratio
P(T} > x)/(1 — ®(x)) tends to 1, either uniformly in the range —A < x <
evinn (A = 0, ¢ > 0) (moderate deviation theorem) or uniformly in the range
—A = x < 0o(n*)(A = 0) (Cramér type large deviation theorem). The proof
relies on Helmers’ approximation method and on the corresponding results
for U-statistics.

1. Introduction. Linear combinations of order statistics (or L-statistics) are statistics
of the form

(1) T.=n"Y% cinXin

where the weights ¢;,(i=1, ---, n; n =1, 2, ...) are real numbers and where X;, < X5,
=< ... = X,, are the order statistics of a sequence Xj, --., X, of independent random
variables with the same distribution function F.

L-statistics have been studied by many authors under different sets of conditions on the
weights and on the underlying random variable X with distribution function F. For
instance, Stigler (1974) considered L-statistics of the form

= piye gt ) x
(2) T,,—n =1 J<n+ 1) Xm

where ¢/ is some real-valued, bounded and continuous function on (0, 1). He proved that
(T, — E(T))/vVar(T,) is asymptotically standard normal if E(X?) < c and if

3) o’ = J’ J J(F(x))J(F(y)[F(min(x, y)) — F(x)F(y)] dx dy

is strictly positive. His assumptions also imply that
lim,_,. n Var(T,) = o”.

Under the somewhat stronger assumption that the function J in (2) satisfies a Lipschitz
condition of order 1 on (0, 1), Helmers (1980) proved that

P(T; — E(T7)
VVar(T7)

provided E| X|* < o and o> > 0; ® denotes the standard normal distribution function. In
the Ph.D. thesis of Helmers (1978), the same result was also obtained for general L-
statistics of the form (1) with weights c¢;, satisfying the following condition

= x) —®(x) | = 0@mV?)

supx
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i

Cn—n J"f_l J(s) ds

=0@n™")

maXi<,<n

n

where o/ is a real-valued function on (0, 1) which is Lipschitz of order 1 on (0, 1). In the
proof of this Berry-Esseen result, Helmers constructs U-statistics related to the given L-
statistic and carries over the Berry-Esseen result for U-statistics due to Callaert and
Janssen (1978). Throughout this paper we will assume the following (weaker) condition:

CoNDITION (*): There exists a real-valued function </ on (0, 1), which is Lipschitz of
order 1 on (0, 1) and which is such that for n — oo:

i

2
Y [cin—nf:_lJ(s) ds] = 0(™).

n
This condition on the weights still guarantees asymptotic normality. Indeed,
£
T,=T,+n' YL [cm - nJ n 1J(s) ds}Xm
i

n
i

-1y " _ ; N
+n —1 [nJ' i__lJ(s) ds J<n+ 1)})(,,1.

n

It follows from Stigler’s result and condition (*) that o'nY*(T, — E(T.)) and also (T, —
E(T,))/vVar(T,) are asymptotically standard normal if E(X?) < o and if 62, given by (3),
is strictly positive. Also lim,_,., n Var(T,) = o2

The purpose of this paper is to study. the behaviour of the ratios

P(o 'n"A (T, — E(T,)) > x)
1—®(x)

P(Tn —E(T,) x)
vVar(T,)
1—-®(x)

when x depends on n and tends to +w as n — +o. In particular, we establish sufficient
conditions under which these ratios tend to 1, either uniformly in the range —4 = x =<
evInn (A =0, ¢ > 0) (moderate deviation theorem) or uniformly in the range —A = x <
o(n*)(A = 0, a > 0) (Cramér-type large deviation theorem). In the situation of properly
standardized sums of independent random variables, these kind of theorems were initiated
by Cramér (1938) and refined by Petrov (1975) (in the large ‘deviation case) and by Rubin
and Sethuraman (1965) and Amosova (1972) (in the moderate deviation case).

More recently, both types of theorems were obtained for U-statistics by Malevich and
Abdalimov (1979). Since then their Cramér-type large deviation result has been sharpened
by Vandemaele (1980).

The paper is organized in the following way: in Section 2 we state the two theorems; the
proofs are given in Section 5. The two main tools in the proofs, namely the corresponding
results for U-statistics and Helmers’ approximation method, are given in Sections 3 and 4
respectively. Technical details which are used in the proofs several times are contained in
the Lemmas Al through A3 of the appendix (Section 6).
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2. The results.

THEOREM 1. Let T, = n™' Y% cnXin be an L-statistic with weights satisfying
condition (*). Assume that > > 0. If E| X | < « for some p > 2 + c¢* (¢ > 0) then, uniformly
in the range —A = x < ¢cvlnn (A = 0)

. -1,1/2 _ -1 — _1_
(i) P(o™'n"T,— E(Tw) >x) =1 @(x)][1+o<ln n)]

.. T.— E(T,) 1
(ii) P(————-———> x) =[1- ®(x) [1 + o(—)] )
War(T,) ] Inn

THEOREM 2. Let T, = n™" Y1 cinXin be an L-statistic with weights satisfying
condition (*). Assume that 6> > 0. If forallp=1,2, ... : E|X|? = K? p*” (where K and
vy = 0 are constants not depending on p) then, uniformly in the range —A < x < o(n*®)

1
2(3 + 2y)

(i) P(e'n"* (T, — E(T,)) > x) = [1 - @)1+ o(1)]

with A =0 and a =

. Tn - E(Tn)
(i) P(—————> x) =[1- ®®)][1 + o(1)].
vVar(T,) ]

3. The corresponding results for U-statistics. Basic facts in the proofs of Theo-
rems 1 and 2 are the corresponding results for U-statistics, i.e. statistics of the form

-1
n
U, = <m) lei|<ig<~-~<im5n h(Xi,, e, le),

where Xj, - .., X,, are independent and identically distributed random variables and A(x;,
.+, X) is a function symmetric in its m < n arguments such that E[A(Xi, ---, X»)] =0
and such that g(X;) = E[h(X,, -+, X») | X1] has a strictly positive variance o%. These
results are stated in the following lemma.

1
LEmMMmAal. Let U, = (;:l Pi<i<oo<iy=n Xy, -+, X,) be a U-statistic with E[h(X;,
<+, X»)]=0and 0% > 0.
(a) if E|h(Xy, - -+, Xn) |? > o for some p > 2 + c*(c > 0) then
1
4) P(m™'oz'n?U, > x) = [1 - d><x)l[ b °<E"n‘)]

uniformly in the range —A < x < cvlnn (A = 0);
(b) ifforallp=1,2, --- : E|h(Xy, « -+, Xn) |” = K’p” (where K and y = 0 are constants
not depending on p) then

(5) P(m'e;'n"2U, > x) =[1 — ®(x)][1 + 0(1)]
. . a b —_ .1
uniformly in the range —A < x < o(n*)(A = 0) with a = 3B+

Both results in Lemma 1 were originally obtained by Malevich and Abdalimov (1979).
The (b) part, however, is already a sharpening due to Vandemaele (1980).

It should be noticed that in these papers, (4) and (5) are proved to hold uniformly in the
ranges 0 < x < cvinn and 0 = x < o(n®) respectively. However, for (5), it follows
immediately from the Berry-Esseen theorem of Callaert and Janssen (1978) that the range
can be extended to —A = x < o(n%).

That (4) holds in the wider range —A = x < evInn can be seen from the following

argument.
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In the proof of Theorem 1 in Malevich and Abdalimov (1979), m ‘oz 'n'/2U,, is written
as og'n"? ¥, g(X;) + R, where R, satisfies: E|R,|” < Cn™"'* for some constant C.
Application of the classical Slutsky argument yields:

P(oz'n 2 Y11 g(X)) > x + (In n) %) — P(|R.| > (In n)™?)
=P(n"'o;'n"?U, > x)
=Ploz'n™"? Y1 8X;) >x — (Inn)%) + P(|R.| > (In n)™2).

Using the general fact that (1 — ®(x))™' = O(c, e<*/2) uniformly in —A <x < ¢, (A >0, ¢,
> 0) and Lemma Al, we have

P(|R| > (in n)®) = [1 - @(x)]o(l—nl;)
and
1-®(xx(nn)?)=[1- @(x)][l + o(—l—)] ,
Inn

both uniformly in the range —A < x < ¢ vIn n. Hence it is sufficient to show that

- - n 1
P(o;'n™? YL g(X:) > x) = [1 —<I>(x)][1 + 0<m)}
uniformly in the range —A = x < cVlnn.

Since E| g(X;) |” < = for p > 2 + c¢*(c > 0), it follows from Theorem 3.4.1 of Ibragimov
and Linnik (1971) that

sup:| Ploz'n™"? Y11 g(Xi) > x) — (1 — ®(x))| = O(n™%?)
with 0 < § < 1. Hence uniformly in the range —A = x < c¢VIlnn, with0 < ¢’ <Vs:

Plog'n™? Y1 g(Xi) > x) = [1 - @(x)][ 1+ O<in—1r7)] '

From the proof of Theorem 1 of Amosova (1972), it follows that uniformly in M < x <
cvinn (M > 0)

P(o;'n™? Y g(X;) > x) =[1 — <I>(x)][1 + o(%)] .
Hence also in ¢’vVIn n < x < c¢vIn n we have

Ploz'n 2 Tl g(Xi) > x) = [1— ‘I’(x)][l * °<ﬁ)] '

4. Helmers’ construction. In this section we briefly sketch Helmers’ method to
approximate L-statistics by U-statistics. We also state and prove some lemmas which will
be used later on.

The first step is to approximate T, by the statistic V,, given by

Vo= 3 f " J(s) ds Xin.

For this first approximation we will need the following lemma.
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LEMMA 2. IfE|X|? < o for some p = 2, then for some constant C (independent of p
and n)

E|T, - V,|?< C? E| X|’n".

Proor. Since T, — V, =n"' Y% ainXin with @i = cin — 1 f ';_1 J(s) ds, we have for

n
p=2:
| Tn = Val? = n7P(Tie1 a)??(Xia1 XDP? < n7P(Xie1 @) 20?27 Y1 | Xo )P,
From condition (*):
XE1ad)?? = CPnP?

where C is some constant. Hence the result follows.
The second step is to approximate V, from above and below by statistics W, and W,

namely for alln =1
W, = V.= W,..

The precise construction of W, and W,,— can be found in Helmers (1978, 1980). They are
of the following form

W,,+ = n'l ?=1 hl(Ui) + Kn_2 ;l=1 2’;=1 h(Ui» lll) +C

W =n"' Y h(U;) — Kn2 Y1 Y5-1 A(U;, Uy) — C.
Here C and K > 0 are constants; Uj, - - -, U, are independent random variables which are
uniformly distributed on (0, 1) and

1
hi(u) = —j J(8) X0, (@) — s] dF~'(s) O<u<l
0

1
h(u, v) = f [x0, s1(&2) — s1[xw0.5 (v) — 8] AF~(s) O<uyv<l)
0

(xe denotes the indicator of set E).
The third step is to relate W,. and W,_ to appropriate U-statistics U,+ and U,-,
defined by

-1
Upt = (;) 215i<jsn h+(Ui, l]/)

-1
Un- = (’2') rzicjzn h-(Us, Uj)

where forO<u,v<1:
hs (u, v) = hi(u) + hi(v) = 2Kh(u, V).
We have from Helmers (1980) that
Elhe (U, U)]1=0, E[he (U, U) | Uil = ki(U:),  Var k(Us) = o™,
LEMMA 3. IfE|X|? < o for some p = 1, then for some constant C independent of p
E|h. (U, Us) |? =CPE| X|".

ProoF. Since
|As (Ur, Us) | < | h(Un) | + | Bai(U2) | + 2K|h(Us, Us) |
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we have that for p = 1
E|h. (Ui, Uz) |” = 377 '[2E| hi(Uh) |P + (2K)PE| (UL, Us) IP].
From Helmers (1976):
E|h(Uh) |P < CRE| X7, E|h(Uy, U) | < CRE|X|P

where C; and C; are constants. Hence the result follows.

beﬁne

Then
n—1[2 n\~
©) U = on I:; 1 hi(Uy) = 2K<2) Yi=i<j=n B(U;, lj]):l

-1 2K
= nn2 Y1 h(Uy) £ P Yi=i<j=n B(U;, U)).

On the other hand

2K
- Wi — E(Wpi) =n7' Y bi(U;) % F’lei<jsn h(U;, Uy)

|

+

Y- {h(U;, U)) — E[R(U;, U]}

[N

n
Subtraction of (6) and (7) gives
8 Was = E(Wos) — Uns = n7° iy {m(U)) £ K[R(U;, U,)— E[h(U;, U]}
The precise relationship between
P(o™'n"*T, — E(T})) > x)
and the introduced statistics V,, Wy+, W,,_, U,.+ and U,- is now given in the following
lemma.
LEMMA 4. Let e, >0, 8, > 0 and put for all real x
x(n) =x+ o 7'n"2E(T, — W) + 0 'n"*(ex + 8,)
() =x+07'n"?E(T, — Wyi) — 07'n"(en + 8,).
Then
P(67'n'"?U,- > x(n)) — P(| Wae — E(W_) = Une| > 8,) — P(| Ty — Vi | > &)
= P(c"'n"A(T, — E(T,)) > x).
< P(67'n"?Ups > £(n)) + P(| Woe — E(Wpi) — Uns | > 8,) + P(| To — V| > &2).
Proor.
P(o™'nVA(T, — E(T,)) > x) = P(T, > xon""? + E(T,)).

Applying the classical Slutsky argument to T, = V, + (T — V) gives, for e, > 0, that
P(T, > xon™"* + E(T.,)) is bounded above and below by respectively

9) P(V,>xon"? + E(T,) — &,) + P(| T, — Vol > &)
and

(10) P(V,>xon™"? + E(T,) + &) — P(| T — V| > &2).
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Since W,- = V, = W,., the first term in (9) may be replaced by the larger quantity
(11) P(W,r — E(Wyi) > xon™"? + E(T, — Wys) — &)
and the first term in (10) by the smaller quantity
(12) P(W,- — E(W,-) > xon "2+ E(T, — Wp-) + ¢,).
Applying the Slutsky argument again to
Wos = E(Wpa) = Up + [Wie — E(Wos) — Un]

gives that, for 8, > 0, (11) is not larger than

P(07'n'"?Uns > %(n)) + P(| Wos — E(Wyi) — Ups | > 65)
and that (12) is not smaller than

P(6™'n"?Un- > x(n)) — P(| Wpe — E(W,_) — U._| > 68,).
Combining the above inequalities gives the result of the lemma.

5. Proofs.

Proor oF THEOREM 1(i). Applying Lemma 4 with the choice &, = 8, = n™%(In n) 2,
it suffices to show that, uniformly in the range —A4 < x <cvVinn:

(13) P(07'n'?U,: > %(n)) = [1 — <I>(x)][1 + o(i)}
Inn

(14) P(c7'n"*U,- > x(n)) =[1 —@(x)][l + O(L)]
Inn

(15) P(l Wi — E(W,s) — Unil > n_l/z(ln n)—2) _ 1

1— ®(x) ““\Inn
P(| T, = V,|>n""*nn)?) _ 1
(16) 1- o) “%\nn)

To prove (13), we first remark that
Z(n)=x+0"'n"?E(T, — Wui) —207'(In n) 2 = x + O((In n)72).
Indeed,
|E(T, — Woi) | < [E(Tn — V)12 + E|V, — Wi | = O(n7")
using Lemma 2 and the fact that E| V,, — W,..| = O(n™") (Helmers (1980)). Now

P<2'lo'1nl/2Un+ > i(n)) 1- @( n x(n))
n—1 n—1

) 1-@
n 1’?(”)) (x)

P(c7'n'U,. > &(n)) _
1— ®(x) -
1- <p(

17)

Since

(18) Z(n) =x + O((ln n)™?)

n
n—1
we have that, for —A < x = ¢vIn n,

—A'snf - %)= c'Vinn
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for some A’ = 0 and ¢’ > 0, such that 2 + ¢’* < p.
Since 27'67'n"2U,. is a properly normalized U-statistic, we can use Lemma 1 and

Lemma 3 to obtain that the first factor in (17) is 1 +o (ln_lﬁ>

Also (18) and Lemma A1 give that the second factor in (17) is 1 +o (THIZ) . So (13) is

proved. We omit the proof of (14) since it is completely similar.
The proof of (15) will be given only for the + signs. From (8) we know that

Wn+ - E(Wn+) - Un+ = n_2 2?=1 Yi

with Y; = h(U)) + K[h(U;, U) — E[R(U;, U)]).
Remark that the Y; are independent and identically distributed with zero mean. The
assumption E| X|” < « entails that E| Y;|” < ; indeed, from Helmers (1976) we know

(19) E|m(U)|? = CRE|X|?
(20) E|h(U;, U) "= CE E|X|P
for some constants C; and Cy. Hence E| Wyy — E(Wyi) — Uns [P = n™®E| Y11 Yi|” and

since p = 2 we can apply the theorem of Dharmadhikari, Fabian and Jogdeo (1968) to get
E| Y%, Y;|? = C3n”” for some constant C3. Hence

P(|War — E(Wui) = Ui | 20" n)”?) _ , n"(nn)*
- 3

1—®(x) 1—®(x)

and this is clearly o(ﬁ) for —A = x < ¢VIn n. For the proof of (16) we use Lemma 2 to

obtain that for p > 2 + ¢®
P(| T, — Vu| > n"V4(ln n)™%) < CPE| X|” n™"*(In n)*.
Hence (16) follows.
PROOF OF THEOREM 2(i). We again apply Lemma 4. For the choice &, = 8, = no2
we have to show that, uniformly in the range —A < x < o(n®):

(21) P(o~'n20,, > i(n)) = [1 — ®(x)][1 + o(1)]
(22) P07 'n"?U,- > x(n)) = [1 — ®®)][1 + o(1)]
(23) P(| Wos — E(Wyz) — Unz| > n727%) = 0(1 — @(x))
(24) P(|T.— Va|>n™%) = 0(1 — @(x)).

We first prove (21). (The proof of (22) is similar.) Remark that
() =x+ 0 'n2E(T, — Wuy) — 26707 * =x + O(n™)

(indeed: E(T» — Wy+) = O(n™") as shown in the proof of Theorem 1(@1)). Also

(25)

i(n)=x+0(Mn™")
n-—1 '

so that, for x in the prescribed range:

—A'= xi(n) =o(n®)

n—1

for some A’ = 0.

Looking now at the equality (17), we easily see that the first factor tends to 1. Indeed,
apply Lemma 1 to the properly normalized U-statistic 270 "'n 12y),,. The required
condition on A+ (U;, Us) is satisfied because of Lemma 3 and the assumption of the
theorem. Also, (25) and Lemma Al give that the second factor in (17) tends to 1. To prove
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(23) (for the + signs only), we have as in the proof of Theorem 1(i) that
| E| Wa — E(Wa) = Ups |? = n"2E| S0y Yi|7.
Since

E|Yi|? = 3"7'[E|m(U) |” + K°E|M(U;, Uy I + C*]

(where C is a constant) and because of (19) and (20), we have that the assumption of the
theorem entails that

E|Y;|?=K;p”
where K is a constant.
Hence by Lemma A2, forall n =1, 2, -.. and for all real p € [2, 2n]:
E|YL, Yi|? < Kgpr+/2ppp/2,
This gives
E[n*(Was — E(Wy) = Uns) |7 < K3p'r+V/2
and therefore
P(| Wos — E(Wpt) = Ups | > n772) = P(n¥?| W — E(Wos) — Upi| > n'7%)
= P(n*?| Wos — E(Wpi) = Uni | > nPe0*1/2)

) _ 1
<smce 1 —a>2a(y+1/2) for a _M)
=0 (1—-®(x)

uniformly in the range —A = x < o(n*) (Lemma A3).
To prove (24), we use the assumption of the theorem together with Lemma 2 to find

E|n(T, — V,) |? = CPp™.
Therefore
P(|Tu = Va| > n7°72) = P(n| To — Vo | > n7=*172)
=P@n|T, — Vo|>n™)

1 1
1 ——a> f E
(smce 5 @ 2ay for a 3G T 2y))

=o(1 — ®(x))

uniformly in the range —A < x < 0(n*) (Lemma A3).

PRrROOF OF THEOREM 1(ii) AND 2(ii). We write

<Tn - E(Tn) x)
) War(T,) _ P(0™'n"AT, — E(T,)) > M) 1 — ®(\x)
1-0kx) 1—®(\,%) T1-9@

where A, = o~ 'n2VVar(Ty).
It will be shown that
(27) A =14+ 0n"1?).

This enables us to apply the appropriate (i) part of the theorem to the first factor in (26)
and to apply Lemma A1l to the second factor of (26), giving the desired result.
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In order to prove (27), we write

(28) A2 = g2 Var(T,) Var(V,) Var(W,.)

" ar(Vy)  VarWon)  Var) o)

where V,,, W,., and U, are defined before.
We know from Stigler (1974) that (see (2))

(29) lim, . n Var(T;) = o>
Since o is Lipschitz of order 1 on (0, 1):

. £ 2
n ! _ " _ -1
Yia [J<n - 1) n j 1 J(s) ds] o(n™)

and hence, as in the proof of Lemma 2,
(30) Var(V, — T,) < E(V, — T3)? = O(n™?).
It follows from (29) and (30) that:

lim,_, n Var(V,) = o

By Lemma 2:
Var(V, — T,) = O(n™?)
and hence:
@31 Var(T,,) = Var(V,,)[1 + O(n™"?)].

The behavior of the factors Var(V,,)/Var(W,.) and Var(W,.)/Var(U,.) can be taken over
from Helmers (1980):

(32) Var(V,) = Var(W,..)[1 + O(n™"?)]
(33) Var(Wn+) = Var(Un_'_)[l + O(n—1/2)].
As to Var(U,.) we have

12
Var(U,+) = n 4n21) Var(U,+)

_(r=1)[4n-2) , 2 ,
(34) 4’ [n(n 3 ° *nmop E U Uz)]]

(since U, is a U-statistic)
=o’n ' [1+0n™")]
Combining (31) through (34) gives that Az =1+ O(n™"?) or

-1

A= l=5—7

=0(n™"?).

6. APPENDIX.

LEMMA Al. Let A, and ., be such that lim, .o A = 1 and lim, .« p, = 0. Put b, =
max{(| A, — 1|)"% | pn|}. Let an = & > 0 be such that lim, . @b, = 0. Then
[1—®A.x + pr)] = [1— @(x)][1 + O(an-b,)] uniformly in the range

—A=x=<a, (A=0).
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Proor. Using Taylor’s expansion, we can write that
1= ®M\ux + pa) = 1— O(x) — ([ — Dx + pa]
where { = x + 9[(A\, — 1)x + p.] and | | < 1. This gives
1—-0®A\.x + p,) —1l < [Ae = 1] x| + pn ) e-€*/2.
1—®(x) 1—®(x) Vo

If x = 1, the right hand side of (35) is majorized by a constant times |\, — 1| + | u. | which
is O(a,-by). If x = 1, we use the fact that e=*/2/xv2a[1 — ®(x)] is bounded, to obtain that
the right hand side of (35) is majorized by a constant times

@[ A = 1@n + | o |]- P e ielan

(35)

which is easily seen to be O(a,-b,).

LemMMA A2. Let Y,(j=1,2, ---) be a sequence of martingale summands (i.e. E (Y)
=0, E(Y;| Y1, ---,Y;1) =0,7=2). Ifforallj=1,2,--- and allp=1,2, ---

El Y"]lp < KPPYP

(where K and y = 0 are constants, not depending on j or p) then foralln=1,2, ... and
all real k € [2, 2n]

EIZ;LI Y'jlk > K/kk(y+1/2iknk/2

(where K’ is a constant, not depending on n or k).

Proor. For k € [2, 2n], define m such that 2(m — 1) <2< 2m and m € {1, ..., n}.
Now
2m
[E| 51 V"% < E| St V[
Since m € (1, - .-, n}, we can apply a lemma of Bickel (1974) to obtain that
E| Y1 Y,|" < (4em)™n™ maxi<j=, E| Y,|*" < (4em)"n™K*"(2m)"*" (by assumption).
Hence
E|Y5-1 Y,|* < (4em)*?K*(2m) " n*/?
=< (4ek)*2K*(2k)"n*? (since m < k)
= K/kk(y+l/2)knk/2
with K’ = 2v+1e'/?K,
LEMMA A3. LetZ.(n=1,2, --.) be a sequence of random variables. If for all n = 1,
2, --- and all real k € (2, 2n]
E|Z,|* = K*p"*
(where K and y = 0 are constants, not depending on n or k) then fory=c¢>0
P(|Z,} > n°) = o(1— &(x))

uniformly in the range —A < x < o (n*")(A = 0).

Proor. Foralln=1,2, ... and all real % € [2, 2n]
P(|Z.| > n°) = n™™E|Z,|* = (n°Kk")".
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We specify the choice of % as follows:

—1\ —
= /Y wi = i e— v
k = pn" with p mln<< i ) , 2).
Since ¢ = y we have that 2 < 2n and since ¢ > 0 we have that & = 2 (for sufficiently large
n). With this choice of 2 we have that

n“Kk'<e!

so that
P(|Z,| > n®) = e = e-en",

Hence we obtain that for —A < x < o(n?):

P(I an > nc) /2 —on _1_ oy
< c/2y on'"+—o(n*’Y)
Toew - o(n“"e 2

which tends to 0 as n — o,
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