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ON THE INCREMENTS OF WIENER AND RELATED PROCESSES

By P. REVEsz

Mathematical Institute of the Hungarian Academy of Sciences

Let {W(¢), 0 = t < +»)} be a standard Wiener process and 0 < b, < ¢
be a nondecreasing function of ¢. The properties of the process Y,(¢) =
b *supo=s=i-s,(W(s + b;) — W(s)) are investigated. One of the results says
that lim...(Y:(¢) — (2 log tb;")"?) = 0 as. if b, is “much less” than ¢.
Analogous properties of similar processes are studied.

1. Introduction. Let {X(¢);¢= 0} be a stochastic process and introduce the following
definitions.

DEeFINITION 1.1. The function a,(t), (¢ = 0), belongs to the upper-upper class of the
process X(t), (e, € UUC(X)) if for almost all w € Q (the basic space) there exists a ¢, =
to(w) such that X(¢) < a,(t) for every t > ¢.

DEeFINITION 1.2. The function as(t), (¢ = 0), belongs to the upper-lower class of the
process X(t), (a; € ULC(X)) if for almost all w € § there exists a sequence 0 < ¢, = £ (w)
<ty =t(w) < .-+ with t;, > o, (i > ®), such that X(¢;)) = a:(¢;),1=1,2, ---.

DEFINITION 1.3. The function a,(t), ¢t = 0, belongs to the lower-upper class of the
process X(t), (az € LUC(X)) if for almost all w € € there exists a sequence 0 < ¢, = ¢(w)
<ty = ty(w) < --. with ¢, = o, (i — ), such that X(¢) = as;(¢;),1=1,2, - -+,

DEFINITION 1.4. The function a4(t), t = 0, belongs to the lower-lower class of the
process X(t), (as € LLC(X,)) if for almost all w € © there exists t, = fy(w) such that X(¢)
> aq(t) for every t > t,.

The introduction of these classes appears at first in a paper of the author (Révész, 1980).
However the same concepts (without using our expressions) were utilized by several
authors much before.

In order to illustrate these concepts, we present the well-known results about the
maximum of the Wiener process (cf. Erdos 1942, Kolmogorov-Petrovski 1933-34, Feller
1943, 1946, Chung 1948, Hirsch 1965). -

Let { W(t); t = 0} be a Wiener process and put

Xi(¢) = tAl/ZSUpf)S»-sl W(s), Xo(t) = tv‘/ZSUPOSSSII Wi(s)|.

THEOREM A. The nondecreasing function a(t) € UUC(X,), i = 1, 2, if and only if

© 2
Ii(a) = f t"a(t)exp<— g m) dt <
1

2

and consequently a(t) € ULC(X,), i = 1, 2, if and only if I,(a) = ». The nondecreasing
function a(t) € LUC(X,) if and only if

w 2
Ly(a) = j t"a'z(t)exp<— % a‘z(t)> dt = o
1

and consequently a(t) € LLC(X,) if and only if I(a) < .
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614 P. REVESZ

The nondecreasing function a(t) € LUC(X,) if and only if
Ii(a) =f tla(t) dt =
1

and consequently a(t) € LLC(X,) if and only if I;(a) < .
Now, we give two further definitions.

DEFINITION 1.5. If we can find functions ¢, € UUC(X) and a, € LLC(X) such that
lim,,(a:(t) — as(t)) = 0 then we say that X is asymptotically deterministic (AD). In this
case, clearly lim, | X(¢) — a:1(¢)| = lim;o | X(¢) — a4(t)| =0 aus.

DEFINITION 1.6. If we can find functions a¢; € UUC(X) and a4, € LLC(X) such that
lim sup;.«(ai(t) — as(t)) < oo then we say that X is quasi AD (QAD). In this case, clearly
lim supe | X () — a1(t)| < co.

In order to present a non-trivial AD process we give the following known result on the
continuity modulus of a Wiener process (cf. Chung-Erdos-Sirao 1959, Révész 1980).

THEOREM B. Let
X3(t) = t"suposs=1-1(W(s + t7') — W(s)),
Xu(t) = t"®supo=s=1-¢-1 | W(s + t 1) — W(s)|,
X5(t) = t"*Supo=s=1—1SUPo=u=-1( W(s + u) — W(s)),
Xs(t) = t"*supo=s=1-¢-1SUPo=u=:-1 | W(s + u) — W(s)|.
Then the nondecreasing function a(t) € UUC(X,), i = 3, 4, 5, 6, if and only if

© 2
Ii(a) = f (log t)mexp<— 2 2(t)
1

)dt<oo

and consequently a(t) € ULC(X,), i = 3, 4, 5, 6, if and only if I,(a) = «. Further for any
e > 0 we have

(2 log t + log log t — 2 log log log t — log(w —¢))* € LUC(X,), i=3,5
and
4(t) = 2log t + log log t — 2 log log log t — log(97 + ¢))V* € LLC(X;), i=3,5.
Finally for any ¢ > 0 we have

mT— &

4

1/2
(2 log t + log log t — 2 log log log t — log ) eELUCX), i=4,6

and
97 + ¢

1/2
4(t) = (2 log t + log log ¢t — 2 log log log ¢ — log ) € LLC(X,), i=4,6.

Since
u(t) = 2log t + Cloglog t)* € UUC(X,), i=3,4,5,6, if C>5
and

lim, e (u(t) — 41(2)) = limo(u(t) — £4(¢)) =0
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the processes X;(t), I = 3, 4, 5, 6, are AD. In fact we have the following.

CONSEQUENCE.
lim,,o(X:(t) — (2log t)"*) =0 as., i=3,4,5,6
and we also have the stronger version:

(log t)"/2

2 . 172
= lim inf,_, Tog Tog 7 (Xi(t) — (21og t)7%)

(log ¢)'?

Rnd-ReA _ 1/2y —
Tog log £ (X.(t) — (2logt)/*) =5

< lim sup;— as., 1=3,4,5,6.

NP

REMARK 1. In the previously mentioned paper (Révész, 1980) only the case i = 3 was
treated. However, the other cases can be handled similarly.

2. The increments of a Wiener process. Let0 < b, <t be a nondecreasing function
of ¢ and consider the processes
Yi(t; b) = Yi(t) = b7'*supossi-6(W(s + b)) — W(s)),
Ya(t; b)) = Ya(t) = b7 *suposs=i—n | W(s + b)) — W(s)|,
Ys(t; b)) = Ys(t) = bi"/*suposs=i-55upo<uss (W(s + u) — W(s)),
Ya(t; &) = Ya(t) = b7 *SUposs=i—5,SUPo=ust, | W(s + u) — W(s)|.
Clearly in the case b, = ¢, Y3 = X; and Y, = X; (cf. Section 1). Also note that
Y1(¢) = min(Y1(8), Ya(2), Ys(2), Yi(2)) < max(Y1(t), Ya(8), Y5(2), Ya(2)) = Ya(2).
Studying the properties of the processes Y;(¢), i = 1, 2, 3, 4, Csorg6 and Révész (1979)
proved the following.
THEOREM C. Let b,, t =0, be a nondecreasing function of t for which
(i 0<b =t t=0,
(ii) ¢7', is nonincreasing.
Then
lim sup;~oB:Y.(¢) =1 as., i=1,234

where B, = (2[log tb;' + log log ¢])™/%
If we also have

(iii) lim, e m = oo,

then

lim B, Y.(¢) = lim,, (2 log tb7")"?Yi(¢) =1 as., i=1,234.

It is an interesting phenomenon that the properly normalized process 8.:Y., i =1, 2, 3,
4, has a limit if b, is not too big (Condition (iii) holds true) but it has a lim sup only if &, is
close to ¢. In Csaki and Révész (1979), we were interested in whether Condition (iii) can be
replaced by a weaker one. We obtained a negative answer by proving the following.

THEOREM D. Let b,, t =0, be a nondecreasing function of t satisfying Conditions (i),
(ii) and the condition
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. . log tb;!
(iv) llmzﬁmm = ®©
Then lim inft_,my,Y4(t) =1 as.
2 -1/2 1
tb
where Yt = (2 IOg % A;) and At = m .

In the previously mentioned paper we also studied the case when Condition (iv) does
not hold (i.e. when &, is bigger) but we could not get precise enough results.

At present we intend to study the four classes of the processes Y,(¢),i= 1,2, 3, 4, in the
case when Condition (iii) holds true, but first we prove some lemmas.

LEMMA 2.1. Let k be an arbitrary positive number. Then for any € > 0 there exists a
uo = uo(e) > 0 such that

(1—c¢) ue " < P{supo=s<s(W(x + 1) — W(x)) > u}

27

(2.1)

k 25
=< P{supo<:=#Supo=s=1(W(x + s) — W(x)) > u} =25 o ue “"?

if u = uo.

The constant 25 of (2.1) is certainly not the best possible but it is enough for most of

our purposes.
The first inequality in (2.1) is known (see, for example, Qualls-Watanabe, 1972). Hence

we prove the last inequality.
ProoF. Let

i
=—, 1=1,2 ---,[u’k
X e i [uk]

be a partition of the interval [0, 2] and define the events
B, = {supo<s=<u2(W(x, — 5) — W(x,)) > 1}

- A
Av) = {supoSssl(W(x, +8) - W) =u —5, ° - 2

=< supo=s=u—2( W(x, — 8) — W(x;)) = 5} .

Then

2 N 21 :
P(A,(v)) = —\/—é;— exp(— %) —— -exp<—-;— <u - B) )Av, as u — ©,Av — 0,
m

2
P(B,)z\/; exp(—%)
U

and
P{supo=.=rSuposs=1( W(x + s) — W(x)) > u}

(2 (¢ 1 v? 1 v\’ 2 u?
<[] 2 ~Dexp( =2 (u-2 L
w2 ], g en(-gen(-g (- 5) ) avr o em(-5)}

u

= E ku exp<— u2>
T \2r 2)
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REMARK 2. The exact formula for P{supo<.<z(W(x + 1) — W(x)) > u} was obtained
by Shepp (1971) in the case when £ is an integer. For our purposes these asymptotic results
are more useful.

The next lemma is closely related to Lemma 1 of Révész (1980).

LEmMA 2.2 For any € > 0 there exist a uo = uo(e) > 0 and a To = To(e) > 0 such that

2

T v
exp{—25 ——ue 2 } = P{supo=.=7rSupo=s=1(W(x + s) — W(x)) = u}

Var
(2.2) = P{supo<x=r(W(x + 1) - W(x)) = u}
= exp{-—(l — ) \/% ue_g}

ifuzuyand T=T,.
The second inequality in (2.2) was proved in the paper (1980) of Révész. The first
inequality can be proved by the proving method of Lemma 1 of the mentioned paper.

The same method is also applicable to prove our Lemma 2.3.

LEMMA 2.3. For any e > 0 there exist a uo = uo(e) > 0 and a To = To(e) > 0 such that

T v
exp{—50 W ue * } =< P{supo=x=7SUpo=s=1| W(x + s) — W(x)| = u}

27

=< P{supo=z=7| W(x + 1) — W(x)| s u} = exp{—2(1 —¢) ue_g}
ifu=u and T=T,.

REMARK 3. The upper bound of Lemma 2.1 and the lower bounds of Lemmas 2.2 and
2.3 do not depend on ¢ and these inequalities are true for all u > 0 (resp. for all 7' > 0) not
only for large u’s (resp. T’s).

Now, we turn to the main result of this section. This gives only one representative of
each class of the four classes in the case when b, is small, i.e., when Condition (iii) of
Theorem C holds.

THEOREM 2.1. Let b,, t = 0, be a nondecreasing function t satisfying Conditions (i),
(ii) and (iii) of Theorem C and put

ai(t) = ai(t, &) = (2log tb; ' + 2log log ¢ + (3 + ¢) log log tb;' + (2 + ¢) log log log ¢)'/2,
ax(t) = (2 log tb;' + 2 log log ¢ + log log tb;* + 2 log log log )"/,

512 2
as(t) = as(t, &) = <2 log tb;" + log log tb;' — 2log log log ¢ + log(— + £>) ,

T

aq(t) = aq(t, &) = (2log tb;' + log log tb;' — 2 log log log t — log(w (1 + ¢)))"/%

Then for any e > 0 and i = 1, 2, 3, 4, we have

(2.5) as(t) € LUC(Y.),

(2.6) as(t) € LLC(Y)).
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ProoOF OF (2.3). It is enough to prove it for i = 4. Let

P(t) = P(t, &) = P(Y4(t) = ai(t, €)).
Then by Lemma 2.3 we have

P(t,¢/2) = O((log £)~* (log £b;') """/ (log log £)~1~*/%)
= O((log £)"(w(t))"""*/*(log log t)~>~*/%)

where
-1
wlt) = llzgglt:gl t
Let, now ¢, be the smallest real number for which
2.7 (log &) (w(t))*/*(log log t) = k.
Then ‘
(28)  P(t, ¢/2) = O(k 7 (log log t)7™*) = O(k™"(log k)™~"*).

(In the last equality the trivial inequality log w(¢) < log log ¢ should be utilized). (2.8) and
the Borel-Cantelli lemma imply that among the events

{Ya(te) = ar(tr, £/2)}

only finitely many can occur with probability 1.
Statement (2.3) follows from the fact that the process b}/*Y4(t) is nondecreasing and
from the inequality:

b, ar(ter1, €/2) = by ai(ty, €).

In the proof of the last inequality the following trivial relations should be utilized:

L7 = fen O((log log t,) ™ (w ()" + 1,

b, tr
t t, Lyt
log aaips log L log 2= wts) log log t, + O((log log &) " (w ()™ */*).
b,.., blh 1

PROOF OF (2.4). It is enough to prove it for { = 1. In fact the following stronger statement
will be proved:

Among the events
Ar = {supu=s<tini-b,,(W(s + by,,,) — W(s)) = aaltr+1)}
infinitely many occur with probability 1 where the sequence {t.} is defined by (2.7).
(Note that (2.7) implies that fz+; — t: = b;,, ). By Lemma 2.2 we have
tp+1 —

t b
P(A) = 0< % (log tes bfhi,)l/z% (log ti1) ™" (log tes16;,1,)""? (log log tk+1)_1>
k+1

Tr+1

= O((log log tx+1)(w (te+1)) " "/*(log tr+1)™")

1 1
=0 =
<k log log tk+1) 0<k log k) ’

which proves (2.4).

PRrROOF OF (2.5). It is enough to prove it for i = 4. Let ¢, = exp(k'™), k =1,2, ---,;p
>0, and let

Zi(k + 1) = supu=e<tiitin, SUPo=s=b,, b5, 72 | W(t + s) — W(t) |.
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Then by Lemma 2.3 we have
Yi-1 P(Zy(R) < a3(tr)) = oo,
and this proves that among the events
{Zu(R) < as(t))

infinitely many occur with probability 1.
Since

Yi(tr+1) = Z4(k + 1) + supo=i=y, SUPo=s=b,,, bf,{i/lzl Wit +s)— W()|,
and by (2.3)
1/2

Supo=t=t, SUposs=s,, | W(t + s) — W(t) | = o(b:, ) as(te+1)),
we have (2.5).

PRrooF oF (2.6). It is enough to prove it for { = 1. By Lemma 2.2 we have

_ 2
P{Yi(t) = as(t, 3e)} = exp{— (1\/.2_;) th; aq(t) exp(— a;(t))}

=<exp {(1\/__8) V(1 + 3¢) log log t} =< (log t)™'?
T

if ¢ is big enough, where § is a suitable positive number. Put #, = exp(k'™), 2 =1,2, -+ +;
p > 0. Then

2=t P{Y1(tr) = as(ty)} < o,

and the Borel-Cantelli lemma implies that among the events { Y1(¢:) < a4(tx)} only finitely
many can occur. Let ¢, < t < t3+1. Then

b!?Y1(t) = supossst,—b, (W(s + b)) — W(s))
= suposs<t—b, (W(s + b,,) — W(s))

— SUPo=s<t—b, SUP0=u=b,, b, | W(s + u) — W(s) |.

Now (2.6) follows from (2.3) and Theorem 2.q is proved.
If b, is “small” then Theorem 2.1 gives much sharper results than Theorem C. In order
to see this fact we give the following

COROLLARY. 2.1. Suppose that b, t = 0, is a nondecreasing function of t and it
satisfies the Conditions (i), (ii) of Theorem C. Also assume that instead of (iii) it satisfies
the stronger condition

(log tb;")'/*

(V) llmt_m——lmt— =
Then Y, (t),i=1,2,3, 4, is AD with
(2.9) lim, . (Y.(¢) — (2log tb:")*) =0 as.,, i=1,23,4.

If Condition (v) does not hold true then our statement (2.9) does not hold as well. In
fact if )
(log tb;")"*

. lim,_, o8 80 ) _
(vi) im, Tog log ¢ c>0
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then Y;(¢),i =1, 2, 3, 4, is QAD with

0 = lim inf,_.. (Y.(¢) — (2 log tb;")'/?)
(2.10)

< lim sup. (Yi(¢) — (2 log tb;")/?) = 1 as., (=123, 4.
V2

If b, is even bigger so that

. (log tb;")"/*
lim; oo —m— =
log log ¢

but (iii) still holds true then
lim sup;—.. (Y.(t) — (2 log tb;)'/*) = w0 as.

but the processes (2 log tb;")"2Y;(t), i = 1, 2, 3, 4, will be AD (see Theorem C). If b, is so
big that even (iii) does not hold true then the correct normalizing factor of Y;(¢) will be
B: (of Theorem C) or y, (of Theorem D) depending on whether we are interested in the
problem of lim sup or lim inf respectively.

3. A continuity modulus of the Kiefer process. At first we repeat two well-known
definitions.

DEFINITION 3.1. The separable Gaussian process {B(x); 0 = x < 1} is'a Brownian
bridge if EB(x) = 0 and EB(x)B(y) = min(x, y) — xy.

DEFINITION 3.2. The separable Gaussian process {K(x, y); 0 = x =1,y =0} is a
Kiefer process if EK (x, y) = 0 and EK (x1, y1) K (x2, y2) = min(y1, y2)[min(x1, x2) — x1%2).

Applying the representation B(x) = W(x) — xW(1) of a Brownian bridge, it is quite
trivial to see that all results of Section 1 on the continuity modulus of a Wiener process are
true if we replace the Wiener process W(x) by a Brownian bridge B (x) in the definition of
X, (t),1=3,4,5,6.

It is also trivial that

3.1) {(Bx); 0= x=1} =, {y5"?K(x, %); 0= x= 1}

for any y, > 0. Looking at (3.1) it is natural to ask the continuity modulus of the process
y3'?K (x, ¥0) as yo is varying. This question was studied by Csorgé and Révész (1981,
Theorem 1.15.2) and the following was proved.

THEOREM E. Let {h,} be a sequence of positive numbers for which

-1
3.2) limn,_.., 28
log log n
Then
(3.3) limy e Yn SUPo=t<i—, | K(¢ + hn,n) — K(t, n) |

= liMy—w Yn SUPo=t<i—h, SUPo=u=h, | K(t + u,n) — K(t,n) | =1 as.

where y, = (2nh, log h,")"”.

Now, we are interested in finding the analogue of Theorem B. Put
Ki(n) = (nh,)™"? suposs<i-n, (K(s + hn, n) — K(s, n)),
K3(n) = (nh,) ™" suposs=i-n, | K(s + ha, n) — K (s, n) |,
Ks(n) = (nh,)™"* suposs=i-n, SUPosuss, (K(s + u, n) — K(s, n)),

Ky(n) = (nh,)™"? supos.=1-1, SUPo=u=h, | K(s + u, n) — K(s, n) |.
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Then we have the following.

THEOREM 3.1. Assume Condition (3.2). Then for any 0 <e<1,i=1, 2, 3, 4, we have
(2log h,' + 2log log n + (3 + €) log log A" + (2 + ¢) log log log n)'/> € UUC(K,),
(2 log h;' + 2 log log n + log log h;' + 2 log log log n)'/* € ULC(K,),

2

51 v
<2 log k' + log log ;' — 2 log log log n + log(? + s)) € LUC(K)).

(2 log h;' + log log h;' — 2 log log log n — log((1 + €)7))* € LLC(K,).

The proof of this theorem is going along the lines of those of Theorems B and 2.1. The
details are omitted.
If instead of Condition (3.2) we assume the stronger condition
(1 o g h;l) 1/2

(34) lim,_,q ————————— =
loglogn

then instead of (3.3) we can get a stronger statement. In fact, Theorem 3.1 implies

CONSEQUENCE. Assume condition (3.4). Then K,(n),i =1, 2, 3, 4, is AD with
lim, .« (K,(n) — (2log h;")'"?) =0 as. "

4. Empirical density functions. Let Z;, Z,, --- be a sequence of ii.d. r.v.’s with
common density function f(x), let A(x) be an arbitrary density function and let {,} be a
sequence of positive numbers. Suppose that

1.a. fis vanishing outside the interval [0, 1],
1.b fis twice differentiable in (0, 1) and | f” | = C,
l.c. fis strictly positive in (0, 1), say f= a > 0,
2a.A=C,
2.b. A(—x) = A(x),
2.c. limy_ x*A(x) = 0, N
2.d. A is twice differentiable in an interval —o < —a < x < +a < +®
vanishing outside and |\” | = Cin (—aq, + a),
3.a.nh, /1 o, h,\N 0
log'n nh}

" nh, log h;l_)o’ logh;l—)o'

Define the empirical density function f, of the sample Z,, Z,, - .- Z, as
1

folx) = (rh)™" Tit M(x = Zo)hy') = hy! f A(x ~ y)ha') dF,(y)

0

where
Fou(y) =n"" Y0 Licwy)(Z2)

is the empirical distribution function based on the sample Z, Z;, - -+ Z, and I, is the
indicator function of (—o, y].
Studying the properties of the empirical density function, the author proved (Révész,

1978).

THEOREM F. Suppose that Conditions 1 through 3 are satisfied. Then for any ¢ > 0
we have

nh 72
4.1 1. n—oo ——n"——" t=x<]—¢
(4.1) e (21\2 log h;‘) SUPuzesi

fa(x) — f(x)
1 (x)

=1 a.s.
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where A% = [*2 \(x) dx.

The form and the proof of Theorem F shows that it is strongly connected to 3.3. It is
natural to ask whether the analogue of Theorem 3.1 can be proved for the empirical
density function. Now, we formulate a theorem giving a positive answer to the just posed
question but we omit the details of the proof for they are quite close to those of Theorem
2.1 after having Theorem F.

THEOREM 4.1. Suppose that Conditions 1 through 3 are satisfied. Then for any ¢ >
0 we have
fo(x) — f(x)

(4.2) lim,._m< (nhn) ' /*SUP.ci—e )

— (2A%log h;l)W) =0 as.
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