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WHEN DO WEIGHTED SUMS OF INDEPENDENT RANDOM
VARIABLES HAVE A DENSITY—SOME RESULTS AND EXAMPLES

By JakoB I. REicH
Baruch College, CUNY

Let {X,} be a sequence of independent random variables and {a.} a
positive decreasing sequence such that ¥, @.X, is a random variable. We show
that under mild conditions on {X,}

(i) if for every 5,A > 0

8/ gy
Yrmi J exp(—AE” Y F-n+1 af) dE < o
5,

/@n
then P(} a.X, € dx) has a density.
(i) limew|E(e%Z%%)| =0 for every (X} iff imyow ai Ni-n+1 @l = oo.

Several consequences, examples and counterexamples are given.

1. Introduction. Let {X,} be a sequence of independent random variables. We say
that {X,} is range splitting if :

(A) sup, E| X,| <o, or

(A) E(X,)=0 and sup, E(X2) <

and there is a sequence of numbers {x,} and A;, A2 > 0 such that

B) inf, P(X,=x,+A;) >0 and inf, P(X,<x,— Az) >0.

Note that clearly every i.i.d sequence with E|X;| < o« and which takes more than one
value is range splitting. '

Let {a.} be a sequence of real numbers and assume Y, | @, | < o, ¥ a2 < o for (A), (A’)
respectively and let

X=3 aX,.

In this paper we study under what conditions on the sequence {a,} the distribution
measure

(1) Fx(dx) = P(Y, a.X, € dx)

will have a density, for every range splitting sequence. Of course, if any one of the X,’s has
a distribution absolutely continuous with respect to Lebesgue measure (we will denote this
by a.c. dx) i.e., has a density, then so does Fx(dx).

However, if we rule out this trivial case, it is clear from the following theorem by P.
Lévy [3] that some condition which splits up the range of the X,’s must be imposed if
Fx(dx) should have a density for every sequence {X,} which satisfies (A):

THEOREM (P. Lévy). Let {X,} be a sequence of independent random variables. Then
X = Yn-1 X, has a distribution concentrated on a countable number of points iff there
exists a sequence of numbers {a,} such that Y, a, < o, ¥7(X, # an) < © and {X,} is
distributed on a countable set.
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788 JAKOB I. REICH

If we restrict our attention for the moment to range splitting sequences {X,} where
each X, is distributed on a countable set, then the following theorem by Jessen and
Wintner [2] is in force:

THEOREM (Jessen-Wintner). Let X,, Xs, -- - be independent random variables such
that

i YrX,—>Xas.
(ii) each X; is distributed on a countable set.

Then the distribution of X is of pure type, i.e., either X has a discrete distribution or the
distribution of X is continuous but singular with respect to Lebesgue measure (singular
dx) or the distribution of X is a.c. dx.

Hence, combining the Jessen-Wintner Theorem with the theorem of P. Lévy we see
that Fx(dx) will either be continuous but singular dx or have a density for every range
splitting sequence which is distributed on a countable set. The problem of course is to

decide which one it is.
For instance, if we take a, = 1/2" and {X,.} a sequence of i.i.d’s which take the values
0, 1 with probability 1/2, then of course

Fx(dx) = P<Z‘i° X, 2% € dx) =dx on [O0,1].

On the other hand, we will show in Corollary 1 that for any sequence {a,} such that
lim infye @3 Yion+1 af <

there is a sequence { p,.}, %6 < p, < 1 such that the independent sequence {X,}, X, = +p.
with probability 1/2 has P(}, a.X, € dx) singular dx. We also gave some examples of such
singular distributions for sequences of exponential decay in [4].

This shows that if we want P(} a,X,. € dx) to have a density for every range splitting
{X.}, then we must restrict the rate of decay of the a,’s. In this vein we proved the
following theorem in [4].

THEOREM A. Let {a,} be a sequence such that for some a =8> 0, a > 1/2 and a —
B<1/2

Cn=<|a.,|=Cn*

where 0 < C =< C. Then P(Y, a,X. € dx) has a density for every range splitting {X,.}. (Of
course we assume in addition either Y, | a.| < © and (A) or ¥ a% < « and (A’).)

This looks like a very restrictive condition; however, we show in Corollaries 2 and 3 that
for « — 8 = 1/2, Theorem A fails even for the i.i.d sequence X, = +1 with probability 1/2.

We also give an example of a sequence for which the conclusion of Theorem A holds,
but which decays faster than any polynomial. In Theorem 1 we give a necessary condition
on {a,} for the conclusion of Theorem A to hold, and in Theorem 2 we give a sufficient
condition on {a.} which guarantees the conclusion of Theorem A.

Throughout this paper we will always assume a sequence {a,} to satisfy

* a,>0 foralln
*x a, = a,+1 for all n.

There is no loss in generality since for * we always may transfer any negative signs to the
corresponding X, and for ** any rearrangement of the sequence {a,X,)} alters ¥ a,X, on
a set of probability zero.
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Furthermore, we will always assume
ok X =Y a.X, is well defined,

ie,if Y a% <o but Y a, = « we will mean all range splitting sequences which satisfy (A’).
For general references on the Jessen-Wintner and P. Lévy Theorem, see Breimann [1,
pages 49-51].

2. Theorems and their corollaries. We will need the following lemmas.

LEMMA 1. Let p, g, A be positive numbers such that p + q < 1. Then for 0 < |s| =
w/4\

1
[1-(p+q)]+ vp*+ q*> +2pg cos(As) = 1 — qu}\zs2

Proor.

1—[1-(p+q) + vp*+ ¢* +2pq cos(As)] _(p+q) - Vp? + ¢ +2pq cos(As)
2 =

s s?

_ (p+9)° = (P’ + ¢° + 2pg cos(As))
(1) B s (p + q) + Vp® + q* +2pq cos(\s)]
- 2pq(1 — cos(As))
2(p + q)s*
(1 — cos(As))
(\s)*

= pgA?

It is not hard to show that

1—cos(x) 1 T
—_— > =|x|=-
2) e y for 0= |x| y)
and therefore
1, T
3) I—Zx = cos(x) for Os|x|sz.

Now combine (1) and (3) to get the desired inequality. O

LEMmMA 2. Let {X.} be a range splitting sequence and let

3 * *
C=4lp*q*()\1+)\z)2, 8=min<mmn(p ) 7 )

8r* T4+ A2)
Then for 0 < |s| <,
| E(e"*) | < exp(~Cs®)

where r* = sup, E| X, |,
1 1
p* =§infn PX.z=x.+M\), g¢* =-2-infn P(X, =% — A)

and {x.}, A1, A2 as in the definition of range splitting.

*
PROOF. Let M =————— Then
min(p*, ¢*)
*

P(|X.|= M)

r*zj | X» | P(dw) =2 ———F—~
(Xj=M) min(p*, ¢*)
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from which we obtain
min(p*, ¢*) = P(| Xa| = M)
and therefore
(1) inf, PIM = X, = x, + A1) = p*
and
inf, PM=X,=x,—A2) =q*.
Let
(2) Ar={M=zX,=x,+ N1}, Bo={—-M=X,=<x,— A2}
and
p=P(A,), q=P(By).
We first establish the bound for the sequence {x,}: if x, = 0 then
E|X,| = p(x, + A1)

from which follows

*
—_— xn;

p*
if x, < 0 then
E|Xn| =z q(| 2] + A2)

from which follows
r*
pr =EA
ie.,
r* r* r*

3 .| = — = —
@ | max(l)* q*) min(p*, g*)
It is clear from (2) and (3) that on A,, B,

r* 2r*

(4) | X — xu| =M +

min(p*, ¢*) min(p*, g*)

and furthermore

2r*
WZXn_an)\l on A,
2r*
—Wﬁxn—anAz on B,,.
Let
_ . (m7min(p*, g*) T
(5) 6= mm( e )
Now

|E(e*®)|=1—(p+q) +

f e“*P(dw) +J e"*P(dw)
An

B

n

(6)
=l1-(p+q+

J’ e's(X""‘")P(dw) +J’ ets(X,,—x“)P(dw)
A

B

n n
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In what follows we will discuss the case 0 = s < §; the case —8 = s < 0 is done similarly.
From (4) and (5) it follows that for 0 = s<§

(7) sA; < arg(e®¥®)) < % on A,; —% < arg(e”*»~*)) < s\, on B,.
Therefore
(8) J e8P (dy) = ae

. A

n

where 0 < a = p, s\ < 6; = #/4 and

J X P(dw) = be™
B,

n

where 0 < b=gq, — 7/4 <0, < — sh..
Combining (6) and (8) we obtain

|E(e**)|=1— (p+q) + |ae' + be™|

9) =1—(p+q) + va? + b + 2ab cos(6; — 6s)

=1-(p+q) +vp*>+ q>+ 2pq cos(s(\1 + A2)).

The last inequality follows since by (8) cos(f; — 6;) = 0.
Now apply Lemma 1 to (9) and remember that p = p*, ¢ = ¢* to obtain

; 1
(10) |E(e®*)|=1- Zp*q*()\l + Ag)%s?
for0=|s|=34.
Letting C = % p*q*(A: + A2)? and the fact that 1 + x < e* for x > —1 proves
(11) | E (e**n) | = exp(—Cs?)
for0=<|s|=4é.0

THEOREM 1. Let X =Y a,X,, Fx(dx) = P{X € dx} and F’X(g) the characteristic
function of X then

lim; . Fx(¢) =0
for every range splitting {X,.} iff
limpy_w AN Yn=N+1 Gh = +00.

Proor. (<) LetC, 8 be as in Lemma 2.

1) Fx () = E(ei8aX) = [[3=; E(e%®%),

Let N (£) be the last n such that

@ | €| aneg > 9.

Then by Lemma 2

3) | Fx(®)] = T5=ng+r | E(e*e%) | < [[7-n 1 exp(=CE*a?)

= exp(—CE* Y r-nw+1 @) < exp(—C8*anty Yrn-nw+1 @)

where we use (2) for the last inequality.
Since N(§) — o as | £| — o the result follows from the hypothesis.
To prove (—) we will prove the converse. Suppose

lim inf ¥’ Y r-n+1 ah < 0.
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Select a subsequence {n,} such that

(4) Sup, @n’ Yr=n+1 @k < R <o
and let {¢,} be the sequence such that

5 27U < g, <270

The sequence {¢;} contains infinitely many odd or even integers; i.e., by choosing the n,’s
appropriately we may assume all the ¢,’s to be either even or odd. We will assume all the
4’s are odd; the even case is done similarly. Furthermore, we may assume that the
sequence {n,} was chosen such that

(6) 1= 6+ 4.
Now let
(7) L={nz=n+1|27""Y=a,<27%}.

By (6) the I,’s are disjoint and n,.; & I,.
Forn 2 U5, I,and 27" < g, < 27/ define

(@,2*")™" for ¢odd
® Pn T {(aﬂ’“’)"1 for ¢ even
For n € I, define
9) Dn = (@, 27%%)7,

From the fact that the I,’s are disjoint and a,,,, € I, it follows thatp,, is defined according
to definition (8) and therefore

(10) 2%<=p,<1 forall n
(11) Dn,@n, = 27"
(12) Pn@n =279 for n=n, + 1.

Now let {X,} be a sequence of independent random variables such that
(13) X, = * p, with probability %.

Clearly {X,} is range splitting.
Let X = Y a,X,; then

(14) Fx(&) = T15=1 cos(¢pnay).
Let § = 729*', Then
(15) Fx(&) = % [[nzn 1 cos(72/" pran).

This follows from the fact that p,a, = 27" "¢ and for n < n,, pna, =2 %*". From
(11) and (12) it is also clear that

(16) 727" paan _g for n=n,+ 1.

For0=x 5% we have the inequality

1-cos(x) (sin(x))2 1

x2 x 1 + cos(x)
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'\‘i —_— flx)
AN

x7F

I

/B Q/B? QL/p?

FiGc. 1

from which follows

1— x®>=<cos(x) for Ostg.
Also for — 64 =y =0
In(1 +y) 2——' ln.(éiG)l y
and therefore letting C, =|ln%6_)| we have
17 cos(x) =1 —x?=exp(— Cox?) for O0=x=< ;—T

Now we use (16) and (17) in (15) to conclude
| Fx(&)| = [[nsn+1 exp(— Co(m27*")2p2a2) = exp(— Con(25*)? Yien 1 DRAY)
18 .
(18) = exp(— Con’16a;’ Yk +1 @) = exp(— Com*16 R)

where the next to last inequality follows from (10) and (11) and R from (4).
Since (18) holds for all j it follows that

lim sup;... | Fx(¢)| >0. 0O

COROLLARY 1. If lim inf, .. a¥’ Yi-n+1 @; < », then there exists a sequence of
positive numbers { p,} with 2™ < p, = 1 such that if {X,,} is the range splitting sequence
which takes the values

X, =+ p, with probability %
then Fx(dx) = P(Ya.X,. € dx) is continuous but singular dx.

Proor. The sequence {p.} was constructed in the proof of Theorem 1. Since the
Jessen-Wintner Theorem applies to Ya.X, and {X,)} is range splitting, it follows that
Fx(dx) is either continuous and singular dx or a.c. dx. Since we showed in the proof of
Theorem 1, that lim sup | FX($)| > 0 it follows that Fx(dx) cannot have a density. 0O

In the next two Corollaries we give counterexamples to Theorem A for o — B=% 1In
Corollary 2 we show that if f(x) is the step function of Figure 1 and a, = f(n) then for a
—B='%+eand B='% + Y ¢ we have lim inf ay* Y7 ny1 a2 < .



794 JAKOB 1. REICH

COROLLARY 2. Lete>0.IfB="%+ Yaeand a — B =% + ¢, then the sequence a, =

1, a,= 2—0‘(%)/( for 2(%>k s=sn< 2(%)“I and k=0, 1, - .. satisfies
n*“<a,=<n*f
and

lim inf a3’ Ye-n+1 a2 < oo,

a

ProoF. Clearly n™* < a, < n”. Let N, = greatest integer less than 2(?) ; then

AN, Yn=Ny+1 Gn =< 22"‘(%>k Y=+l (2(%>M _2(%>")2'2°‘(%>"
-6, -7

= 2:=k+1 2

Since B > % and therefore 1/8 — 2 < 0 it follows that

a\* (1
20+ (=] al5—2
(5) G-2)
is strictly decreasing with n and therefore we obtain that
a\e (1 a )\
2a+|— ) al—-2 —
(66 g

for 2a + (a/B) a (1/B — 2) =, < 0, respectively.
Combining (1) and (2) we see that for 2a + (a/8) « (1/8 —2) <0

2) limy e Y51

(3) lim inf a ¥ Yn-n+1 @l < .
Now 2a + (a/B) a (1/8 — 2) = 0 implies a = 28%/(28 — 1) which together with a = 8 + %
+ ¢ shows that if

1+ 2¢
4¢

4) B=
then (3) holds. O

In the following Corollary we show that if the function from Figure 1 is modified as
shown in Figure 2 and {n,.} chosen appropriately, then for 8§ > % and a — 8 = % the
sequence a, = f(n) satisfies

lim infya® Yr-n+1 @i < o.

COROLLARY 3. Let B > %. For any a — B = % there exists a strictly increasing
sequence of integers {n;} such that if a; = 1,
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— f(x)

sk - - -5

x P
1 1
| |
I —p— "
] |
n=1 2 3 ny ns
F1G. 2
n- for ngp—1 < n < ngp
a, =
(nZk)_a for Nor < N < Nops1
k=12 -.-. Thenn*<a,<n*and

lim infyva s Yi-n+1 ai < .
Furthermore, this sequence {a,} can be modified to a sequence {a,} such that
2n*=a,<n"*
and P(Ya.X.e dx) is continuous but singularly dx, where X, is the iid. sequence +1
with probability Y.
ProoFr. Set n; = 1. Suppose n, - -+, nax have been chosen. We want a,, = (nz:) " for
Nar < N =< Nai+1. S0 let nyz+1 be the last n such that
ne<a,= (ng)*<=n"t
Since the lower inequality is automatically satisfied, this implies
2
n = (na)”
from which follows

(1) Nop+1 = [(Mk)f]

where [ ] denotes integer part.
Now suppose we selected ny, - - -, n2x-1. We want ng,, to satisfy the following property

nyy 2 3, © 2
(2) n=1+n2e-1 &n =% Zn=1+"uvl QAn.

To find n2, which satisfies (2), observe that this means

» 2 2
3 4 Z:g1+n2k—1 an = 2::'—‘1"'"% Qn.
Now fromn™<a,=n"*
2k
ny 2 —2a
(4) n=1+nz2x-1 &n = J’ x dx
1+ngp-

and
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00
2 -2
2§=1+n2k anp = f x 7% dx.

a2k
Therefore from (3) and (4) it follows that to satisfy (2), we simply select n,. so large that

(5) Ya J' X% dx = (2B — 1) (nae) P!
1

Fngp-1

which is clearly possible.
Now from (2) we obtain

00
© 2 4, nap 2 < 4 —2a
E"=1+"zk-1 an="% nel+nzi-1 &n = Y8 x dx

(6) Nor—1

=%(2a — 1) (ngs—1) >
From (1), it follows that for every k there is 0 < ¢ < 1 such that € + nzz+1 =(n2) B,
Therefore

B

nox = (e + nager)
and therefore
(7) An,y,,, = (M22) ™ = (¢ + n2ps1) ™.
From (7) it follows that for % sufficiently large
8) Y%e(nore1) ™ < @y, < (n2re) ™.
Hence from (6) and (8) we get for % sufficiently large
9) (@ngy) 2 Timttngen, @ < 1% 2o — 1) (ngpsr) 7207,
Now it follows from (9) that if (a — 8) = %
(10) lim infyaa? Ypon+ a2 < oo,

For the second part, it follows from Corollary 1 that there is a sequence { p,} with 27* <
Pn = 1 such that P(Ya,p.X. ¢ dx) is continuous but singular dx. It can be seen from the
proof of Theorem 1, where we constructed the sequence { p.} that {a.p.} is decreasing,
i.e., @, = a,p, is the desired sequence. [

THEOREM 2. Iffor all\,8>0

8/p4y
z::=l J' exp(_}\£2 z;eo=n+1 a%) dé < ©,
9,

/ an

then Fx(dx) = P(Ya.X, dx) has a density for every range splitting {X,}.

Proor. Let §, C be as in Lemma 2 and let N (£) be the last n such that

(1) | €| @ = 6.
Then by Lemma 2
2) | Fx(8)| = TT5-no+1 exp(— CE2a2) = exp(—CE2 Ta-nio+1 a2).

For §/a.<|é|=é6/ans1, N(§)=n.
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Therefore for any p > 0

8/Qpty

3) J |Px(8)|P d £ =< 28/ar + 2 Xims J' exp(—pCE Yions1 a}) dE < .
— 9,

/ an

From (3) it is clear that in particular

(4) Fx(§) e L'(R) N LX(R).
Let ¢(x) be the inverse Fourier transform of Fx(g), ie,
® N
(5) (x) =j e Fx(¢) dt.
R

Then ¢(x) is the density of Fx(dx) by Theorem 8.39 in [1, page 178]. 0O

COROLLARY 4. Iffor allA >0

Qn+1 a,

1 1 ;
g < - —) exp(— Aay” Yinn ak) < ©
then P(Ya.X,e dx) has a density for every range splitting {X,}.

Proor. We observe that for
8/an < |&| < 8/@nr1, exp(—AE* Nionr1 a}) < exp(—A8%ar’ Yi-n+1 ak)
and apply Theorem 2. 0O

REMARK. It should be noted that Theorem A is an easy consequence of Corollary 4.

COROLLARY 5. Let {X,} be a range splitting sequence and C, as in Lemma 2.
Suppose {a,} satisfies the hypothesis of Theorem 2. Then for any measurable set B

P(Ya.X.eB) < Co| B

where | | denotes Lebesgue measure and

8/

Co=28/a1 + 2 Yr- J exp(— C& Yin+1 ai) dé.

8/an

ProoF. From (3) in the proof of Theorem 2

|Fx(¢)| d¢ = Co
R

and therefore the density ¢(x) which is the inverse Fourier transform of Fx(¢) satisfies
I¢lle=Co O

3. A sequence which decays faster than any polynomial. We give an example
of a sequence which decays faster than any polynomial, but still satisfies the hypothesis of
Corollary 4. Let a; = a: = 1. Forn=3,4, ...

_ Vvin(n)
an = \/ﬁ nln(n).
Then
o 2 “ In(x) —2(In(x))2 L oo 1 o o)
(1) Yrevar= | —— e gy = — — 2N G = 2 N7,
N X 4 4
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Therefore there exists a constant C > 0 such that

I ) NNZln(N) —
(2) an Z’l:N*l an Zln(N)4(N+ 1)2!n(N+1)2 CN

for N sufficiently large. The last inequality follows from the fact that
NZln(N)
limN_mo—zm;l—)= 1.
(N+1)
So for any A > 0 we obtain
1 1 (N+ 1)"VDYN +1
K= — — ) exp(-AaW’ Yp-nn ai) < Y r-
2 (aN+1 a~> PRGN D @n) = Dot ==y
=YY%= (N + 1)?™*D exp(—ACN'™)
= Y %=1 exp(— ACN'™* + 2In%(N + 1)) < o,

exp(—ACN'™)
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