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PROPAGATION OF SINGULARITIES IN THE BROWNIAN SHEET

By JouN B. WALSH

University of British Columbia

We study certain singularities of the Brownian sheet which have the
property that they propagate parallel to the coordinate axis. This is used to
give an intuitive explanation of the fact that the Brownian sheet does not
satisfy Lévy’s sharp Markov property.

Let R% be the positive quadrant of the plane provided with the usual partial order:
(1, v) < (s, t) if u < s and v < ¢t. We will use z and ¢ for points in R%, and reserve s, £, u and
v for real numbers. If z; = (s1, t1), 22 = (s2, t2), (21, 22] will denote the rectangle (s;, s2] X
(t1, t2]. Let W be white noise on R?, that is, a random additive set function defined on the
Borel sets of RZ such that W {4} is a N(0, | A |) random variable, and if A N B = ¢, W {4}
and W {B} are independent. We define the Brownian sheet to be the process {W,, z €
R%}, where W, = W {(0, z]}. The Brownian sheet has a version which is continuous, and
we will always take that version.

The coordinate axes have a great effect on the Brownian sheet, not only near the axes
themselves, where W, = 0, but in the interior of R2 as well. For instance, any unusual
event has a tendency to propagate parallel to the axes, and the more unusual the event,
the stronger the tendency. This leads to a phenomenon we call the propagation of
singularities, in which certain singular events propagate with probability one.

The particular behavior we study here is specific to the Brownian sheet. It would be
interesting to know if related processes, such as Lévy’s multiparameter Brownian motion,
have analogous properties.

1. Some preliminaries. Suppose the Brownian sheet is defined on a complete
probability space (2, % P). We will assume in what follows that all o-fields under
discussion are augmented by the addition of all null-sets of % Let % = o {w;, ¢ < 2}, Fu
= Fiw = \/v T and FL = Foy = \/u Fur, and define F} = F. v F2 Since FL doesn’t
depend on ¢, we will often write % when there is no danger of confusion, and similarly, we
may write #7 in place of 2.

DEFINITION. A random variable Z with values in R? is a weak stopping point if for

each z € R?,
{(Z<z € 7.
If Z is a weak stopping point, define
Fr={A€e F1AN{Z<z2) € F;, all z€ R}}.
One can easily verify that % is a o-field, that Z is #%-measurable, and that if Z;, < Z, are
weak stopping points, then #%, C #Z,. Finally, we define
Wi=W{(Z Z+:z2l}, =z€R%,

where the mass of the (random) rectangle (Z, Z + z] is computed from W, by the usual
formula:
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(11) W{((u’ U), (S, t)]} = mt - Wut - MU + Wuv‘

The following theorem gives one analogue (among many) of the familiar Brownian
strong Markov property.

THEOREM 1. Let Z be a weak stopping point. Then the process {W%, z € R%} is a
Brownian sheet, independent of 3.

Proor. The proof of this type of result is completely standard. One first approximates
Z from above by countable-valued stopping points Z,, proves the theorem for the Z,, and
then goes to the limit.

Write Z = (T, Te), let T = j27 " if (j—1)2""=T:<j2™", j=1,2,---,i= 1,2, and put
Z, = (T, T3). Let {r:} be an enumeration of the lattice points (127", j2™") and note that
{Z. =r.} € %, for all k. By (1.1) and the continuity of the Brownian sheet,

WZ=W{(Z,Z+ z]} =lim W{(Z,, Z, + 2]} =lim W,
Let A€ 2 C #% andlet By, ---, B, be Borel setsin R. If z1, -+, 2n € R2, then
PW{(Zn,Z.+ 2z} €EBj,j=1, ---,m; A}
=Y P{(W{(rs,re+z1} €EB;,j=1,--+,m; AN {Z, =rs}}.
But AN {Z, =r:} € #;, so by the independence properties of white noise, this is
=Y P{W{(rx,rv + 2z} €EB;,j=1,---,m}P{AN {Z, = r}}
=P{W,€B;,j=1,---,m}P{A}.

Thus W% is a Brownian sheet independent of %7, hence so is its limit, W2,
The singularities we deal with in this article are associated with the law of the iterated
logarithm, so we will introduce some convenient notation. Let

(1.2 L(s; t; w) = lim Supth
2h log log 1/h
and

Ws+ = Ws = Ws - Ws
(1.3) M(s; t, t'; w) = lim supgo I bt v — (Warne 2| .
v2hloglog 1/h

We will usually suppress the variable w. Notice that L(s; ¢) is just the quantity of the
law of the iterated logarithm for the Brownian motion s — W, (where ¢ is fixed), and M
is the same thing for the “increment” s — (W, — W,). Both L and M are measurable in
all variables, as can be seen, for instance, by writing:

Ws - Ws
(1.4) L(s; t) = lim,.,.m[sup{ | Wesn,e | :
v2h log log 1/h

Let us record an elementary fact about the lim sup. If f and g are real-valued functions,
and if either lim sup | f| or lim sup | g| is finite, then

0<hsl,he O}]
n

(1.5) lim sup | f| — lim sup | g| < lim sup |f + g| <lim sup |f| + lim sup g |.
This leads to some relations between L and M. First note that
(1.6) L(s; t) = M(s; 0, t).

Let0<a=<b=¢c Then Wy, - W.e + (W — W) so that it follows from (1.5) that if
either L(s; a) or M(s; a, b) is finite

(1.7) L(s; a) — M(s; a, b) < L(s, b) < L(s; a) + M(s; a, b).
Similarly, if either M(s; a, b) or M(s; b, c) is finite,
(1.8) M(s; a, b) — M(s; b, ¢) < M(s; a, ¢) < M(s; a, b) + M(s; b, c).
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2. The propagation of singularities. Part (a) of the following theorem is due to G.
Zimmerman [4], although the proof given here is new. Part (b) contains (a) as a special
case, courtesy of (1.6), but is also an easy corollary of it, so we thought it worthwhile to
separate the two.

THEOREM 2(a). For each fixed s = 0, we have with probability one that L(s; t) =t
simultaneously for all t = 0. (b) For each fixed s = 0, we have with probability one that
M(s; t, t') = Vt' — ¢t simultaneously for all0 <t < ¢t'.

Proor. For each fixed ¢, the statement that L(s; ¢) = Vt as.is just the familiar law of
the iterated logarithm. By Fubini, it holds for a.e. ¢ with probability one. The whole
problem is to show that it holds simultaneously for all 2.

It follows from (1.4) that {L(s; ¢), ¢ = 0} is well-measurable with respect to the fields
(Z7%)=0, which are known to be continuous. Thus by Meyer’s section theorem [1], if
P{3t:L(s; t) # vt} > 0, then there exists a finite (F?)-stopping time T such that
P{L(s; T) # «/T} > 0. Let By = W, — W, r. Note that Z := (0, T') is a weak stopping
point, so that by Theorem 1, B = W¥ is again a Brownian sheet. Thus if § > 0,

| Borns = Bss| _
V2h log log 1/
But W, 15 = Wer + B,s, so by (1.7) and (2.1)
Ls;T) -~ Vo<L(s; T+38)<L(s; T) + Vo as.

It follows that L(s, T + &) # VT + § for a.e. small enough 8 with positive probability, i.e.
L, # vt for a t-set of positive Lebesgue measure, a contradiction. This proves (a). To prove
(b), notice that for any #, = 0,

(2.1) M(s; T, T + 8) = lim supso a.s.

A

Wst = W’s,to+t - EXS

isa BrownianAsheet. If we apply part (a) to W and let I;(s; t) be defined as in (1.4) with W
replaced by W, we see that L(s; ¢t) = Vt for all ¢. But L(s; t) = M(s; to, to + t).
It follows by Fubini that for a.e. w,

(2.2) Ms; t,t';w)y =+t — ¢t

for all rational ¢ and all real ¢’ = ¢. Let us fix such an w, and show that (2.2) holds for all
real ¢. If ¢ is irrational, let ¢, < ¢ be rational. Then M(s, t,, t') =vVt' — t, < o, so by (1.8),

| M(s; 8, ') — M(s; t, )| < M(s; £, t) =Vt — ¢,.

Now we can let ¢, 1 ¢ to see that M(s; ¢, t’) =vt’' — t, and we are done.
It is the converse to this theorem which gives us the announced propagation of
singularities.

THEOREM 3. Let ty> 0 and let S =0 be an ,97,20-measurable random variable. Then
for a.e. w
(@ if t=t, L(S(w);tw)=0o iff L(SW);t,w)=oo
b) if tost<t, MBSt t,w)=Vt —¢t
Proor. Let Z = (S, &). Z is a weak stopping point, for if z = (s, ), then if ¢ < to,

(Z<2z}=¢€ 7:, whileift = t,, (Z< 2z} = (S= s} € #} C #}. By Theorem 1, {W?)
is a Brownian sheet. Applying Theorem 2, we see that for a.e. w

WZ
lim suphw—%= \/Z, Ve > 0.

v2hloglog 1/h

Set t’ =ty + t. Then
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Wsine — Wsey = Wsingy— Wsyy + Wih..

Thus for all ¢’ > ¢,, (1.7) implies:
L(S; to) — Ve < L(S; t’) < L(S; ) + V¢,

which proves (a). (b) follows upon noticing that, if M? is defined as in (1.3) with W replaced
by W% thenift,<t<t’,

M(S, t, t')=M*0,t—t,t' —t)=~vt'—¢t. 0O
A point s for which L(s; ¢, w) = » is called a singular point for Wy, (w). More generally,
if B is any Brownian motion, we say s is singular for B(w) if

[Bonlw) = Bw) | _
v2hloglog 1/h

hm Supejo

REMARK 1: There are many singular points for Wy, and random singular times do
exist. Indeed, Orey and Taylor [3] showed that the set of singular points for any Brownian
motion is dense, uncountable, and even of Hausdorff dimension one. Thus, if B is a
Brownian motion, let

& = {(s, w) : s is singular for B(w)}.

Then & is %+ X 6{Bs, s = 0}-measurable, where %, is the Borel field of R.; see e.g. (4).
It follows by [1, page 18] that there exists a r.v. S for which (S(w), w) € & for a.e. w, i.e. S
is a.s. singular for B. If we take B, to be W,,, S will be #;-measurable, and L(S(w); to, «)
will be infinite for a.e. w.

REMARK 2: We can think of S as a way of choosing a singularity at random. What we
have shown is that if S is a singular point of W, it is singular for W, for all t = 0, i.e. the
singularity propagates vertically, parallel to the ¢-axis. If we think of the sample function
of W as a sheet, then we can visualize this propagating singularity as a wrinkle running
parallel to the z-axis.

By symmetry, there are wrinkles running horizontally, parallel to the s-axis. To rephrase
Theorem 3: the wrinkles in the Brownian sheet are parallel to the edges of the bed.

REMARK 3: A similar argument shows that singularities of the type
| Ws+h,t - Ws,tl
v2h loglog 1/h

propagate vertically for short distances.

> (1 +e)Vt

lim Supxo

REMARK 4: A word of warning: the exact measurability conditions on S are not mere
technicalities. They govern the type of singularity we choose. This will become clear in
Theorems 4 and 5 and the associated remarks.

3. Genesis. Let us turn to the question: “How do these propagating singularities start?”
We can get the beginnings of an answer to this by a simple time-reversal argument.

Define Wy, = tW,y,.. Then W is again a Brownian sheet, for it is a mean-zero Gaussian
‘process with covariance function

E{Wslwuv} = (S A u)(t A U}.
If I(s; ¢) is defined as in (1.2) with W replaced by W, then
3.1 L(s; t) = tL(s; 1/¢t).

Furthermore, if t < t' < £,



PROPAGATION OF SINGULARITIES 283

3.2) Wi — W = /! (Were — Warp) + (' — t) Wanse.
Apply (1.5): if M(s; 1/¢, 1/t) is finite, then
(8.3) (¢’ —t)L(s; 1/t) — t'M(s; 1/, 1/¢) < M(s; t, t')
= @' —t)L(s; 1/t) + t'F(s; 1/¢, 1/¢t).

THEOREM 4. Let ty > 0 and let S = 0 be measurable with respect to 6o{Wy, s =0, t
= to}. Then for a.e. w,

(@) ift=to, L(SW); t,w) = iff L(S(w);h,w) = o,
(b)ift <t <to, M(S(w); ¢, ', w) =0 iff L(S@); b, w) = .

PROOF This reduces to Theorem 3 by tlme reversal. If we define W as above, with

? defined in the obvious way, then S is F? 1/1,-measurable, so (a) follows by applying
Theorem 3(a) to W instead of W, and using (3.1). By Theorem 3(b), M(S; 1/t’, 1/t) =
v1/t — 1/¢’, which is finite, so (3.3) holds, and part (b) follows immediatetly from (3.1). O

Theorem 3 only applies to S which are measurable with respect to o { Wy, ¢t < &}, and
it doesn’t tell us if the singularity propagates into the region ¢ < ¢, while Theorem 4
applies to S which are o {W, t = #}-measurable, and it doesn’t tell us anything about
propagation into the region ¢ > #,. Indeed, there is little to be said about this at this level
of generality, as one can see from Theorem 7 and its proof. However, if we take the random
variable S to be measurable with respect to 6 { W, s = 0}, then both theorems apply, and
we can get a rather complete description of the singularity and its propagation.

THEOREM 5. Let S = 0 be a 6{W,, s = 0}-measurable random variable. Then for
ae w
(a) foranyt >0, L(Sw); t,w) =00 iff L(Sw);k,w) = o;
(b) M(S(w); t, t',w) =\t —tforalltt<t<t)
© ift<ty, M(S(w); t, t',w) =0 iff L(SW);b,w)=oc0.

ProoFr. Part (a) follows from parts (a) of Theorem 3 (for ¢ = ¢,) and 4 (for ¢ < ¢;). Part
(b) follows from Theorem 3(b), and part (c) follows from Theorem 4(b) if ¢t < ¢’ < t,. If ¢
< ty < t’, then by (1.8),

M(S; t, to) — M(S; to,t') = M(S; t, t') = M(S; t, to) + M(S; to, t').

By part (b), M(S; t, t’) = Vt’ — ty, and we are done, since M (S; ¢, t) is infinite iff L(S; ¢,)
is, by the case just proved.

REMARK. If we choose S in Theorem 5 to be a singularity, then, whatever the value of
to, the singularity starts at the origin and propagates to infinity. Still, the exact type of
singularity it is depends on . Indeed, we can recover #, by looklng closely at the singularity
we have chosen: ¢, = inf{¢: M(S; ¢, t + 1) < ).

There are some rather surprising properties of the sets of singularities embodied in the
two foregoing theorems. We can illustrate this by considering the singular points of some
indépendent Brownian motions. Let B', ..., B" be independent standard Brownian
motions, and let B = B' + ... + B". For a given j, let % be the set of points singular for
B/, and let & be the set of points singular for B.

CQROLLARY 6. Let S; and S be positive random variables measurable with respect to
o{BY, s = 0} and o{B,, s = 0} respectively. Then with probability one:

() Ses iff S €%
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b)S; &% if k#jJ;
() SeE¥ iff SEU, % iff SEN

Proor. Note that (B, ---, B?, B,) has the same distribution as (W, ng Wi,
, Wao — W1, W), so we may as well suppose that B, = W, — W;_;,j=1, .-+, n,
and B, = W,,.

(a) Suppose first that j = 1. Note that S, € & iff o = L(S;; n) = M(S:; 0, n), and the
result follows from Theorem 5b with ¢, = £ = 1 and ¢’ = n. Since the initial
ordering of the B', ..., B" was arbitrary, (a) must also hold forj =2, ..., n.

(b) S; € % iff M(S1; k — 1, k) = «. But by Theorem 5b (with £ = 1), this never
happens for £ = 2, i.e. (b) holds for j = 1. By symmetry, it holds for all ;.

(c) Note that S € Ziff L(S; n) = w,and S € & iff M(S;j — 1,j) = . But L(S; )
and M (S;j— 1,j) are finite or infinite together by Theorem 5¢ (with #, = n), and
we are done.

REMARKS. The sets #and % above have Lebesgue measure zero. The % are indepen-
dent, and even though they have Hausdorff dimension one, one might suspect that % N
% was negligibly small relative to % U %. (In fact, we once conjectured that it was empty.)
Parts (a) and (b) of Corollary 6 would seem to support this, but part (c) indicates the
opposite: in some sense, N, % is almost as large as U; %. If there is any moral to this, it is
that one must be careful in arguing naively about the size of various subsets of the
singularities.

Just to reduce naiveté to absurdity, let us look at the Brownian sheet from the same
viewpoint. Let %’ be the set of singularities which propagate vertically from zero to
infinity, and, for each ¢, 0 < ¢ < o (note that ¢ =  is included) let % be the subset of &’
consisting of points s for which inf{r:M(s; 7, 7 + 1) < o} = ¢£. The &} are disjoint, and
S’ = Ui=w & ;. If we choose a singularity S which is 6 { Wy, s = 0}-measurable, then by
Theorem 5, s € & a.s. This is true for each ¢, so that if we really believed that S was a
singularity chosen “at random” and if we were to use it to measure the size of various
subsets of &', we would be forced to conclude that %’ is an uncountable disjoint union of
subsets, each of which is as large as the whole!

The singularities we have studied so far all propagate across the whole plane, and it is
natural to ask if this is always the case. The answer is “no”, as the following theorem
shows.

THEOREM 7. Let 0 < t,<t, be finite or infinite reals. Then with probability one there
exist singularities which start at t, and propagate exactly to t,.

ProOF. Let t; > t, let B = Wy,— Wy, and let S = 0 be a 6{Bs, s = 0}-measur-
able random variable such that Sis a.s. singular for B. Define Wy = W (vt — W, Then
WlS a Brownian sheet, S is o { W, 1,1, : § = 0}-measurable, and S is smgular for W, i.e.
L( S; t2 — to) = «. By Theorem 4, f(S t) = oo for all ¢. In terms of the original process,

00 = L(S; t)=M(S; ty, to +t) forall ¢.
Now B, is independent of {W,, s=0,0 =<t =<t} so by an easy modification of Theorem
2, L(S; t) = vVt as. for all t < ¢,. Butfort>t0 by (1.7) L(S; t) = M(S; to; t) — L(S; to)) =
® = \/_0 = o0, Thus
Viooif t=
L(S; t) = gt
if t>t,
so the singularity propagates from ¢, to infinity.
In order to construct a singularity ending at ¢;, just reverse time and consider W, =
tWii. As W is a Brownian sheet, it must have a singularity S which propagates from 1/t
to infinity, i.e.
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B ¢ t

L(S;1/t) = _
o if —>—.
t L

By (3.1)
Viooif t=¢
L(S;t) =
(S ) {00 if t<t,

which is exactly what we wanted.

This takes care of the case where ¢ = 0 and/or ¢ = . To handle the case 0 < ¢, < t;
< oo, we need a different transformation of the Brownian sheet. To simplify notation,
suppose ¢, = 1 and ¢ = 2. Put

Ws’¢+1 — Wa if 0=<t=<1

Wsl = Wsl + m,t—l if 1=st=<2

W if t>2
so that

VVs,t+l—"Vs1 if 0=st=1
(3.4) Wy=< Wi+ W, if 1=st=<2

Wst lf t>2.

What we have done is to int_erchange the strips {(s, t):0 <t = 1} and {(s,2):1<t=2}.
It is not hard to verify that W is again a Brownian sheet. Thus W must have a singularity
S which propagates from zero to one, i.e.

© if t<1
(3.5) L(S;t) =
Vit t=1

But from (3.4), (3.5) and (1.5), if 0 < ¢ < 1 then
LS;t)=L(S;t+ 1)+ L(S; 1) =vVt+1+1<oo,

If t = 2, then L(S; t) = L(S; t) =Vt < oo, while if 1 < t < 2, L(S; t) = L(S; ¢t — 1) —
L(S;1) =0 —1— V2 = oo, so that the singularity at S propagates exactly from one
to two. 0

4. A Refinement. We can refine the foregoing results by looking at higher-order
singularities. Let ¢ be a continuous increasing function on R* with ¢(0) = 0, such that
limy, op (k) (2R log log 1/A) /% = =,

The quantities corresponding to L and M respectively are

. I Ws+h,t - Wsll
K (s; t) = lim supnjo o)
and
| Weine — Weiny — W + Wiy
o(h) '

Notice that K (s; £) and N(s; t, ¢') vanish if L (s; t) and M (s; t, t’) respectively are finite.
The most interesting choice of ¢ is ¢ (k) =v2h log 1/Ah . In this case K (s; t) =Vt a.s. for all
s by Lévy’s modulus of continuity, while Orey and Taylor [3] have shown thatifo = a <
1, the set of s for which K (s; t) = a Vt has Hausdorff dimension 1 — a2 Thus K and N can
take on non-trivial values and it is possible to choose, say, a random variable S such that
0<K(S;t) <+tas. '

N(s; t, t') = lim sups o
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The theorems of Sections two and three give us some information about K and N, but
we can greatly refine this with a small amount of additional work. We have the following
two results.

THEOREM 8. Let £, > 0 and let S = 0 be %7 -measurable. Then for a.e. w,
(a) K(S(w); t; w) = K(S(w); h; w) forall t= t;
(b) N(S(w);t, t;w)=0 forall ¢ >t=t.

THEOREM 9. Let to >0 and let S =0 be 6 (W, s = 0} — measurable. Then for a.e.
w, we have for allt’ >t = 0:

(a) HK(S(w); t; w) = (N 6)K(S(w); to; w);
(b) toN(S(w); t, t';w) = E'N ty —tN\ &) K(Sw); to; w).

These theorems are closely connected, and we will prove them together.

ProoF. Theorem 8(b) is immediate from Theorems 1 and 2(a). Then part (a) follows
because

K(S; t) — N(S; t, t) = K(S; t) = K(S; &) + N(S; b, ¢),

which is the analogue of (1.7).
Moving to Theorem 9, in case ¢y < ¢t < t’, part (b) follows from Theorem 8(b). If £ < ¢’
< t, we apply a time reversal argument: let W, = tW, /.. Then

W — Wa= " = ) Warse + ' (Warse — Warse).
It follows from (1.5) that, if R and N are defined in the obvious way,
' — t)K(S; 1/t) — ' N(S; 1/¢', 1/t) < N(S; t, ')
=@ - )K(S; 1/t) + t'N(S; 1/¢, 1/¢).

But 1/t’ = 1/t, so by Theorem 8 applied to W, N(S; 1/¢, 1/t) = 0, while K(S; 1/¢t) =
R (S; 1/t0) = 1/t0K(S; ty), which gives part (b) in this case. The remamlng case occurs
when ¢ < #, < t’, when the analogue of (1.8) gives

N(S; ¢, t0) = N(S; 8, t') = N(S; 8, ¢) = N(S; ¢, bo) + N(S; o, ¥).

We have just seen that N (S; t, t’) = 0 so that N(S; ¢, t') = N(S; t, to) = (1 — t/t0) K (S; to).
This proves (b), and (a) follows because K (s; t) = N(s; 0, t).

REMARKS. The singularities build up with surprising regularity. For instance, take
=1:if S= 0 is o{ W, s = 0} —measurable, and if K(S; 1) > 0, then not only is each
“increment” (W, — W) below ¢ = 1 singular, but its degree of singularity is known once
K(S; 1) is known. Indeed, forall t < ¢’ <1, N(S; ¢, t') = (¢’ — t)K(S; 1). :

5. Some remarks on Lévy’s Markov property. If A C R%, let 94 =0 {W,, z €
A}, and ¥4 = N %, where the intersection is over all open G which contain A. %} is
called the germ-field and 9. the sharp field. We say that W satisfies Lévy’s Markov
property if, for every domain D with a piecewise-smooth boundary, %p and %n. are
conditionally independent given %;p. If they are conditionally independent given %,p, we
say it satisfies Lévy’s sharp Markov property. In one parameter, Lévy’s sharp Markov
property corresponds to the ordinary Markov property, while the other is often called a
higher-order Markov property, so that the sharp Markov property might be said to be the
rule rather than the exception. The situation is reversed in several parameters: non-trivial
processes satisfying Lévy’s sharp Markov property are rare, and to find examples one is
forced to turn to generalized processes [2]. Thus, in general, ¥;p is strictly bigger than
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%,p. The two fields are often equal in one parameter—this is just Blumenthal’s zero-one
law. Evidently the zero-one law fails in several parameters. In order to see why one might
expect this, we will consider the Brownian sheet.

The Brownian sheet satisfies Lévy’s Markov property, and it even satisfies the sharp
Markov property for domains which are finite unions of rectangles with sides parallel to
the axes. But these are all. The sharp Markov property does not hold for other domains.
For example, consider the domain D = {(s, t): s = t}, whose boundary is the diagonal s =
¢. D is unbounded, but this is irrelevant to our discussion. Write W, = W1 + WZ, where
W!=W{uv):v=u=<s)and W?= W{(u, v): u < v =< s}. Note that W' and W” are
%p measurable. Indeed, one can approximate {(u, v): v < u < s} by a union T, of tall thin
rectangles of the form [k/n, k + 1/n] X [0, k/n]. If V, is a 1/n-neighborhood of 8D, W(T,)
€ %v,, and W(T,) - W3, so Wi € N, %y, = ¥5p. The same argument shows that W' is
measurable with respect to %p and %p., so that the sharp Markov property can only hold
if W!is 9p-measurable. But it is not. All the processes under discussion are Gaussian, so
that the fact that E {((W! — W.,/2) W,} = 0 for all ¢ implies that E{W;| %p} = W,s/2 #
Ws.

This proves that %3p is strictly larger than ¥, but it gives little insight into why. We
would like a more intuitive proof, based on some local behavior—some type of convergence,
perhaps—which is clearly measurable with respect to the germ field, but not with respect
to the sharp field. The propagation of singularities provides us with just this.

The reason is simple, at least at the intuitive level. We know that the plane is criss-
crossed by singularities propagating horizontally and vertically like wrinkles. When the
diagonal crosses one of these winkles, the process on the diagonal will have a singularity.
If one looks only at the diagonal, it is impossible to tell (symmetry!) if the singularity is
propagating horizontally or vertically. But if we look in any neighborhood of the diagonal,
we can see which way it is travelling. In other words, the direction of propagation is
measurable with respect to the germ-field, but not with respect to the sharp field.

We will have to be careful when we make this statement rigorous, for it has some subtle
complications, but first, let us remark that it indicates why one might expect the germ-
field to be strictly larger than the sharp field. This is because for the two to be equal, some
sort of zero-one law would have to hold simultaneously at each of the uncountably many
. points of 8D, and, in general, this is simply too much to ask. In the example above, the
probability is zero that a singularity will pass through a given point of 4D, but it is sure
that some singularities will cross the line aD.

Here is a way of making precise the claim that the direction of propagation is measurable
with respect to %;p, but not %p.

PropPosITION 10. (a) For any %p-measurable S such that s —» W, is a.s. singular at
S, S propagates both vertically and horizontally. (b) There exists a 9sp-measurable T
such that s — W, is a.s. singular at T, and T propagates vertically but not horizontally.

Before proving this, we need to generalize part of Corollary 6.

LEmMA 11. Let X, and Y, be independent, continuous, mean-zero processes of
independent increments, and put Z, = X, + Y,. Suppose (d/dt)E (X%} = a(t) and
(d/dt)E{Y?} = b(t), where a and b are strictly positive, continuously-differentiable
functions. If S is 6{Z}-measurable (or, more generally, o{Z, U}-measurable, where U is
independent of (X, Y)), then for a.e. w: .

(a) If one of X, Y, Z is singular at S, so are the other two;

(b) if T is 6{X, U}-measurable, Y is non-singular at T.
ProoOF. Let

V.= j b(s)/a(s) dX; — Y,.
0
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A direct calculation with stochastic integrals shows that E {V,Z,} = 0 for all s and ¢. Since
Z and V are Gaussian and mean zero, this implies that they are independent processes.
But now

Z+V, =f 1+ b(s)/a(s)) dX..
0

The random variable S is independent of V so that it is a (randomized) stopping time for
V, and we can apply the strong Markov property to see that

. | Vs — Vs| ( b*(S) )”2
lim sups o ———nrs—=—==={ b(S) + < o
Prio v2h log log/h a(S)

It follows from (1.5) that Z + V is singular at S iff Z is. But note that J (1 +b/a)dXis
singular at S iff X is, since by Ito’s formula on integration by parts

f (I1+b/a)dX=Q0+b(t)/at)X —J X;(M) ds,
o - o a(s)

and the last integral is never singular, while (1 + b/a)X is singular at S iff X is. This shows
that Z is singular at S iff X is, and the same is true of Y by symmetry, which proves (a).
Part (b) follows by applying the strong Markov property to Y instead of V as above. [

Proor oF PRoPOSITION 10. We will only consider propagation from the diagonal back
towards the axes. Let # = o{ W;, WZ s = 0}, and note that #C %p. Fix t > 0 and let
Xo=Wo— Wy, Z, = W; — Wi, and Y, = Z, — X, for s = ¢. Notice that the processes
{X;, s = t} and (Y, s = t} are independent, and are independent of { W2 v = 0} and of
{W.,0=<u=t}. Suppose S is #measurable. By Lemma 11a, a.e. on the set {S > t}, X is
singular at S iff Z is. It follows by Fubini that

(i) L(S; t) = oo for a.e. t < S on {8 is singular for W'};

(ii) L(S; t) < o for a.e. ¢ < S on {8 is non-singular for W1}.

An argument similar to that of Theorem 2 shows that we can replace “a.e. t” by “every
t” above.

Now suppose that S is %;p-measurable, and note that %, C # If W, is singular at S, we
can apply Lemma 11 with X, = W3, Y, = W and Z = W, to see that S is a.s. singular for
both W' and W? hence by (i} above, the singularity propagates both vertically and
horizontally back to the axes. This proves (a). To prove (b), choose T to be a{Wi s> 0}
—measurable such that T is a.s. singular for W', which we can do. By Lemma 11b, 7'is not
singular for W2 so by (i), T propagates vertically, and by the statement symmetric to (ii),
it does not propagate horizontally. 0
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