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LIMIT THEOREMS AND INEQUALITIES FOR THE UNIFORM
EMPIRICAL PROCESS INDEXED BY INTERVALS

GALEN R. SHORACK' AND JoN A. WELLNER?

University of Washington and University of Rochester

The uniform empirical process U, is considered as a process indexed by
intervals. Powerful new exponential bounds are established for the process
indexed by both “points” and intervals. These bounds trivialize the proof of
the Chibisov-O’Reilly theorem concerning the convergence of the process with
respect to || - /q|-metrics and are used to prove an interval analogue of the
Chibisov-O’Reilly theorem. A strong limit theorem related to the well-known
Holder condition for Brownian bridge U is also proved. Connections with
related work of Csaki, Eicker, Jaeschke, and Stute are mentioned. As an
application we introduce a new statistic for testing uniformity which is the
natural interval analogue of the classical Anderson-Darling statistic.

1. The main results. Let &, &, --. be iid Uniform (0, 1) rv’s having empirical df
T, and let

(1.1) Un(t) = n'[T.(t) —t] for 0=<t=<1
denote the empirical process. It is well known that
(1.2) U,=U as n—-w

where U denotes a Brownian bridge and => denotes weak convergence.

An alternative form of this result that has certain technical advantages in applications
is the so-called Skorokhod (1956) construction. Thus there exists a triangular array of row
independent Uniform (0, 1) rv’s &1, « -+, &, 1 = 1, and a Brownian bridge U, all defined
on the same sample space, with the property that '

(1.3) | U = U|| 545.0 as n— o for the Skorokhod construction

where U, is the empirical process of &1, - -+, &, and where || - | denotes the sup norm.
From either (1.2) or (1.3) one can conclude the Mann-Wald result

(14) T'(U,) —a T(U) for any functional T that is|| - ||-continuous a.s. U

and for which T(U,), n = 1, and T(U) are measurable. This is highly useful, but many
useful functionals T are not || - ||-continuous. Many are, however, continuous in the -/7a
metric we now define. Let

Q" = {g:¢ >0on (0, 1) is continuous, / on [0, %] and symmetric aboutt = 14
(1.5)
Q={qge€Q*:t7%q(t) is \ on]0, 4]}.

For any such g we define the || - /¢ || distance between functions f and g to be ||(f — g)/q [l

For any interval C = (s, t] with 0 = s = ¢ = 1 we define f(C) or f(s, t] to be f(t) — f(s)
and we let |C| = t — s. Let € denote the class of all such intervals. Let #(a, b) =
{C € €:a = |C| = b}, and let 4(a) = %(a, 1). For any subcollection ¥’ C € we let
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640 GALEN R. SHORACK AND JON A. WELLNER

2]l = sup{| A(C)|:C € ’}. Let | 2 || & = supa=i=s| A(¢)|. Let A" and A~ denote the positive
and negative parts of 4. Let I denote the identity function.

CLT results for points and intervals. The following theorem on point convergence of
weighted processes is due to Chibisov (1964) and O’Reilly (1974). (Replacing (1.12) by
(1.7) is found in Shorack (1979)).

THEOREM 1.1. Let q € Q*. Then

(1.6) [(U.— U)/q|| =, 0 as n— o for the Skorokhod construction
if and only if
(1.7) g(t) = q*(t)/[tlog log(1/t)] > » as ¢t 0.

The next theorem on interval convergence of weighted processes is new.

THEOREM 1.2. Let q € Q*. Then the Skorokhod construction (1.3) satisfies

U.(C) - UIC
(1.8) SUP(C:en~log n=|C]) | (Q()| an N »0 as n—
for every e > 0 if and only if
(1.9) g(t) = g*(t)/[tlog(1/t)] > as t|0.

Bounding | C | away from 0 in (1.8) is essential; if C shrinks down to just the single point
{1, say, then U,.(C)/q(] C|) = n'*(n™" — 0)/0 = = since all interesting ¢’s have ¢(0) = 0.

REMARK ON (1.7). The Feller-Erdos-Kolmogorov-Petrovski criterion found in Ito and
McKean (1965, page 33) implies that for ¢ € @ we have

2 —
(1.10) PU(t) < q(t), t | 0) = {2 as j %%‘f; exp<— q 2(;)) dt {; z
0+

If the integral is finite (infinite), call such q point upper class (point lower class) for U.
Now for ¢ € @*, Condition (1.7) is (as seen in the proof of Theorem 1.1) equivalent to

(1.11) eq is point upper-class for U forall &> 0,
and to (the condition used by Chibisov and O’Reilly) v

(1.12) J’ t'exp(—Ag%(t)/t) dt <o forall A> 0.
0+

REMARK ON (1.9). The Chung, Erdos, and Sirao criterion found in Ito and McKean
(1965, page 36) implies that for g € @

. 3 2 = o
(113)  P(supie)~U(C) < qle), e | 0) = {2 as j t—lz [“;l(fz)] exp(— qz(tt)) dt {< -
o+

If the integral is finite (infinite), call such q interval upper-class (interval lower-class) for
U. We will show below that for ¢ € @*, (1.9) is equivalent to

(1.14) &q is interval upper-class for U for all &> 0,
and to

(1.15) f t%exp(— A@%(t)/t) dt < o forall A> 0.
0+
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Inequalities. We next present a powerful new inequality that trivializes the proof of
(1.6) via (1.12); thus (1.23) is seen to be the “right inequality.” Define 4 on [0, «©) and i on
[-1, ) by

(1.16) A\ =Alogh—1)+1 and Q) =2k + A)/A°
so that
A
(1.17) h(1+A)= f logl+x)dx is 1 for A>0,
o
(1.18) Y is | for A=0 with (0) =1,
(1.19) YA) ~ (2logA)/A as A—
and, more crudely,
(1.20) YA) =1/(1 +A\/3)
(1.21) - {1 -0 for 0=<A=<35,
(1.22) 36(1 -8 /A for A= 36

These functions arise in Bennett (1962) where exponential bounds on binomial rv’s are
obtained. See also Shorack (1980). ’

INEQUALITY 1.1. Letq € Q,0<a=(1-8b<b=8=<%andA >0. Then

(1.23) P(|Uz/qlle= N = % f % exp(—-(l — 8% )—;32’:—”) dt
where (recall (1.18) through (1.22) also)

(1.24) vy =1=y(Q) always works, and

(1.25) yr= Y(A\g(@)/(avn)) always works

(1.26) =Y\ if a=q%1/n) v (1/n).

COROLLARY 1. When q(t) = Vt we have

2
(1.27) P(|Uz/VI|E =N s%fgb/—a)exp(— (1-8%* %—)

where (1.24) and (1.25) still hold (recall (1.18) through (1.22) also).

The distinction between y~ and y* is due to the clean exponential bound on the short
left tail of the Binomial (n, t) rv U,(¢) with ¢ =< % and the necessarily messy exponential
bound on the long, troublesome right tail.

If bis \\ 0, it is an advantage to use a fixed small positive constant § in (1.23) and (1.27)
rather than § = b; the exponent doesn’t matter either way, but the §-term out front stays
bounded.

For comparison, we note that Ito and McKean give a result for Brownian motion B that
under the correspondence (1 + ¢t)U(¢/(1 + t)) = B(¢) yields, for ¢ € @,

b
Ag)/[tA =9 [ Ng'(t)
ex 51— 1) dt.

(1.28) P(|U/ql§=N <2 f
o 2mt(1—t)

We next present another new inequality that similarly leads to (1.8) via (1.15). Although
we are no longer able to separate the positive and negative parts, the inequality (1.29) is
seen to be the “right inequality” for intervals. (The constant y* has been improved by a
factor of 3% from the one in the original version of this paper after the authors saw Stute
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(1982); our only byproduct, though, is that smaller constants would be possible in Theorem
3 had we chosen to evaluate the lim sups. At the same time, we have used our approach
to modify Stute’s inequalities; see (1.32) and (1.33) for a result to compare to his Lemma
2.5. His other key Lemma 2.4 should be compared to our inequality 3.2.)

INEQUALITY 1.2. Letg€Q,0=a=(1-8b<b=68=%andA>0. Then

b 2 2
(1.29) P(Supas|C|sb U] }\) <A j %exp(—(l -8y Ng (t)> dt

g(lcy —7) 7 ¢ 2 ¢
where (recall (1.18) through (1.22) also)
2'2Aq(a)
{20
Savn
(1.31) =y((2'2\/8) if a=q*(1/n)\v (1/n).

COROLLARY 2. When ¢(t) = Vt we have
| Un(C)| 24 A2
(132) P<supa5|0|ébWZ A SWGXP —(1- 8)4‘}/-—2—
where (1.30) holds (recall (1.18) through (1.22)). In particular (crudely)

(1.33) 1-68 if A= (3/2%)8Van

Y=9 382Van(1 -8

(1.34) 7 ) if A= (3/2")5Van,

Although we do not know an exact analogue of (1.28) in the case of intervals, by use of
Lemma 1 of Csorgo and Révész (1979) we obtain the following inequality: for every § > 0
there exists a M = M(§) > 0 such that for g € @

(1.35) P(Sup|c|5b lB(C)l

b
- - — 242 2
q(IC|)Z>‘)SMJ0 t"exp(—(1 — 8)°N°q*(¢)/2t) dt

where B denotes standard Brownian motion.

Strong limit theorems for intervals. Now we turn to a theorem for the normalized
process {U,(C)/|C|"*:C € C}. Cassels (1951) proved that

. +UL(C)
(1.36) lim SUPr-SUPce %{W
As noted by Wichura (1973, page 282) and Philipp (1977, page 325), Cassels’s theorem is
an immediate consequence of the functional law of the iterated logarithm for {U,(¢)/(2 log
log n)'/2:0 < ¢ < 1}. Our theorem will be stronger than (1.36) in the sense that the | C|"/?
(or {|C|(1 —]C|)]"?) is moved to the denominator of the first term; the resulting price is
an increase in the magnitude of the sequence of constants from (log log n)/% to (log n)"/>.

_[|C|(1—|C|)]1/:}=0 a.s.

THEOREM 1.3.

| Un(C)|
TClogn)? =%
| Un(C)| loglogn
|C|*  (log n)'™/2

(1.37)  lim sup,_-Supce(n~'e log n) as. forany &>0.

lim sup,_.-Supce«(n ' (log n)%) as.

(1.38)
for each — 0o < < 1.
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Stute (1980) shows that if a, — 0, na,/log(a;") — , and log(a,")/log log n —x (e.g. a,
=n"" with 0 < A < 1), then

| Un(C)]

1 172
C log—>
<" C]

for all 0 < 7 < 7 < o. This should be compared with the known Holder condition
| U(C)|

1 1/2
C log——)
(" ]

However, Stute’s methods do not seem to yield (1.37) since they do not allow intervals as
short as a, = (log n)/n; note that na,/log(a.") — 1 for this a,.

Theorem 1.3 also deserves to be compared with the results of Csaki (1977) and Shorack
1980) for the normalized empirical process:

U/ - I))1/2"(1)/2

(1.39) limpSUPCe ¢(rania,) =22 gq.s.

(1.40) lim, oSup(c:|c|=+) =22 as,

1. li nsam = .S,
'1.41) im sup, (Tog Tog 1) 2 as
, . " U;/(I(l - I))1/2 "h/*zllug log n

. 1§ N =2 as,
'1.42) im sup (Tog Tog )12 a.s
ind

o/ (T(1 = 1))2 || ¥310g 10g

1.43) lim Supr_o 1U./0A = D)7 I ogiosn _ o

(log log n)'/?

Interval versions of the results of Jaeschke (1979) and Eicker (1979) may also be
yossible; (1.27) and (1.32) may be useful in this connection.

2. An application. Watson’s (1961) version of the Cramér-von Mises statistic for
esting uniformity, 7%, may be written as

2.1) T = I/ZJ' f [Un(t) — Un(s)? ds dt
0 0
2.2) = J’ [Un(t) — J U, dIT dt
0 0
2.3) —q J (U@ - f UdITdt="% J f [U(t) — U(s) ds dt;
0 0 0 0

2e Durbin (1973, page 36). The process U(¢) — [ U dI in (2.3) has constant variance so
aat weighting of the Anderson-Darling type seems inappropriate in (2.2) and (2.3). But
‘ar[Un(t) — Un(s)] = |t — s|(1 — | t — s|), and hence weighting is appropriate in (2.1). We
1erefore define an “interval” version of the Anderson-Darling statistic by

1,1 [Un(t) - Un(S)]2 Jrl I[Pn(t) _Fn(s) —(t—s)]2
24) S2= _ |
b8 J:)J;lt—sl(l—lt—sl)det n A [t—s[1—[t—s| ds dt

THEOREM 2.1. Under the null hypothesis of uniformity,

) ._ [ [ (U@ - UsP
-)‘-5) Sn_)dS —J; L |t—sl(1—|t—s|)det‘
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Proor. Let c, = n"' log n, and break [0, 1] X [0, 1] into Do U D,; where
D= {(s, t):|t — s| = cu}.

Let q(¢) = [¢(1 — t)]"/*. Then it follows from Theorem 1.2 (and elementary calculations for
the region D,;) that, for the Skorokhod construction,

ds dt

|82 - 57| < j f ILUA®) = Un(s)T = [U(®) — UOP|
Do [t—s|Q—]t—s]|)

LU0 = U] J [U() - Us)T )
+(LMJ|t—S|(1—|t—s|)det+J;m |t_s|(l_|t_s|)dsdt

= (U = U)/qllstcnr* {l| Un/q i1y + | U/qll«}

J' j [1t=s|d—|t—s|)]™2dsdt+ 0,(1)
0 0

= 0p(1)0,(1)O(1) + 0,(1) = 0,(1). O

The following computational formulas for the statistic S% are easily obtained by
straightforward integration: Let D;; = | & — &|for 1 <i, j<n,andlet0<§n < -.. <{nn
= 1 denote the order statistics corresponding to the first n £&’s. Then

2
Si=n+ W Y1 Y- {Dijlog(Dy)) + (1 — Dijlog(1 — D)}

26) —n+ % S T ier (B — Endlog(E — £

+ (1 = (& — &u)log(1 — (& — £u))}.

The statistic S2 is potentially suitable for testing uniformity, or goodness of fit, if its
asymptotic null distribution, that of S? in (2.5), were known. The distribution is undoubt-
edly that of an infinite weighted sum of independent Chi squared random variables, but
we do not know the weights.

3. Proof of the inequalities. Using the binomial exponential bounds due to Bennett
(1962) and Hoeffding (1963), and the fact that U,(¢)/(1 — ¢) is a martingale in ¢ (for each
n = 1), Shorack (1980) improved results of James (1975) to give for b < % that

3.1) P(|U/(1 - I)||3 =A/1-0) = exp(—}\2/2b(1 - b)),
(32) P(|U/(1 = D3 = M/(1 = b)) < exp(-Ny(\/bn'*) /2b(1 — b)),
33) P(| Un/(1 = DE=A/(1 = b)) < 2exp(~Ny(\/bn") /2b(1 — b).

ProoOF oF INEQUALITY 1.1. Let

(a) A= (|U/qli=N).

Define

(b) =1-4§

and integers 0 = J < K (note that J = 2 since 6 is = %2 and b < %) by
(c) 0¥<a=6"' and ¢/ <b=g"""

(From here on, #* denotes ' for J < i < K, but % denotes a and 87! denotes b.) Since ¢
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is / we have

+ Uz (¢)
A5 C | max <<k SUPgi=i=p-' W = }\)

(d)

U;(t
C (maxJ<i<K SUPgi<t=p-! (~ ) = >\)

q(89

so that

ur | L (1—67)

+ K n___ 7 .
(e) P(An) = =g P<‘ 1 = )\q(o) (1 — 0:~1)
We first consider A,. Now
)\2 qZ(oz)(l _ 01"1)2
= K IR S A S
P =YE, exp< T =) by (3.1)
2 _2(ni
=YX, exp<— %% 9) by (b) and below (c)
, 1 ("1 N g(t)
(f) = Z —J+1 ) J;‘ ; eXp(— E : 67 dt
N q¥a) ,, A g*(6b)
+exp<——2-70 + exp -3 % 0*
3 (%1 A Z(t)
(g) = 3 fa n exp(— 1- 8)
by (b), (c) and the fact that [, ¢~ dt/8 = (log(1/8))/6 = 1 follows from a < (1 — 8)b and
§ = %. This completes the proof in the “—” case.
We now consider A,’. From (e), (f) and (3.2) we have
2 2(n¥ I3 -1
+ q (8 , (Aq(6)(1—6"") 1

(h) P(A) <YK, exp( 3§ 0¢< = 7))

But a = 0¥ < #' for i = K and ¢(¢)/t is \s, so
q@)(1 -6 -9 _q(a)

=—

(1) 0i~l - 0:’ a

Thus, as in case A~, we have

. S 231 N q@) . (Ma(a)
() P(An)_EL;exp< 57 ‘#(a\/—))dt

completing the proof in the “+” case. We need only remark that for (1.26) we use
(k) g@ _g@ 1 _am 1 oy g
avn a vna V1/n vna

Proor or INEQUALITY 1.2. Let

. U,
(a) A, = [supa5|c|<b | (CH ]

q(iCcl)y —
Define (see Bolthausen, 1977)
(b) 9= (1-29)



646 GALEN R. SHORACK AND JON A. WELLNER

and integers J < K by (if @ = 0, then K = » and we consider J < i < K)

(c) 0¥<a=<6%' and 0/ <b=g’!

(we again let §° denote ' for J < i < K while 6% denotes a and 87" denotes b); and let
(d) %={C:0'<|C|=6""} for J=<i<K.

Since q is / we have

(e) A, C [mastisxsuch%; I I;'E;(:;)I = }\].

Now for any integer M;

| Un(C)]
q(@)

maxy=i=k SUPcew

J
02+ |

7@ . .
J _ L
Un(ﬁi : M”

q(6)

) =< MaXy=i=k MaXo=;j=M,1 SUPo=¢=g"!

+ MaX <<k MaXo<;j<M;—1 SUPo=¢=<1/M;

but we will suppose that M; is the smallest integer such that
(8) 1/M; < §%6',
and this entails for J = i < K that

1 2 4
®) M <5+ 1< 557 =371

(The use of M; for the finer partition of (g) comes from Stute’s version of inequality 3.1
below.) Thus, using the stationary increments of U,,

_}\(0)1—0‘— 1 )

g1

P(An) = L~—J 211”01 P(

@ I X 0711+ 6
1
v, |’ 1/M; §
K M1 ——r_ =
+ YK, 3 P("l—lo _)\(0) 1/M1+8) B+ D.

Now by (3.3) we have

Ng* (@)1 -6 1 Ag(6H1 -6 1
K ) —
6 B=2r. M2 e"p( 2071 -0 (1+0) ¢< 0y, 1+ 3))
4 9 Aq(8
= ZﬁJWexp( 5 qef 1) (1-19) \P( qf/;)>) by (h)

since a = 8% < @' for i < K and ¢(¢)/¢ s implies for J < i < K that

g®) 1-6"") _q") _gla

®) 6T 1+9d) 0  a
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Thus, using that ¢ is \ and q*(t)/t \,

1 ("1 N g2(t) .
B = =35 EL_JHT_:-&J;. ?exp<——2— 7 1-368)y])dt

4 A2 g2 4 A% 267
O + 55m xp( (a) (1—6)“) 2Mex( 2q;b)(1—3)“)
12 (1 A2 g%(¢
Sy ] t—zexp(——2—qt()(1—8)“y) dt

since b ¢™ dt/8 = (b — b)/6b%6 = 1/b6 and [*° t~2 dt/8 = 1/a. Likewise (note that 72
means a'/? when i = K)

S T
=¥k JMP<|| p =20 (1 - gy \/MII—_II/—M> by )
m) =¥/ 2M, eXp(_ Azq;‘wi) Sl 77 2(1/M)(i —1/M)
W5 -0 )
(n) =2 :%exp<-§?$a e y) at

using in (m) that ¢ is \s and that (k) and (g) imply

Aq(6Y) ) ;1 _Ag(8) J‘ Ag(a) V2
21— 8 VM — “< .
0 vn  9'Vn avn &

We now give an alternative to inequality (2.1) of Stute (1982).

(o)

INEQUALITY 3.1. LetO0<a=<b<1andA >0. Then, withd =~ a/b(1 —b)/(1 — a),
(84)  P(|Uz/VI|t=\) = {any standard bound on: P(| Uz (b) |/~ b=\d)}.

Proor. Now

P vz’ g J‘ (1-0b)
VI, M—a (1-0)
(a) =P(| Uf/(l -Di= AVb) d/(1- b))
(b) < inf.-0 exp(—rAd Vb/n)E exp(xrU, (b)/Vn)

by the proof of (3.1) through (3.3) in Shorack (1980). Thus (3.1) through (3.3) give some
examples for (3.4). All binomial exponential bounds we know are derived from (b). See
(2.1) of Stute (1982) with A(t) = ¢'/2 0O

Stute derived all his other inequalities from something to be compared with (3.4). If we
repeat the proof of our inequality 1.2 with ¢ (¢) = 1, we obtain:

INEQUALITY 32. Let0<a=8=<% For0<A<é8*Van

(3.5) P(SUpr—y<a | Un(s, t]| = AVa) < % exp(—(1 — §)"A\?/2).
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This is slightly different (A need not be bounded away from zero by about 8/8%) than
Stute’s (1982) Lemma 2.4.

ProposiTiON 3.1.  For g € @*, (1.9), (1.14), and (1.15) are equivalent.

Proor. Suppose (1.15) holds. Then for 0 <A < 1

t 2 ¢ 2
J’ %exp(— }\q_(s)) ds= (J s72 ds) exp(— g (t)) since gq(t) /
At s s At ' ¢
(1 1 q*(t)
(a) _<X - 1) n exp(— —t-)
_(1_ (e . (1
(k1) (572 - ()

Since the left side converges to zero as ¢ \\ 0, we have a(t) = t2g(t) > w0 ast \ 0. In
fact, from the last expression in (a)

g’ N _[ d® 1
tlog(;)

as t \\ 0, and hence
q*(t)

1
t log(z>

Since the preceding argument applies to q/M for any M > 0, it follows from (b) that
2
q ()

1

for every M > 0. Thus (1.15) implies (1.9).

(b) gt) = >1 for t<b=b(q).

() g(t) = >M? for t<b=b(q, M)

By writing the integral in (1.15) as

b

b
J' t%exp(—Ag2(2)/t) dt = J O gy
[

0

we see that (1.9) implies (1.15). Hence (1.9) and (1.15) are equivalent. .
To show that (1.15) implies (1.14), note that from (b) we have, for any ¢ > 0 and all ¢
= b = b, a(t)® =< exp(e®a(t)?/4). Thus, for b < b, (note (1.13))

b

b
f t2a(t)’exp(—e’a(t)?/2) dt < J t %exp(—e2a(t)?/4) dt < o,
o

+ 0+

and therefore eq is interval upper-class. Hence (1.15) implies (1.14). Now suppose (1.14)
holds. Then a(t) — « as ¢ — 0 (since q is interval upper-class), and hence for any ¢ > 0

b

b .
0 >J' t % (ea(t)) exp (—e’a(t)?/2) dt >J t%exp(—e2a(t)?/2) dt
0

0

for b sufficiently small, and hence (1.14) implies (1.15). O



EMPIRICAL PROCESS INDEXED BY INTERVALS 649

4. Proof of theorems.

PRrOOF OF THEOREM 1.1. Suppose g(t) — © as ¢ | 0. Then
(a) £(t) = min{inf {g(s):0 < s = ¢}, (loglog 1/¢)} # 0 as ¢} 0.
Since & < g it suffices to prove (1.6) for g redefined to be
(b) q(t) = [tlog:1/t]26(£)"* on [0, %] with q symmetric about ¢ = %.
We now relabel g as g. Note moreover that (a) implies that g(¢)/¢'/? is now \i, so that
(c) q € @ for the q of (b).
Now for § < % we have
(d) (U — U)/qll§” =1 Us/qll§ + | U/qlis + | Un — Ull/q@®).

We would like to use (1.23) directly on || U,/q ||§; although this works on U, it fails on U/
since y© = 0 when a = 0. Thus we note that

() 1U/q 8 =1 Un/q 6™ + | Un/q 1T + | Un/q e,

when a, = ¢%(1/n). Now by (1.23), (1.26) and the fact that (1.7) implies (1.12) as in Shorack
(1979), we can choose @ so small that

(f) P(|U./q|%, =€e)<e for n= some N/
Since q(t)/t'?is \\, we have from (b) that
P(| Un/ql$gn = €) < P(|| Un/I'* || = e(log log(1/ax))"*(g(an))"*)
= P(| Ua/TV? |9 = (log log n)'/?) for all large n
=6 log(na,,)exp(— % (log log n)y((log log n)1/2)> by (1.27)

(g)

and (1.26) with & =%

(log log log n)
“oglogmy™) ™

1
= 13 (log log log n)exp(— 3 (log log n)
<e¢ for n= some N”.
We will now prove
4.1) |U./qllf" —»0 as n— o,

To prove (4.1),let A, =[|| U/q|¥" >¢] and B, = [||T/I|| > A.] with A, = (log log n)"/>.
It is well-known that P(B,) = 1/A, — 0; see Shorack and Wellner (1978) and Wellner
(1978) for related results. Since ¢ ~'/?¢(¢t) | implies that n'/*A, || I/q|s" = 1/g"*(1/n) — 0
as n — o, on B;, we have

IU=/qlle™ = n'2(|Tu/q 5" + 1 1/q 115"
(h) =n"2N. + 1| I/q|§"
=2/g"*(1/n) > 0 as n— o

Hence B}, C A, for n = N,, P(A;) = P(B;) — 1 as n — », and (4.1) holds. Combining (f),
(g), and (4.1) into (e) shows

i) P(|U./qlé=¢)<e for n= some N..
Combining (i), (1.28), and (1.3) into (d) gives (1.6).
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Now for the necessity of (1.7). O'Reilly (1974) showed that (1.6) implies the equivalent
conditions (1.11) and (1.12). We now show that (1.11) implies (1.7). Assume lim inf,j0g(¢)
< . Then since (with ¢ > 0 chosen small enough) eq(¢) = &(¢ log log(1/t)g(t))"/* is upper
class, we have a sequence ¢; | 0 on which

Ut) 1
[2 log log(/0)] 2 ~32 &%

lim sup; e

As seen from the proof of Breiman (1968; pages 264-265), this is a contradiction (without
loss we may assume that #;.1/¢; does not exceed Breiman’s q). Thus (1.7) holds. O

Proor or THEOREM 1.2. We first prove necessity: Suppose that (1.8) holds for every
e > 0. Choose and fix ¢ > 0. Then
| Un — U)/q 41108

= sup{(Ux(C) — U(C))/q(| C|):| C| = e’n""log n}

(a) = sup{(-n"?|C|"*|C|"* - U(C))/q(| C|):| C| = e*n""log n}
= sup{(—&(1 + o(1))[| C|log(1/| C)]/2 = U(C))/q(| C):| C| = e*n""log n}
= sup{(—2e[| C|log(1/|C)]"* — U(C))/q(| C|):| C| = e*n""log n}

for n large; and hence for n = N,, )

P(=U(C) < 2¢[| C|log(1/|C|)]"* + eq(| C|) for all Cwith |C|=e’n""logn)>1—e.

Thus eq, (t) = e[2(¢ log(1/t))'/* + q(t)] is interval upper-class for every & > 0, and hence, by
the equivalence of (1.14) and (1.9)

®) g (8)/[¢108(1/0]* = 2 + [q(1)/(tlog (1/1))"] =

as ¢t — 0. But this clearly implies the same is true for g; i.e. eq is interval upper-class for
every € > 0.
To prove the sufficiency part of the theorem, replace g by

(c) £(¢) = min{inf{g(s):0 < s < t}, log(1/t)} # o as t}0

as in the proof of Theorem 1.1.

We will use (1.32) to handle intervals C with en "log n < | C| < a,, = ¢*(1/n); then (1.29)
will handle intervals C with a, < | C| < 8 for fixed (small) 6.

Since ¢™"%q(¢) is i, with b, = en"'log n and M very large,
d) P(|Un/q 46,0, =€)

= P(supc:s,=|ci=a,) | Un(C)|/| C|"* = e(log(1/a,))*(g(an))"?)
(e) < P(sup(c:s,=|cj=a, | Un(C)|/| C|"* = M(log n)*/*) for all large n

200 M? 3M(log n)"/? . 1
- — _ .32), (1.30 th§ ==
5 exp( 32 (log n) ‘4/( log )7 by (1.32), (1.30) wi 5

— _200n —Mz(lo ) M
“elogn P\~ 32 g e'?

200n _M® 2logM
clogn O\ 7 32 3/eAM

=

~

(log n)) for large M

(f) =<e¢ for M large enough, and n = some Ny in (e).
Also
(g) P(|U/q|l40p =€) =& for § = some 8,
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by (1.35); and
(h) P(|| Up/q | ¢tanpy = €) < € for n = some N,

by (1.29) and (1.31) with & = @ since y = ¥(2"/%/6). Applying (), (g), (h) and (1.3) (note
that | Un — Ulls < 2| Un — UJ)) to

| (Un = U)/q |l wtni-o =< || Un/@ll6,0) + || Un/@ letantr
(i)
+ | U/q|lon + | Un — Ulwoi1-00/q©0)

shows that the term in (i) does —, 0. Finally, for0 = s<¢=<1with¢ — s=1— d we have
q(t —s) = q(1 —t) v/ q(s); so that
| Un/q ||l w161 =< sup{| Ua(t)|/q(¢):t=1— 8} + sup{| U(s)|/g(s):s= 6}
has (for § = 6. sufficiently small), by the proof of Theorem 1.1,
(j) P(|| Up/q||sa-61 =€) =€ for all n = some N
and likewise

(k) P(|U/qllea-o0 Z=e) =e O

ProoF oF THEOREM 1.3. First note that for any fixed 0 < b = %

| Un(C)|

——————(ICI Tog n)1/2—>a,s,0 as n— o

(a) sSup(c:ic|=s)

by Cassels’ Theorem (1.36), and hence to prove (1.37) it suffices to show that (with a, =
n'e log n and appropriate large M)

(b) lim SUp,.«SUpP(c:a,=|cj=5)

To do this, let a = a, = n"'e log n and A = M(log n)"/? in (1.32) and (1.30) to obtain

| UO)] _

__ 24n . (1—8)“M2 )\P( ))
_583lognep 8¢/

< constant-n™", 7> 1

P(Sup(C:a"slﬂsb)

if M is sufficiently large by (1.19). Now (b) follows by Borel-Cantelli and (1.37) is proved.
To prove (1.38) we now specify a = a, = n"'(log n)*. By (a), it suffices to consider

C’s with a, = |C| = b, b > 0 arbitrarily small. Then, with @ = a. and A, = M(log n)/

[(na.)'? log log n] = M(log n)'~**/log log n, (1.32) yields, for n sufficiently large,

|U.C)| 24n A (2,
P<Sup(c an=|Cl=b) W— An Tag—)—aexp 1-9 ¢ Sog 1)

24n
8%(log n)*

2 (log n)>™  2Y28(1 — a)(log log n)
2 (log log n)* M(log log n)'~*/(log log n)

exp( 1- )4 ) by (1.19)

= constant-n™’, 7>1
for M sufficiently large. 0O
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