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ON THE EXISTENCE OF NATURAL RATE OF ESCAPE FUNCTIONS
FOR INFINITE DIMENSIONAL BROWNIAN MOTIONS

By DENNis D. Cox

University of Wisconsin, Madison

It is proved that genuinely infinite dimensional Brownian motions on ¢”
sequence spaces have natural rates of escape, provided the coordinates are
independent. An analogous result holds for separable Hilbert space. Compu-
tations of Brownian rates of escape and further properties are considered.

1. Introduction. The main result presented here concerns the existence of natural
rate of escape functions for a class of infinite dimensional Brownian motions. For any
stochastic process (X (¢):¢ = 0) taking values in a real Banach space (V, || -|)), a nonde-
creasing function y: [0, ) — (0, ») is called a natural rate of escape for X if lim inf || X (¢)||/
v(¢) = 1 as t — oo with probability one (abbreviated w.p.1). The Brownian motions to
which the theorem applies are those in ¢ ? sequence spaces (1 < p < ) with independent
coordinates (see (2.7), below). This result partially settles a conjecture made by Erickson
[7], who surmised, after studying some examples, that all genuinely infinite dimensional
Brownian motions possess natural rates of escape. According to a result of Dvoretzky and
Erdos [6], for any genuinely d-dimensional Brownian motion X (¢) with 3 < d < o, and for
any function y for which ¢ ?y(¢) | 0 as ¢ — oo, lim inf|| X (¢)||/y(¢) is O or o, w.p.1. The
difference between the infinite and finite dimensional cases which we make use of is that
F(u) = P[| X(1)|| = u] is o(z™) as u | O for all n when X is genuinely infinite dimensional,
whereas F(u) # o(u") for n = d when X is d-dimensional with d < .

To explain the importance of this difference, we need to look at the test given in [7].

THEOREM. (Erickson, 1980). Let X be a genuinely d-dimensional Brownian motion
on a Banach space (V, || - ||) with 3 = d < =, and let h be an admissible function. Fix b
> 1 and put y(t) = t**h(t). Then

(1.1) lim inf|| X @¢)||/y () 2 1 w.p.1
depending on whether

converges

(1.2) S (BY) PP X (1)]| = h(6*)] {divergeS.

The definitions of a Brownian motion and an admissible function are given in Section 2
below. The point to notice is that the existence of a rate of escape function can be shown
by solving the following functional inequality problem:

(1.3) Given a nondecreasing function G with G (0) = 0, when does there exist a positive
sequence (A;) such that

.G (0h) {converges if 0<éd<1

diverges if 8=1.

One easily checks that there is no solution if, for some n, G(u) ~ u" as u |, 0. On the other
hand, the constant C = inf{z > 0:G(u) > 0} works if it is positive. This suggests that if
G — 0 “rapidly,” a solution may exist.
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624 DENNIS D. COX

This problem is of greater probabilistic import that just infinite dimensional Brownian
motion, since most upper-lower class tests involve convergence or divergence of a series
(or integral). Usually one determines by inspection a solution which typically involves a
series of iterated logarithms (see Proposition 3.1 below). However, the most general
sufficient conditions for existence of a solution which we have found are contained in the
following.

ProrosiTION 3.2. Let G: (0, ©) — (0, ©) be nondecreasing with

(1.4a) Gu)=o0w") asul0foralln>0,
(1.4b) log G(u) concave.
Then there exists a solution (h,) to the problem (1.3) with the following properties
(1.5a) h. )0 asntoo
hn
(1.5b) lim sup, .« h+1 =1.

The proof is in Section 3. One need not look far to find applications of this result, e.g. the
following.

COROLLARY. Let Y, Y3, .- be iid. random variables with common distribution
function F. If G(u) = 1 — F(u™") satisfies (1.4a) and (1.4b), then there is a sequence of
numbers ai, az, --- such that P[Y, = fa, i.0.] = 0 or 1 depending on whether § > 1 or
=1

Unfortunately, we have not been able to show that the solution of (1.3) given by
Proposition 3.2 is sufficiently nice for use in Erickson’s test, and have had to resort to a
stronger log concavity property than (1.4b). See Proposition 3.3 below for this result.

Section 2 contains definitions and preliminary results, including an extension of Erick-
son’s test which allows one to evaluate lim inf|| X (¢)/y(¢) — y||, where y is a fixed point in
V. One surprising consequence of this result is that lim inf]| X (¢)/v(¢) — y || = lim inf]| X (¢)/
y(t) — z|| for all y, z € V, w.p.1, provided V is separable (see Theorem 2.5). The main
results are in Section 3, including the solutions to the functional inequality problem and its
application to existence of rates of escape (Theorem 3.5). While the existence theorem is
constructive in that it exhibits a solution, it is not very useful in explicitly calculating rate
of escape functions. This latter topic is considered in Section 4, where we obtain useful
estimates of small deviation probabilities for the #* norm of Gaussian random vectors.

2. Preliminary definitions and results. By a Brownian motion on a Banach space
(V, |l - ), we mean a V-valued stochastic process (X (¢) : t = 0) which satisfies the following:
(2.1) X(0) = 0.

(2.2) The sample paths of X are || - ||-continuous.
(2.3) X has the Brownian scaling property, i.e. fort > 0
Law[¢t™2X (t)] = Law X(1).

(2.4) X has stationary independent increments.
(2.5) The following version of the strong Markov property holds for X:
For ¢ = 0 put . \

F{=0[X(s)"'(B):0=<s =<t B an open ball]
and let % be the usual augmentation of %} (see IV.48 and IV.52 of [5]). If A is a stopping
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time with respect to the filtration (% : ¢ = 0), then conditional on [\ < ®], the process Y (¢)
=X +t) — X(A), t = 0 is a probabilistic replica of X which is independent of % ..

It is readily verified from (2.1) through (2.4) that X is a Gaussian process. A general
existence theorem for processes satisfying (2.1) through (2.4) has been given by Kuelbs
(Theorem 4 of [11]). See Proposition 2.1 of Cox [4] for a proof that (2.5) holds for the
processes of [11] and the £” processes discussed next.

An independent coordinate ¢#” valued Brownian motion (1 < p =< o) is constructed in
the following way. Take a sequence (Bi(t), Bs(t), ---) of independent standard one
dimensional Brownian motions and a sequence (a1, 03, - - -} of positive constants satisfying

(2.6a) Yroh<oo if 1=p<oo,

(2.6b) for some u > 0, i exp[—u?/268] < 0 if p =,
Then the process

(2.7) X(t) = (01B1(2), 02Ba(t), +++)

is a Brownian motion taking values in #”. The verifications of (2.1) through (2.5) have
been given by Cox (see Propositions 1.4.1 and 1.4.2 of [4]). We note that the conditions
(2.6) on the variance parameters are necessary and sufficient for X in (2.7) to be an £
valued process. An interesting refinement of (2.6b) is the following: after (3.4) of Hoffman-
Jgrgensen, et al. [9], put

(2.8) % = inf{u > 0:Y exp[—u?/20%] < 0},
then for all £ = 0
&Vt = inf(r>0:P[| X(t)|.. < r] > 0}.

Furthermore, X is a ¢, valued Brownian motion just in case € = 0. Note that if € > 0, the
Gaussian measure Law X (1) is neither Radonian nor tight, so many standard results (e.g.
Kuelbs [11] or Borell [3]) are inapplicable.

A Brownian motion X is called genuinely d-dimensional (1 = d < ) if there is a closed
linear subspace Vo C V, referred to as the support space of X, such that

P[X(t)e Vo forall t=0]=1
but for any proper closed subspace W C V,
PIXt)e W for t=0]<1,

and d = dimension of V. It is easily seen that a Brownian motion of the form 2.7) is
genuinely infinite dimensional since ¢, > 0 for all k.

Following Erickson (page 325 of [7]), let us call a continuous function A: (0, ®) —
(0, ) admissible if h is eventually nonincreasing, y () = t'/?h(t) is eventually nondecreas-
ing, and A is slowly varying at o, i.e. h(ct)/A(t) — 1 as ¢t — o for all ¢ > 0.

We may now state the following extension of Theorem 2 from [7].

PROPOSITION 2.1.  Let X be a genuinely d-dimensional Brownian on a Banach space
Vwith 3<d = . Let h be an admissible function and fixy € V. Put y(t) = t"*h(¢), and
let u>0.

(a) If for some b>1

(2.9) Yr R(BY) PP X (1) — A(BY)y || = uh(b*)] = o,

then lim inf|| X (¢)/y(¢) — y|| < u as t > », w.p.1.
(b) Take b > 1 and put

(2.10) 8(y, b) =4 yll1 - 7).
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If the series in (2.9) converges, then

lim inf|| X(¢)/y () —y||=u—06(y,b) ast—> oo, wp.l

The theorem follows easily from the following lemmas. For convenience, define
(2.11) A(y) =lim inf, ... | X(2)/y (@) — ¥ |
(2.12) qy, u, t) = R P X(1) — @)y || = uh(8)] where u,t=0

Py, u, t, t:) = P[| X(@#®)/y(t) —y||<u forsome ¢E [t,t)]

(2.13) where ©u=0 and 0=t <t

Note that the random variable A(y) is constant w.p.1 by Kolmogorov’s 0-1 law.

LEmMMA 2.2. Ifb>1 and u, e > 0 then (2.14) implies (2.15) implies (2.16) where

(2.14) P[|X(t)/y(t) — y|| <u io. (infinitely often) ast— ] =1
(2.15) ka(y) u, bk) bk+l) =
(2.16) Pl|X(t)/y(t) —yll<u+e io. ast— »]=1

LeMMA 2.3. Fix positive u, . For all b > 1 there exists ko such that k = ko implies
p(y, u+¢ b7 %) = Aig(y, u, b) ‘

where
A=(1- b_l)/J' Pl|X(@) | =2+ |yl)]dt>0.
0

LEMMA 24. Fix positive u, . For all b > 1 satisfying (1 — b ||yl < e there is a ko
such that k = ko implies

p(y, u, b, ') < A2q(y, u + 4¢, b)
where

Ay = (b — 1)e 2 max{8E | X (1) ||% %e*h(b)?/(b* — b)} < .

The proofs of these lemmas are similar to the proofs of Theorem 1 and Lemmas 1 and 2
of Erickson [7]. The details are given in [4]. We note that the requirement d = 3 is only
needed to prove A; > 0.

When the following theorem is applied to a natural rate of escape function y, one
obtains the rather surprising result that the normalized process X (¢)/v(t) enters any ball
of radius (1 — ¢) only finitely often as ¢ — o, but enters any ball of radius (1 + ¢) infinitely
often as t — oo.

THEOREM 2.5. Let X be a genuinely d-dimensional Brownian motion on a separable
Banach space V with 3 <= d < ». If V, is the support space of X, and h is an admissible
function, then

P[A(y) =A(0) forall y€ W]=1
where \ is given by (2.11) with y(t) = t/*h(t).
Proor. Without loss of generality, assume Vi = V. The result is a consequence of the

preceding proposition and some probability estimates which are straightforward general-
izations of (2.1.1) and (2.1.2) of Hoffman-Jgrgensen, et al. [9]. First, we claim

(2.17) q(y,u,t)<q0,ut)
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ally € Vand u, t = 0. Fix ¢ and put ¢ = Law X(¢). Since V is separable, u is a Radon
measure (see page 132 of Badrikian [1]) and so the Gaussian measure p is 0-convex
by Theorem 3.2 of Borell [3], i.e., for all pairs of Borel sets A;, A> C V and real numbers
A€[0,1]

(2.18) p, (AAL+ (1 = X)Az) = p(Ar) p(A)'

where ., is the inner measure induced by . From this it follows that if K C V'is closed and
convex and z, € V is fixed, then the set

M={zeViuz+ V)=pu(zo+ V)}

is convex. If K is symmetric in the sense that z € K implies —z € K, then p(—2zo + K) =
u(zo + K), so 0 € M. Applying this to centered balls in V, we see that y-measure of a
translated ball never exceeds p-measure of a centered ball. This proves (2.17).

Now let H be the generating Hilbert space for y, i.e. H C V and (i, H, V) is an abstract
Wiener space, where i: H — V is the inclusion map, and the measure induced on V by
extending the canonical Gaussian cylinder measure on H to the completion of H under the
measurable norm || - || is exactly pu (the completion being V). Consult Section 2 of Kuelbs
[10] and Section 1.4 of Kuo [13] for an exposition of this theory. We denote the inner
product of H by (-, -) and the norm by | - |. If z € H, then (z, - ) is defined a.e. [¢], and the
translated measure u, = u(z + -) is absolutely continuous with respect to p with density

id‘l:f(x) =exp[-%|z|®>— (2, x)]

Hence, using the Cauchy-Schwarz inequality and symmetry of u, one obtains

1/2 172
wlx:|x||=r} = (J e"‘z"‘),u(dx)) (J e‘z”‘)u(dx))
llxli=r |l x| =r

= f e u(dx)
llx||=r

= exp[ | 2|*/2]p: {x: || x| = r}.
Hence, fory € H

q(y, u, t) = exp[—h(t)*|y|?/2]-q (0, u, ©)
(2.19)
= exp[-M|y|*/2]-q (0, u, t)

where M = sup{h(t)*:t = 0}.

Now fix y € H. Assume A(0) < R w.p.1, then by Proposition 2.1, part (b), Yxq (0, R, b*)
= oo for all b > 1, since §(0, b) = 0. Hence, Y»q(y, R, b*) = o for all b > 1 by (2.19). Part
(a) of Proposition 2.1 implies A(y) = R, w.p.1. On the other hand, assume A (0 > r, w.p.1.
Proposition 2.1, Part (a), implies ¥.q (0, r, b*) < oo for all b > 1, so Y. q (y, r, b*) < o for all
b >1Dby (2.17). Letting b | 1 in Part (b) of Proposition 2.1 proves that A(y) = r, w.p.1.

Thus, for all y € H, we have shown that P[A(y) = A(0)] = 1. A separability argument
can now be applied to complete the proof of the theorem.

The next result suggests that when looking for natural rate of escape functions, it is
sufficient to look in the class of functions y(t) of the form ¢'/>A(t) where A is admissible.

ProposITION 2.6. If X and V are as in Proposition 2.1, then there exist admissible
functions h, and h; such that

(2.20a) P[lim inf,... | X (¢) |/y:(¢) = 1] = 1
(2.20b) P[lim inf,... | X(2) |/v2(£) < 1] =1
where y,(t) = t*h,(t) fori=1, 2.
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Proor. Puttingy =0, u =1, and b = e in the test series (2.9), we see that the assertion
will follow if admissible A; are constructed for which
S<ow ifh=h
© if h = h,.

We describe the construction of the A; and leave to the reader the verification of (2.21) and
admissibility. Define for v > 0

(2.21) Seh(e®) PP X (1) || < h(e)*] = {

(2.22) G(v) = v ?P[|XQ1)| = v].

Note that if 0 < C = inf{v > 0:G(v) > 0}, then h; = (2C)™" and A, = 2C will solve the
problem. Hence, we assume G > 0 on (0, ©).

From the assumption that the support of X (1) is of dimension no less than 3, one
concludes that

lim sup,;0 (G (v)/v) < .
Hence, choosing an arbitrary p > 1, A; may be defined for x = 1 by
hi(x) = (log x)™".

The situation for A is not quite so simple. Take a positive, strictly increasing function
G, defined on (0, 1] for which Gy =< G on (0, 1]. Define a sequence of numbers ai, az, - - -
by a. = G5'(2™™) and note that @m > @m+1 — 0 as m — . Let k1, &, - - - be a sequence of
positive integers satisfying

ki1 — kn>2"form =1
Ami1Rme1 > Qmbm for m=1
QA €Xplkm/2] 1 © as m — o,
Clearly such a sequence exists. Now, define A, by
hy(exp(kn)) = am
for m = 1, and if exp(kn) < t < exp(km+1),
ha(t) = ./ (b, + log t)
where
b= (amr1km+r1 — Amkm)/(@m — Am+1)
Cm = Qnbm + Ambm.

The definitions of b,, and ¢, are such that A, is continuous.

3. The existence theorem. The first three results of this section give sufficient
conditions for the existence of a solution to the functional inequality problem stated in
(1.3). In all three cases, the solution is exactly exhibited via some “formula” (see (3.5),
(3.9), and (3.16) ). However, only the formula of Proposition 3.1 has actually proved useful
in applications, such as in Section 4. Although the solution given in Proposition 3.2 is not
suitable for our purposes, we give it primarily because of its simplicity and generality. It
also serves as a motivation for the more complicated Proposition 3.3, which is the result
used in the existence theorem. We make the following definitions:

Lo(t) = max{¢, 1}
Li(t) = L(¢) = max{log ¢, 1}
L.(t) = L(L,—-1(t)) for n=2.
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ProposITION 3.1. Let G:(0, ©) — (0, ©) be nondecreasing. Define for r > 0
(3.1) g(r) = —log G(exp(-r))

and assume the following

(3.2) Aro such that g is convex on (ry, ®©)
(3.3) lim, ., g’ (r) =
. . Lnyi(t)
(3.4) or some integer N = 0, lim sup,.. —————= vy < o,
f & SaPIPEIT

Then the function

(3.5) h(t) = exp[—g " (TAZF Lx(2)) ],
defined for all t sufficiently large, is an admissible function for which

L converges if 8 < exp[—wo]
(3.6) 2+G(0h(e") {diverges ifo=1.

REMARKS. Note that (3.2) implies that g’ exists on (ro, ) except on a set of Lebesgue
measure 0 (on which it can be defined by right continuity). Under (3.2), Condition (3.3) is
equivalent to (1.4a). Also, (3.3) guarantees that g is eventually strictly increasing so that
g' is well defined on some interval (o, ®).

ProOF. Let r; be the maximum of the three numbers ro, exp(v+1) [1], and sup{r:g’ (r)
< 1}. Here exp(n+y is the iterated exponential function, defined in the obvious way. Now
h is well defined for ¢ = exps[ g(r1) ] = t,. We first show that % is admissible. It follows from
the definition that % is decreasing on (¢,, »). Further, the defining formula may be written
in the form

h(t) = Cexp[—f 71 E(T)dT]

1

where C is some constant and

e(r) = (@) (T2F La(7)) - [TR5 ([ Tr Li(7)) '],

Since (g7')’ (1) — 0 as u — o by (3.3), it follows that e(7) — 0 as 7 — o. (In fact,
e(7)(log 7) — 0). Hence, A is slowly varying at « (see page 282 of Feller [8]). Also,

£2h(t) = C’ exp[—f % — e(7)}d¢].

1

Since the quantity in braces is eventually positive, it follows that t*A(¢) is eventually
increasing. Thus, A is admissible.

We now establish the convergence claim in (3.6). Fix 8 < exp[—»] and put u = —log
< w. Let v € (0, p). By (3.4), there exists ¢, = ¢, such that for all t = ¢,

(3.7 g (g (TNoL,(¢))) = v Lnsai (2).

In view of the monotonicity of G and %, the integral test applies. Hence, convergence of
the series in (3.6) is implied by convergence of

(3.8) 1(0) = j G(0h(e*))dx.
1

og ¢
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Now, make the substitution x = log ¢ and use (3.3) and (3.5) to obtain

1(6) = J expl—ug’ (&7 (XN2 L () I I La(t)] 7 dt.

1

If (3.7) is applied to this latter expression, we see that I(#) < o would follow from
convergence of

j (TIAZ La(2)) " (Lvw2(t)) ™™ dt.

But this later integral converges since pr ™' > 1.
The divergence claim in (3.6) follows from monotonicity of G and the easily verfied fact
that I(1) = oo.

Proor oF PrROPOSITION 3.2. From the log concavity of G, it follows that g is absolutely
continuous on every bounded subinterval of some interval (r;, »), where g is given by
(3.1). Also, g’ has only jump discontinuities, and we may define it at these jumps by right
continuity. Assumption (1.4a) implies lim g’(x) = « as u — o, and we may assume then
that g’(r) > 0 for r > r;. Define

()7 x) =inf{y=ri:g'(y) = x}

and note that this function is nondecreasing. Take A; > 0 and § > 0 sufficiently large that
8G(h;) > r1. Define {h,} by the recursion

(3.9 hne1 = exp[—(g')7'(8 -1 G(k))].
Clearly hy = hs = - -.. Put S = ¥5-1 G(h;), and suppose S < . Then for n = 1
hnv1 = exp[—(g')'(8)]=M >0
and so
S= Y71 GM) = oo,

Hence, S = «, and it futher follows that lim A, = 0. This establishes divergence of ZG(6h,)
for § = 1. Put A(u) = g(—log u) and fix 8 € (0, 1). Now A is convex by (1.4b), so for n = 2

AOh,) = A(hs) — (1 — O)h N (h) = A(h) + (1 — 0)8 322t G(h)
where we have used g’((g’) (x)) < u. Hence
-2 G(6h,) < Yr-2 G(hy)exp[—p Yi=1 G(Hy)]

where p = §(1 — 8) > 0. But the series on the right is convergent (see Section 104.2 on page
119 of Pierpont [15]).
To establish (1.5b), assume it false, i.e. for some 6, in (0, 1)

Pns1 < Gohy,
for all n sufficiently large, say n = no. But then we have the contradiction
0 = Yoony GAnt1) < Ynzny GOh,) < 0
which completes the proof.

Our final result on this subject states that if in addition g is convex (which implies A
convex), then we can obtain an admissible solution. The idea of the proof is to produce a
solution to the following integral equation analog of (3.9)

h(t) = exp[—(g’)“(f G(h(7)) d’T)} .
0
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This solution is given in (3.15) and (3.16) under rather strict assumptions on g. It is then
verified that the solution has the right properties, and then that any function g satisfying
the conditions of the proposition can be suitably approximated by a “nice” function.

ProPOSITION 3.3. Let G: (0, ©) — (0, ) be nondecreasing near 0 with G(0+) = 0. Put
g(u) = —log G(exp[—u]) for u € R. Assume g is eventually convex and that

(3.10) lim,, . g’ (1) = oo.

Then there exists an admissible function h such that ,G(8h(e*)) converges if 0 < 8 < 1
and diverges if > 1.

Proor. We begin by assuming g satisfies the following additional assumptions:

(3.11) g € C*[0, »)

(3.12) g'0)=0

(3.13) g">0

(3.14) for some a >0, eventually g”(u) > exp[—au].

Define a function H: (0, 1] — [1, «) by

—logy
(3.15) H(y) = exp[ f ef@g” (x) dx] .
0
Then H is continuous and strictly decreasing by (3.13), and also H(y) — » as y | 0 (use
(3.10) and (3.14)). Thus
(3.16) h(u) = H™'(w)

is continuous and decreases to 0 as u — «. Hence, it suffices to consider convergence or
divergence of I(f) given in (3.8) with ¢; = 1. In the integral

(3.17) J(v) = j exp[—g(—log h(w))]d—lzv,
1

make the change of variables w = H(e™™) to obtain
J(v) = g'(—log h(v)) > © as v— .

The limit relation follows from (3.10). This shows I(8) diverges for § = 1 since J(v) — I(1)
asv— 0. If0 < @ <1, let p = —log , and use convexity of g to obtain

1

v v d
J exp[—g(p — log h(w))] d—ul:) = f exp[—g(—log h(w)) — pg’(—log h(w))] -;w
1

v di
= f exp[—g(—log h(w))]eXP[—uJ(w)lgw.
1

Note that (3.17) was used at the last step. If one makes the change of variables y = J(w),
then the last integral becomes
J(v)
j e™ dy
0

which is no greater than p~". Hence, I(d) < (—log #)™" if 0 < 8 < 1, and is convergent, in
particular.

By making the appropriate substitutions, one can verify that

h(t) = exp[—f e(w) fiuﬂj]
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where
&(t) = exp[—g(—log h(t))1/g" (—log h(t)).

It follows from (3.10) and (3.14) that &(t) — 0 as ¢ — . Thus, A is slowly varying. That
t'/?h(t) is eventually nonincreasing is proved as in Proposition 3.1. Hence, A is an admissible
function.

We now need only remove the extra restrictions (3.11) through (3.14) to complete the
proof of the proposition. Suppose g satisfies the conditions in the statement of the
Proposition (i.e. go eventually concave, and g — ). Then we claim that there exists g
satisfying these conditions and also (3.11) through (3.14) for which there exists constants
Uo, U1, and uy such that for all u = u,

(3.18) gu—u)<go(u) =g+ u).
Let us assume such a g exists, and let & be given by (3.15) and (3.16). It is then clear that

J' exp[—go(—log Ok (y)) ]%

converges for § < exp[—u: ] and diverges for § > exp[u. ]. Hence, some constant multiple of
h works to solve the problem for go.

Now to establish that such a function g exists, fix A > 0, and let ¢ be a bounded,
nonnegative function on R with two continuous derivatives, support in [0, A], and integral
equal 1. For x = 0, put

A
&g1(x) =J &o(x + 2)¢9(2) dz.
o

Then g; € C*[0, »), and there exists an x, such that for all x > x,
gilx —A) = g(x) =g (%)

since go eventually increasing. Furthermore, it is easily checked that g; is eventually
convex, and g1 — . Now put

&(x) = gi(x) + e
Then g is eventually convez, satisfies (3.10), (3.11), and (3.14), and eventually g5 > 0. Also
&o(x) = g1(x) = &:2(x).
Fix any p > 0, then
&1(x) — ga(x — p) = pgi(x — p) —e'e™
and the second member tends to « as x — . Hence, for all x sufficiently large
Sx—p=A)=gix—-2A) =g (x).

Now g satisfies all the requirements of the function g we sought for (3.18), except that
(3.13) only holds eventually for g, and (3.12) may not hold. However, it is a simple matter
to modify g so as to obtain g satisfying these properties. This completes the proof of the
Proposition.

It is well known that if X is a zero mean Gaussian random vector on a separable Banach
space (V, | - ||), then

(3.19) F(u) = P[| X| = u]
is log concave (see (1.13) on page 321 of [9]). However, in order to apply Proposition 3.3,
we need the stronger concavity condition stated there. The following result, due to

Pearlman [14], shows that this condition holds if the unit ball of V is sufficiently
symmetrical.
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LEmMMA 34. Let Z by an R® valued Gaussian random vector with zero mean and
covariance matrix equal to the d X d identity matrix. Let K C R® be a closed convex
subset which is symmetric about the coordinate hyperplanes, i.e. for anyj with1 <j<d,
if (%1, -+, %), -+, xa) E K, then (x1, +++, —xj, +++, xa) €E K. Then

Y(u) = P[Z € e “K]
is log concave.

ProoF. First note that it suffices to prove the Lemma for K of the form
K={xe€e Rdt maxlsis,,(E‘}Ll aijl le ) <1}

where the a;, are nonnegative constants, for 1 =i <n,1=<j=<d. Now put Y, =log| Z;| for
1=j=d, then

P[Z € e7“K] = y(u) = P[maxi<i=. (Y% a;; exp[u + Y;]) = 1]

= J h(u, y)f(y) dy
Rd
where

f(y) = @/m)* [[-1 exply; — %oe 2]
is just the density for Y, and A(x, y) is the indicator of the subset of R?*' given by

{(w, y): max(3% a;j exp[u + ;1) < 1}.

This set is clearly closed and convex, so A is log concave (note that —o is an allowable
value for a concave function, as discussed on page 123 of [2]). Also, fis clearly log concave.
Hence, it follows from Corollary 4.1 of Borell [2] that ¢ is log concave, completing the
proof.

THEOREM 3.5. Lex X be an independent coordinate ¢*-valued Brownian motion with
1 =<p < . Then X has a natural rate of escape in ¢*.

ProOF. Put G(r) =r*P[|| X (1) ||, < r] for r > 0 and g () = —log G (exp(—u)). In view
of Erickson’s test, we need only show that g satisfies the two conditions of Proposition 3.3.
To show that g is eventually convesx, it suffices to show that —log P[ || X(1) |, = e™“] is
convex in u, but this latter function is the limit as n — « of the increasing sequence

—log P[Y)-10?|Bi(1)|P=e®] if p<w
&n(u) =
—log P[max;<j=n|0;B,(1) | < e™™] if p=o
where ;B is the jth coordinate of X (see (2.7)). Now the set
K,={x€R™: (X i1|ox|P) =1}, 1=p<wm

is closed, convex, and symmetric about the coordinate hyperplanes. The analogously
defined set K., also satisfies these properties. Hence, g, is convex by Lemma 3.4, and so
also is g. Now clearly G (u) = o(1") as u | 0 for all n, so g satisfies (3.10). This completes
the proof.

COROLLARY 3.6. Let X be a Brownian motion on a separable Hilbert space. Then X
has a natural rate of escape.

Proor. There exists an orthonormal sequence ey, e;, - - - such that the one-dimensional
motions (e;, X), (e2, X), - - - are independent (see e.g. Theorem 4 of Kuelbs [11]), and

X=37%1(eX)e.
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The proof is completed as in the ¢* case of Theorem 3.5.

4. Computation of rates of escape. In this section we show how rate of escape
functions may be computed for a large class of independent coordinate ¢>-valued Brownian
motions. We limit attention to the case p = 2 for the sake of convenience, but similar
results may be obtained if 2 < p < . A general result for p =  is given in Theorem 5 of
Kuelbs [12]. See also Example 3, page 334, and Theorem 3 of Erickson [7]. In general, we
can only obtain the rate of escape function up to a constant multiple, where the constant
is bounded by some computable numbers.

First, we must obtain some usable probability estimates. Let ¢:[1, ©) — (0, ) be a
nonincreasing function satisfying [ o(x)? dx < «. Put ¢(x) = x"?a(x) for 1 < x < o, and
assume for some xo = 1 that ¢ € C'(xo, ). We will need the following quantities:

K = lim inf,_.[—¢(x) /¢’ (x)]
L = lim sup,_[—¢ (x)/¢’ (x)]

M = lim sup..«[—¢ (x)/(x¢ (x))].
THEOREM 4.1. Suppose that ¢ satisfies the following

4.1) o(x)<1 for x>x

(4.2) ¢'(x) <0 for x>x0

4.3) K € (0, »]

(4.4) M € [0, «).

Now let n1, 2, - - - be independent standard normal random variables and put

F(r) = P[Z51 lo()ni|* = r’].

Then there are constants a; and as such that for all 8 > 0 there is a u, such that for all
u=u

(4.5) fw+a;—8)<-log Fle™)=f(u+ax+39)

where ‘

(4.6) f(u) = J ¢ (™) dw, uo= —log ¢(xo).
uy

ReEMARK. The most stringent conditions are (4.3) and (4.4). These two conditions
roughly say that for some a >0, b > %

4.7 0(e™) =o(x) <= O(x7°).
ProoF. Note first that f is eventually convex and f’ — oo. Also
lim inf, . f” () = K, 1lim supu—« f” (@) = L, lim sup.... f” @)/ f' (u) = M.

We shall make frequent use of these relations.
According to Theorems 4.1 and 4.3 of Hoffman-Jgrgensen, Shepp, and Dudley [9], the
following bounds are valid for r € (0, 1], s € (0, 7), x > %o+ 1,and y > xo + 1

A+ log<1 —(rt=s%""! J o($)’ dﬁ)

(4.8) + f log ¢ (£) d¢ —% log x + (x + 1)log s — % slo(x + 1)72
N 1

y

<log F(r) = A, + f log ¢ (£) d€ + log ¢(y) + (y — Dlog r

1
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where A; and A; are constants. We will make the substitutions « = —log r, v = —log s, ¥
=¢ (e™), and x = ¢ '(e”"). If we integrate by parts and use (4.6), there results

y
(4.9) J’ log ¢(§) d§ + ylogr = As — f(u) = —f(w) + o(f' (w)).

The last equality follows since f’(u) = ¢ (exp(—u)) — o as u — . A similar expression
holds for x and v.

We begin treating the major terms in (4.8) individually. Fix 5 > 0. Now, for all x
sufficiently large

(4.10) 1— (-5 f o(£)?dt=1 —% M+n)e™Ee™—e®)=e™"

where the last equality results from the substitution
v=u+%log[(1+%(M+1n)—e*)(1-e™*)"]
(4.11)
=u+ %log(l + %M) + o(1).

The other problematic term in the lower bound is estimated as follows

—YsPa(x + 1) = e 2 (f'(v) + 1)o(f (v) + 1)72
Using (4.3), we have for all x sufficiently large that

¢(x +1) = ¢ (x) exp[— (K" +1)]

and hence that
(4.12) —ls?e(x + 1) 2= —% exp[2(K ™" + 9)]f' (v) + OQ1).
If we collect (4.9) through (4.12) and put them into (4.8), we obtain

(4.13) —f(v) — 2v — % exp[2(K~" + y) ] (V) + o(f'(v))
=log F(e™) = —f(w) + o(f'(w)).

We will now make use of the following inequalities, valid for all u sufficiently large and all
a>0:

(4.14a) us (K" +19)f (w
(4.14b) fw) +af (W)=fu+ a)
(4.14c¢) v=u+ %log(l + %M) + .

When these are used in (4.13), the result is

—f(u+ 2K + % log(l + M) + % exp(2K™") + o(1)) < log F(e™*) = —f(u + o(1)).
The claim in (4.5) follows from this.

THEOREM 4.2. Assume o(-) satisfies the conditions of Theorem 4.1, and that L = «

implies K = «. Let B;, B, --- be independent standard one dimensional Brownian
motions and suppose

X(t) = (6(1) B1(t), 6(2) Bz (t), + -+ )
is an ¢*-valued Brownian motion. Let f be defined by (4.6). Then
C; < lim inf. || X(2) ||2/v(2) = C:
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where
v(t) = t'* exp[—f " (log log #)]
Ci = exp[-2K ]
C; = {exp[exp(2K")](1 + %M)}"2

Proor. It follows immediately from (4.13) and (4.14c) that for any » > 0
—f(v) — % exp[2(K~" + 9)]1f'(v) + o(f'(v)) < log(e®F(e™)) < —f(w) + 2u + o(f’'(u))

where v is given by (4.11), and the inequalities hold for all  sufficiently large. By (4.14a),
u =< (K™' + 7) f'(u) eventually. Also, if L < o, then for 8 =0

fw)=fw—B)+Bf (u—B)=flu—pB)+Bf W) — B (L +n)
for all u sufficiently large. Hence,
—f(u) +2u=<—f@w) + 2K f'(u) + o(f'(w)) = —f(u— 2K™") + o(f'(w)).

If L = oo, then K = o, and the latter inequality still holds. Hence, if we put G (x) = x2F (x),
it follows just as in the proof of Theorem 4.1 that

fu—2K"'+0(1)) < —log G(e™) = f(u+ %log(l + M) + % exp(2Kf1) + o(1)).

In order to apply Proposition 3.1, we need to compute lim sup L(f(w))/f’(u). Since K > 0
and f’ — oo, we have for any ¢ > 0 that there is a u; such that for all u = u,

f'(u) = f"(u) explef’(u)].
If this inequality is integrated from u; to u, we can obtain
Lf(w)/f'(u) = & — L(e)/f'(w) — L(1 — f(w1)/f(w) /' ().
Hence
lim supu—« Lu/f'(f ' (u)) =0
and it follows from Proposition 3.1 that if we put
h(t) = exp[—f~'(L22)]
then 4 is admissible and

o py =0 if 6> {exp[exp(2K~")](1 + %M)}"*
i1 G(OR(e™)) {< o if 8<exp[~2K'].

The theorem follows from this and Erickson’s test.

REMARK. The computation of 4 in the theorem involves an inversion of ¢, an indefinite
integration, and then another inversion. There is an alternative procedure which involves
one less inversion and is better suited to approximation methods. If £ = ¢ ~'(e ™) then

¢
fu) = C — §log $(£) + f log ¢(y) dy.

0

Hence, if £ = £(r) is the solution of

¢
(4.15) —¢log ¢(§) + f log ¢(y)dy=r

(where we have altered f by the constant C = o(f’)), then
—log ¢ (£(r)) = f71(r)
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so that
(4.16) h(t) = ¢(£(log log t)).

We put these techniques to use in an example.

PROPOSITION 4.3. Let
a(x) = x” exp[—ax?]

where a >0 and 0 < q < 1, and let X be an ¢/*valued Brownian motion as in Theorem
4.2. Then

C: = lim inf,_. | X(¢) /v (¢) < C:
where

y(8) = t*(log log t)P*'/2/@*1) exp[—ac(log log £)7]

c=aq/(g+1)
c, =1* if 0<g<1
' R exp[p — %] if g=1

_ ke if 0<g<1
27 \kexpl(p + %)a+e*] if g=1

k = exp[(p + %) (g + 1)"" log c].

Proor. We have
¢(x) = exp[—ax? + (p + %) log x]

_r_Jo if 0<g<l1
K‘L‘{a-l i g=1

M=0.
The equation (4.15) becomes
(4.17) C¢l —dé=r
where C = aq/(q + 1) and d = p + %. Consider the approximate solutions
§o = $o(r) = exp[(q + 1)"'log(r/c)]
§u(r) = $o(1 + d/(agéo — d))
§2(r) = exp[(g + 1) 'log((r + do)/c)].

Note that &, is obtained by neglecting the d¢ term in (4.17), £, is a one step Newton-type
approximation starting with £, and ¢; is obtained by replacing d¢ with d%, in (4.17). Now,
it is straightforward to verify that & < ¢ < £, eventually, and that

llmr—>°°¢($1(r))/¢(£2(r)) = 1‘

Hence, either of ¢(£;(log log t)), i = 1, 2, may be used in place of the exact A given in (4.16).
Now, if ¢ = 1, then one readily verifies that ¢(¢:(log log ¢)) is asymptotically equivalent to
exp[— ad]¢ (éo(log log t)). If 0 < ¢ < 1, then ¢(£:(log log t)) is asymptotically equivalent
to ¢(£o(log log t)). The proposition follows from this and the formulae in Theorem 4.2.
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