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Let B: be a two-dimensional Brownian motion and f(x) be a bounded
measurable function vanishing outside a compact set. Then (1/A) & f(By) ds
converges to const. Z(M~'(t), 0) as A — o, where ¢(¢, x) and M(¢) are the local
time and the maximum process of a one-dimensional Brownian motion,
respectively. In the present article we generalize this theorem for more general
Markov processes as follows: Let X, be a Markov process and f(x) be a
nonnegative, bounded measurable function on the state space. If the expec-
tation of [§ f(X,) ds is asymptotically equal to a slowly varying function L (¢)
as t — oo, then, (1/A) [§7'® f(X,) ds converges to Z(M~'(t), 0) as A — oo, in the
sense of the convergence of all finite-dimensional marginal distributions.

1. Introduction. Let {X,},;~0 be a temporally homogeneous Markov process with
values in a measurable space (S, #) and let f(x) = 0 be a bounded measurable function
defined on S. Then the random variable [§ f(X,) ds is called the occupation time and the
following theorem due to Darling and Kac [2] is well known.

THEOREM A. If there exist a € [0, 1] and a slowly varying function L(t) such that

(DK) limleEx[f f(Xy) ds]/t“L(t) =C>0, x€S8
0

the convergence being uniform on K = {x; f(x) > 0}, then, the law of [} f(X,) ds/t*L(t)
converges weakly to the Mittag-Leffler distribution with exponent o, as A — o,

(Darling and Kac [2] stated condition (DK) using Laplace transforms. So precisely
speaking, their condition is a little weaker than (DK).)
Furthermore, if a # 0, N. H. Bingham [1] proved a functional-type limit theorem:

THEOREM B. If, in addition, a # 0, the continuous processes [§'~f(X,) ds/A“L(A)
converge in distribution to the inverse of one-sided stable process with exponent a.

However, in case a = 0, we do not have such a theorem because “one-sided stable
process of exponent 0” does not make sense. As a matter of fact, one can easily see that if
a =0 and if

At
f f(X,) ds/L(\) =g Y(8) as A—> o
0

(which denotes the convergence of all finite-dimensional marginal distributions) for some
right-continuous process Y(¢), then Y(¢) = Y(0+), ¢ > 0 holds with probability one (Y (0+)
is exponentially distributed by Theorem A.). Nonetheless, the case a = 0 is of interest
because this class includes Cauchy processes and two-dimensional Brownian motions (and
of course the Bessel process with exponent 2). The following problem was raised by D.
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Stroock: What is the limiting process of

n(\e) At
AN) = XJ; f(Xo) ds(instead of z—(l—}\—)—L (X, ds)

where n(.) is the inverse function of L(.)?

For this problem, S. Kotani, studying the behavior of stable processes with small index
a, conjectured that the limiting process should equal Z(t) = £(M ~'(t), 0) where #(¢, x) and
M(t) are respectively the local time and the maximum process of a (common) one-
dimensional Brownian motion starting at 0 (cf. S. Watanabe [8] page 260). In the case of
two-dimensional Brownian motion, his conjecture was proved by himself and the author

[4]:

THEOREM C. Let B, be a two-dimensional Brownian motion and f(x) be a measurable
function vanishing outside a compact set. Then, putting n(t) = e* (or, te?),

n(\et)
ANe) = 5\-[ f(B,) ds —>ta. 1 j f(y) dy Z(t) as A—
o ™

where Z(t) = £(M ~'(¢t), 0) is the same as before.

(In [4] the right-hand side is multiplied by #, which is a mistake.)

Here, it should be remarked that Bingham proved not only convergence of the finite
dimensional distributions, but also weak convergence of the process over function space.
However, it is impossible to strengthen Theorem C in a similar way as long as we stick to
the uniform topology or Skorokhod’s J-topology because the set of all continuous functions
is closed under J-topology but the limiting process Z(t) is a jump process while A,(¢), A >
0 are continuous ([4] discussed weak M;-convergence). The reader should also notice that
if we apply this theorem for f(x) = 1(x;x<1)(x) we have

1

‘1/5)2“—”
R L s o< (Bo) ds —>ga. Z(t
e2log(1/e)J; itz (Ba) s —ea. Z(0)

as ¢ — 0, because B, and B, are identical in law (¢ = e™).

In the present paper, we will give an extension of Theorem C for more general Markov
processes satisfying (DK) with a = 0. As an example, the case of Cauchy process will be
discussed. A similar result for Markov processes with discrete time parameter will be given
in the last section.

2. Main theorem. Let X, ¢t = 0 be a Markov process on (S, #) with stationary
transitions and f(x) be a measurable non-negative function defined on S.

THEOREM 2.1. Suppose X, and f(.) = 0 satisfy

(2.1) lim,_,wEx[j f(Xy) ds]/L(t) =C>0, x€S8,

the convergence being uniform for x € {x; f(x) # 0}, where L(t) (] %, t 1 ) is a slowly
varying function. Then for a non-negative continuous increasing function n(t), t = 0,
such that L(n(t))/t - 1 as t > %, we have

n(\e)
Axt) = XJ f(X,) ds —¢a. CZ(t) as A\ — o,
0

where Z(t) = £(M ~'(t), 0) is the process stated in the previous section.
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REMARK 2.2. The rate of n(t) is not uniquely determined by the relation L(n(t))/t —
1 as t — o (eg. for L(¢) = log ¢, not only e but also te‘ is possible.). However, since L(n(t))
~ t implies L(t) ~ n~'(t), L(t) in (2.1) can be replaced by n~'(t). Therefore, it suffices to
prove Theorem 2.1 assuming L(t) = n"'(t).

As an example of Theorem 2.1, we next consider the case of Cauchy process. Let
X, be a Markov process with independent increments (in R') such that E,[e**?]
= exp(—t|&| + iéx), £ x € R’, and f(x)(x € R") be a bounded measurable function
vanishing outside a compact set. Then since

ELfX)] =2 f Oy =07+ %) dy ~= f F) dy~

as s 1 o, we see that

EU f(X.) ds]~7lrJ’f(y) dylogt as t— .
0

Therefore, setting L(t) = log t and n(t) = e’, we have

(2.2) lf [(X,) ds —ia. l f f(y)dy Z(t) as A — oo,
7 J, b

Furthermore, if we set f(x) = 1;_1,1(x) and A = log(1/¢), (2.2) implies

(1/e)t=!

1 2
WJ; 1i—ee)(Xs) ds —¢a. p Z(t) as ¢ 0 (P).

Here we have used the fact that X, is equivalent in law to A X; (w.r.t. Py).

Before we prove the theorem, we review some facts about the process Z(t) = £(M ~'(¢),
0) for the convenience of the reader although we will not use them in the rest of this
article.

Z(t) does not have the ordinary Markov property. However, the inverse process Y(t)
= Z~'(t) is a process with independent increments and appears in some limit theorems for
sums or maxima of i.i.d. random variables (cf. Lamperti [5] and S. Watanabe [8]). For the
semi-group and the generator, see [8] and for the transition probabilities see [5]. The finite-
dimensional joint distribution function is known to be

(23) P[Y#t) =x1, -+, Y() =x]=Gx)"Gx)™" - G(x)" 9, Gx) =e 7,

for0<ti<...<t,0<x:< .-+ <x.
(Since Y(¢) is a non-decreasing function, (2.3) determines the distribution function.)
Therefore, we have

P[Z(t)) > x1, Z(t;) > x2, - -+, Z(t) > %]
(2.4)
=exp{—x1/ti — (x2 —x) /o — -+ — (5 — K1) /t;}

for0sti=...=stand0=x=... <ux,.
We next explain the idea of the proof of Theorem 2.1. Forj =1, 2, ..., define m, (¢, ¢,
«oo, ) = E[Z(t)Z(ts) -+ Z(t)], t. = 0. Then by (2.4) we have

(2.5) my(t) = ti,
(2.6) ma(ty, ta) = (¢ + &) min (41, t),
(27) mj(tl’ Tty tj) =27r tl(w)tz('n) e tj(«”) lf h=tl=<...=< tj
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where k(7) = min{#(k), n(k + 1), -+, #(j)}. (Here 7 runs over all permutations of j

objects.)
In order to prove Theorem 2.1, it is sufficient to show
(2.8) limy o ELAN#) -+ AN()] = C/my(ty, ---, t,)

for j =1,2 ... and ¢, = 0 (see Section 4). For the proof of (2.8), we will prove the
convergence of the Laplace transforms. (This idea is due to [1] and [2].)

(2.9) limy_, ZE . [A\(t:) - -- A (s1,y +--, 8) = Cjiﬂm/ (51, +++,8)

where
Lfty, -, )81, -+, 8) =81+« s,f j eZhf(t, oo t) dty - dt,.
0 0

Since it does not seem easy to know the explicit form of the right-hand side of (2.9), we
will show the following instead of (2.9):

(2.10) limy . L E.[A\(t) - - - A\)](s1, +-0, 8) = qu)(j)(sl’ <o, )

where @’ does not depend on X, or f(x) as long as (2.1) holds.

To see that (2.10) implies (2.9), we need only to apply both (2.10) and Theorem C to
two-dimensional Brownian motions. Then, by the uniqueness of the limits, we see that
®") should equal the Laplace transform of m,.

REMARK 2.3. Forj = 1,2, it is easy to have the explicit form of #m, and ¥m, directly
from (2.5) and (2.6);
(2.11) ZLmi(s1) = 1/s1,

2
2.12 =—t—,
( ) Lmals1, &) 8152 (s1+ 8)°

These facts will also be proved by computing the left-hand side of (2.10) as we explained
above (see next section).

REMARK 2.4. The assumption that f(x) is non-negative is necessary to derive (2.8)
from (2.9). However, in many examples we can drop this assumption using additional
arguments. On the other hand, the condition that C (in (2.1)) does not vanish is essential.
In case C = 0, we are very likely to have another kind of limit theorem (cf. [3]).

3. Preliminaries. In this section we will prove (2.10) and (2.9). Let L(¢), ¢ =0 be a
continuous, increasing function varying slowly at o such that L(0+) = 0, L (o—) = o and
n(¢) be its inverse (cf. Remark 2.2.). For A >0,t=0,x€ S,j=1,2,---,and s, >0 (i =
1,2, ...), define

(3.1) o8 (s1; x, t) =J’ exp (— 818) E:[f(Xnier—non )10’ (AE) dE

¢;\j) (81, «++, 8%, t) = j exp (— 818) E:[ f(Xnner-niv )oY ™"
t

(3.2)
(SZy e, Sy, Xn()\%)—n()\l)y g)]n/(}\g) (%; .I = 2’ 3’ e

(33) q);\j)(sl, e, 85 x) = 2'” ¢>(\J)(s7r(l); Sn(2), * v, Sr(s)s X, 0)

(34) " (s1; ) =j exp (— si€) sié dt,
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6 V(s1, o0, 855 8) =J exp (— s1f) {10V (s, -++, 83 §)

(3.5) d
"c’ié¢‘f“’<sz, L s 0)EdE j=2,
(3.6) q)(j)(sl, Tty sj) = Z'n ¢(j)(s’l7(1)) sy S 0)’ jZ 1

Here, it should be remarked ¢’ and ®} depends on X, and f(x) but ¢’ or @’ does not.
Forj =1, 2, we see
2

DV(s) =1/s1, PPsy, &) =— +—
(s1) = 1/s (s1, 82) P P

(cf. Remark 2.3.) Of course, @ is the function we needed in (2.10), which will be proved
in Lemma 3.3. The following lemma explains the meaning of @5 .

LEmMA 3.1.

(3.7) ZLEJA\N(t) -« A)](s1, -+, 5) =D (51, -+, 85 %) 5 >0.
Proor. By integration by parts, the right-hand side of (3.7) can be written as
f .- f exp (—Zisiti) Ex[f(Xnoun) -+ [Xnop)) ' At1) -+ - ' ANG)dt -+ - dt
0 0

= ZwJ' oo j exp (=2 s,y t:) E[Jif Xnow)In'Aty) --- n’AG)dt - - - dt;.

H<...<¢

Therefore, it suffices to show

o (s1, +++, 85 x, 8) = j -+ | exp (=2 sit) Ex[[]:f Xnono-non) [Lin’ At)dE; - - - dt;.

H<-.-<Y

However, this follows from (3.2) and the Markov property by induction.

The following proposition, the proof of which will be postponed until Section 5, plays
an essential role in the present article. In fact, all assumptions in Theofem 2.1 are used
only to prove Proposition 3.2.

PROPOSITION 3.2. Foralls;>0(i=1,2,---)and x €S,

(3.8) limyw ¢ (51, -++, 853 %,8) = CV YV (s1, -+, 55 8), £= 0,

the convergence being uniform for (t, x) € [0, ©) X {x; f(x) # 0}.

Clearly, Proposition 3.2 combined with definitions (3.3) and (3.6) implies
limy_o ® (1, -+, 553 &) = C®V(s1, -++, 5), xES.

Thus, by Lemma 3.1, we have the result mentioned in (2.10):

LEMMA 3.3.
limy o LEJA\(t) -+ An(t)](s1, - ++, ) =CB®V(s1, --+,5), XxES.

As we explained in the previous section, we next prove that ® ) is the Laplace transform
of E[Z(t,) - - - Z(t;)] using the result for two-dimensional Brownian motions (Theorem C).
Let B, be a two-dimensional Brownian motion and f(x) be the indicator function of
{x; | x| < 1}. Then, like the case of Cauchy process,
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Ex[f f(Bs)ds} =f dsj —l—exp (—|x —y|*/2s) dy
0 0 lyl<1 2ms

is asymptotically equal to (%) log t as t — . Therefore, (2.1) is satisfied with L(¢) =
(%) log t (or, the inverse of te*) and C = 1. Thus applying Lemma 3.3, we have

(3.9) Hmy o LEJJANt) -+ AN@)] =D (sy, +--, )

where

n(\t)

Ax(t) = X f(Bs) ds, n(t) =e* (or te%).

0

On the other hand, by Theorem C,
(3.10) limy o LE[A\(t1) --- AN(t)] = L E[Z(t) --- Z(8,)].
From (3.9) and (3.10) we conclude the following.

LEMMA 3.4. ®Y(s(, ..., s;) = LE[Z(t)) --- Z(t)](s1, - -, §)).
Combining Lemmas 3.3 and 3.4, we have (2.9):

ProrosITION 3.5. If X, and f(x) satisfy (2.1),
limyo LEJ[A\(t) --- A\(t)] = CLE[Z(ty) --- Z(1)].

4. Proof of Theorem 2.1. Obserye that E.[Ax(t:) - -+ Ax(t)] defines a non-negative
Lebesgue-Stieltjes measure on [0, o)’ f01j every x and A(>0), and that m,(¢,, ---, t;) =
E[Z(t)) --- Z(t)] is continuous on [0, «)’ (cf. (2.7)). Therefore, Proposition 3.5 implies

limy_o E.[Ax(t1) --- A\(t)] = C’E[Z(t) --- Z(t)], x€ S, t=0.
Since ¢t;,1 =1, 2, - . - are arbitrary and repetition is allowed, we have
(4.1) limy o ELAV(E)" « oo A(tn)o] = CE[Z(H)" -+ Z(tn)™]

where j =k + -+« + kp.

To prove the theorem, it remains to show that the right-hand side of (4.1) determines
the joint law of (Z(t1), -+, Z(tn)) forall0 = 4, < .+ < tn,m =1, 2, -... To this end it
suffices to prove that, for arbitrary &, - - -, . (€ R), the law of Y = Z §Z(t;) is determined
by its moments. However, since Z(¢) is non-decreasing in #(w.p.1), we have

E[Y] = (Z.J& D E[Z(T)"]
= (Y. &} k!T*, where T = max; t.

Here we have used that Z(T') is exponentially distributed (see Theorem A or (2.7)). By the
well known Carleman test, (4.2) implies that the law of Y is determined by its moments,
which completes the proof of Theorem 2.1.

(4.2)

5. Proof of Proposition 3.2. Throughout this section we assume all conditions in
Theorem 2.1 as well as L(0) = 0, n(t) = L™(¢) (see Remark 2.2.). Define T\ (t; t;) by

(5.1) n(AT\(t; &) =nAt) —n(\) ift=6(=0
T\(t;t0) =0 fost=t.
Or equivalently,

1

— L(n(\t) — n(\)) ift=6=0
(5.2) T\(t; o) =

0 fost=<t.
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Then we clearly have
(5.3) 0= Ti(to; &) = Th(t; &) = T (t; 0) = ¢£.

The following lemma is a simple modification of the assumption (2.1) and can be proved ,
without assuming that L varies slowly. ‘

LEMMA 5.1.
(5.4) limy e SUP; 00| Ex[ A (n(AE) — n(A&))] — CTi(t; ) | /(¢ + 1) =0, i

the convergence being uniform for x € {x; f(x) % 0}, where A\ (t) = A, (L(¢)).

PrROOF. By (5.1), we see that Ay(n(\t) — n(Ato)) = Ax(T\(¢; to)). On the other hand, by '
(2.1), we have | E.[A\(t)] — Ct|/(1 + t) converges to 0. Thus keeping (5.3) in mind, we
obtain the assertion.

Throughout this paper, the assumption that L(¢) is a slowly varying function is used
only for the proof of the following key lemma.

LEMMA 5.2. Forallc>1,
lim)\awsupt,to;tzctu l Ti(t; to) — t|/(1 +1t)=0.

ProoF. Since L(t) varies slowly, n(t) = L™'(t) increases rapidly:
limy,on(ad)/n(d) =0, if 0<a<l. j
Therefore, for all § > 0,
lim SUPA«wSUPy,ty;tzcto,e>8 N(AL) /R(AL) < limy,osupesn(At/c)/n(At) = 0. |
Thus for all sufficiently large A we can assume

nAto)/n(At) <% if t=cty, t>6.
So we see

Ti(t; &)/t = L(n(At) — n(Ak))/(AL)

> L(%n(At))/L(n(At)) if t=ck, t>34.

Since lim,_..L(*x)/L(x) = 1, we have
lim inf)winfs s ;ec0,e58 Th(E; t0)/t = lim infinfes L(Yan(At))/L(n(At)) = 1.
Taking into account that T\(¢; &) =< t, we conclude
limy o oSUPy ¢y tzcto,8 | Ta(E; ) — ¢| /(1 + £) = 0.

It remains to show
(5.5) limgjolim SUPAwSUP:te=ctoe<s | Ta(t; to) — t| /(1 +¢) =0

However, (5.5) is clear because Ti(t; to) <t =<8 if t <6.

ProproSITION 5.3. Let p(t), t > 0 be a bounded function with bounded first derivative.
Then for every s > 0,

lim)\—»ocEx[ J’ e *p(t) fF(Xnr)—nine) ) (AE) dt:l
7

0

(5.6) ]
= CJ e {sp(t) —p’(t)}tdt, t, =0, x€E S,

0
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the convergence being uniform for (t,, x) € [0, ) X {x; f(x) # 0}.
Proor. By integration by parts, the left-hand side of (5.6) equals

limae J e {sp(t) — p’'(t)} E.[A\(n(At) — n(\))] dt.
¢,

0

Taking into account that sp(¢) — p’(t) is bounded, we see that this equals

C limy_,. f e *{sp(t) — p’ (O} E[T\(t; t)] dt
7

0

thanks to Lemma 5.1. By Lemma 5.2, we have

limA_,mJ’ {sp(t) — p’ ()} E.[Ti(¢; t)} dt

= J’ e *{sp(t) — p’(t)}t dt, uniformly in &,

to

for every ¢ > 1. Thus it remains to show that
cty
A(c) = lim sup—«Supz=o ' J e {sp(t) — p'(OYE[T\(t; &)] dt
to
tends to 0 as ¢ | 1. Since T\(¢; t) < t by (5.3), we have

cty
Ale) = || sp(t) — p’(t) || supe=0 f e 't dt
7

0

= || sp(&) — p'(t) || e~ (cto) (cto — t)
=|sp(t) = p'(t) ||« 2¢c(c — 1)s72.

Therefore, A(c) — 0 as ¢ | 1, which completes the proof.

REMARK 5.4. In the proof of Lemma 3.1, we used integration by parts and we now
reversed it in the above. The aim of this procedure is to handle with the appearance of
Dirac’s 8-measure in the limit. (This also explains why we have p’(t) in the right-hand side
of (5.6).)

We return to the proof of Proposition 3.2. For j = 1, the assertion follows immediately

from Proposition 5.3 (set p(t) = 1). Assume that (3.8) holds for j — 1. Then, by definition
(3.2),

limy ot i(s1, -+, 85 %, 8)
= limy— f exp(—$18) Ex[ f(Xniro-n0)9X (82, + + +, 85 Xnxg-no, £)In'(AE) d
t
= limy« J exp(—818) Ex[f(Xn0o-no0)1C 'V (52, + -+, 55 £)n' () dE.
t

Applying Proposition 5.3 again with p() = ¢, we see that this equals
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C"J' exp(—slé){slqﬁ"'”(Sz, oo, 85 8) — %dﬂ"”(&, s/';é)}é d

which equals C’¢ "’ by the definition (3.5). Thus the proof is completed.

6. The case of Markov processes with discrete parameter. Let X;, 2 = 1, 2,
-.. be a temporary homogeneous Markov process with values in a measurable space
(S, #) and f(x) = 0 a bounded measurable function on S. Then, define Y, = Xj;; where [¢]
denotes the maximum integer not exceeding ¢. Although Y, is not temporally homogeneous,
the method we used in the above can be applied with a little modification and we have the
following.

THEOREM 6.1. Let L(t) be a slowly varying function tending to « as t goes to ©, and
n(t) (¢ =0) be a function such that L(n(t)) ~ t as t — . If

(6.1) limywE i fX:)]/L(N) = C>0, for x€S,

the convergence being uniform for x € {x; f(x) # 0}, then

%Zgﬁi”] f(Xr) =14, C£(M'(),0), as A — .

Examples for random walks satisfying (6.1) are easily obtained using local limit theorems
such as Corollary 3 of C. Stone [6] (see also [7]).
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