The Annals of Probability
1982, Vol. 10, No. 3, 525-547

INVARIANT MEASURES FOR THE ZERO RANGE PROCESS!

By ENRIQUE DANIEL ANDJEL

Universidade de Sdo Paulo

On a countable set of sites S, the zero range process is constructed when
the stochastic matrix p(x, y) determining the one particle motion satisfies a
mild assumption. The set of invariant measures for this process is described
in the following two cases:
a) The system is attractive and p(x, y) is recurrent.
b) The system is attractive, p (x, y) corresponds to a simple random walk on
the integers and the rate at which particles leave any site is bounded.

1. Introduction. In [20] Spitzer introduced several infinite particle systems, among
them the zero range and the simple exclusion processes. The former describes the behavior
of infinitely many undistinguishable particles moving on a countable set of sites S,
according to the following laws: if a site x is occupied by % particles, the rate at which a
particle will leave x is g (%); once a particle leaves x it goes to y with probability p(x, y). In
particular, if g (%) = & the particles perform independent movements and if g(%) = 1, one
can consider that each site has an exponential clock with parameter one and when the
clock at site x rings, a particle chosen at random among the ones at x moves. In the simple
exclusion process, each site is occupied by at most one particle; the number of sites is again
countable. The particles attempt to move at independent exponential times with parameter
one. Once a particle at x attempts to move, it will try to go to y with probability p (x, y).
The interaction among particles is the following: if y is occupied, the particle stays at x.

One of the interesting problems concerning these systems is to describe the set of
invariant measures. This was done by Liggett and Spitzer ([10], [11], [21]) for the simple
exclusion process when p(x, y) is symmetric, and by Liggett ([12], [13]) when p(x, y) is
either positive recurrent and reversible or corresponds to a random walk with mean 0 in
Z or to an asymmetric simple random walk on Z. However, for the zero range process only,
the cases where g(k) = k or p(x, y) is positive recurrent and g (%) is nondecreasing are
understood ([14], [23]). In the first case the particles move independently and in the
second the invariant measures concentrate on configurations with a finite number of
particles. Since these properties play an important role in the proofs and do not hold in
general, other methods have to be used to consider different cases. In this paper we use
coupling techniques similar to the ones employed in [13] for the simple exclusion process.

We should point out that in [20] Spitzer proved that if S is finite, g(%) > 0 for all £ >
0 and = S — R satisfies Y. 7 (x)p(x, y) = w(y) and 7 (x) < lim inf g(%) for all x € S, then
the product measure y, in (Z,)° given by the following marginals:

(m(x))*

YT
pafn € (Z4)5:v(x) = k) = { &) --- glk)
Yaxs ifk=0

if k>0

is invariant for the zero range process (. is a normalizing constant). The primary aim of
this paper is to prove that even when S is infinite these measures are invariant and, in
some cases, that every invariant measures is a mixture of these. To avoid uninteresting
complications, we will assume throughout that p(x, y) is irreducible and that
lim,. p(x,y) =0forall yin S.
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The first difficulty in studying the zero range process is to show the existence of a
mathematical object corresponding to its description. This was done by Holley ([5]), under
the constraints: lim g(k) < o, S=Z,p(x,y) =p(0,y — x) and ¥, | x| p(0, x) < . In [9]
Liggett considers an arbitrary S and proves the existence of the process when g satisfies:

(1.1) supr | gk +1) —g(k) | =K< .

In this case, not all elements of (Z.,)° are allowed as initial configurations for the process.
This is necessary to avoid infinitely many particles coming to the same site in finite time.

In Section 2 we will give another construction using the method developed by Liggett
and Spitzer in [16]. This construction uses slightly weaker assumptions that the ones in
[9] and has the advantage of making the proofs easier of some properties of the process.
The configurations of particles that will be allowed are the 7’s in (Z,)S satisfying:

(1.2) Il = Yees n(®@al®) < .
Here, a is a strictly positive real valued function on S such that
(1.3) Yresp(x, y)a(y) = Ma(x)

for all x € S and some constant M. One can construct such an « in the following way: fix
x0 € S and let a(x) = Y50 (1/M)"p"(x,%0) for some M > 1. A simple computation shows
that o satisfies (1.3) and we will later see that this a has some desirable properties. For
that reason we are going to assume in Sections 3 to 8 that the construction given in Section
2 has been carried out with this a.

The subset of elements of Z% satisfying (1.2) will be denoted by e. £ will be the set of
real valued functions f on € such that | f(n) — f(¢) | < ¢||n — &|| for all 5, ¢ € & and some
constant c. L (f) will be the smallest constant satisfying this inequality.

The zero range process is well defined for any initial configuration with a finite number
of particles, since it is a countable state Markov chain and the transition rates are bounded.
We will denote by 7, the random configuration obtained by time ¢ when the initial
configuration was 5. The following theorem allows us to extend the process to e.

THEOREM 14. Ifsup.|g(k+ 1) — g(k)| = K < x, then there exists a semigroup S(t)
of operators on & such that S(t)f (n) = E™f (n,) for all f € ¥ and finite n. This semigroup
satisfies:

(1.5) | S()f(n) = SO (€) | = L(f)eX ™ |q — ¢
forn,é€Ecandfe &

As in [16], this defines the joint distribution of {n,(x):x € S} for all ) € . In this way we
get a probability measure P"[n, € A] on the Borel o algebra of (Z.)° such that

(1.6) S () =[f(¥)p"[n € dy]

for f € Lthat depends on a finite number of coordinates. By (1.5) E, || n: || = eX™*?| 9 ||.
This shows that p™[n, € ] = 1 if n € &. Now (1.6) allows us to define S(t)f for any f € Lor
f=o.

It will also be shown in Section 2 that the natural generator of the process defined by

(QF)Y() = Yxes M (X)) Yyes p(x, Y)(f (xy) — f())

where

N2 +1lifz=y, n(x)>0andxy

Nz —1lifz=x n(x)>0andx#y
nxy(z) = {
1(2) otherwise

has the following property: S@&)fm) =fn) + J6 QS (s)f(n) ds for f € Land q € e. Note
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that Qf () is well defined for f€ ¥, n E e and | f (1) | = T g (®) X, p(x, ¥) | f(ny) —
fa) | = L(f) T g(m(x) ¥, p(x, y)(a(x) + a(y)), this implies:

(1.7) [Qf ) [ = LM+ 1) | 2]l
where IIn ll = Xses &0 (x))a().

To give a formal definition of an invariant measure, we introduce .#’, the set of bounded
functions in %. Now, given a probability measure p on &, we let pS(¢) be the measure
satisfying [ fduS(¢) = [ S(¢)fdp for all f € ¥’. We will say that p is invariant if pS(¢) =
u for all £ = 0. This is equivalent to: [ S(¢)fdu = [ fdu for all f€ £, t = 0. From now on
#will denote the set of invariant measures.

Through Sections 3 to 8 to avoid pathologies we assume that g(%) > 0 for all 2> 0 and
for notational purposes we assume that g(0) = 0.

In Section 3 we prove the following.

THEOREM 1.8. If 7:S — R, 7 # 0 satisfies: Yxes 7(x)p(x, y) = w(y) for all y € S,
7(x) <lim inf g (%) for all x € S and p.(c) =1 then p, € 4.

The condition p.(e) = 1 is satisfied in many cases of interest, among others when = is
constant or when g (%) > 8k for some positive § and all 2 > 0. Unfortunately there are
cases where the measure p, does not satisfy u.(¢) = 1. This problem can be solved by
allowing configuration 7 satisfying ||| || < o. This restriction is more natural since it
involves the rate at which particles leave the different sites and not the number of particles
at each site. In particular if sup, Y. p(x, y) = C < » and sup g(%k) < » we can allow all
configurations taking a(x) = Y. (1/M")p™(x, xo) for some fixed x; € S and M > C. (In this
case || n Il = X: g(n(x))alx) < supe g(k)-Tyx a(x) = supr g(k)-3n 1/M" p"(x, x0) <
sup g (k).

Y+ C*/M" < o for all n € (Z+)°). The construction of the process allowing all s such
that || n || < o can be found in the appendix of [0]. It has the advantage that the
condition u.(¢) = 1 can be dropped from Theorem 1.8 since it is implied by the other
hypothesis of the theorem. We omit, however, this construction in this paper because it
requires many technical lemmas and long computations.

It should be mentioned that (1.1) is maintained in both constructions; at the end of
Section 2, we give an example showing that something like (1.1) is necessary in order to
avoid influence from o in a sense similar to the one described by Griffeath in [4].

Now we introduce a partial order in the set &: 7= ¢ will mean n(x) = ¢(x) for all x € S.
The main results of this paper require the coupling of two copies of the zero range process
in such a way that if n < £ then p™¥(n, < &) = 1 for all ¢ = 0. For this to be possible, we
need g(k) = g(k + 1) for k=1,2, ...,; this condition will be assumed from Section 4 to
Section 8. The properties of the coupled process that we need, including the one stated
above, are proved in Section 4.

In Section 5 we consider the case in which S= Z¢. We denote by & the set of translation
invariant probability measures on e.

When p(x, y) is translation invariant, = (x) = p satisfies ¥, #(x)p(x, y) = 7(y); for these
’s we will write p, instead of u,. Theorem 1.8 says that p, € £if p € [0, lim g(%)). Using
the results of Section 4, we prove the following.

THEOREM 19. IfS=2Z%p(x,y) =p(0,y—x) andg(k)<g(k+1) £=0,1,2...
then N ¥ = {[ podA(p): A is a probability measure on [0, lim g (k))}.

The proof of this theorem is similar to the proof of Theorem 1.1 in [13]. However, some
complications arise due to the fact that [ n(x)du(n) is infinite for some probability
measures . on &.

In Section 6 we consider the case in which p (x, y) is null recurrent. For p (x, y) positive
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recurrent we refer the reader to Waymire [23]. It is proved there that, in this case, all
invariant measures concentrate on finite configuration. The proof is done for g (%) = 1, but
using the construction we give in Section 2, it is possible to extend it to all g’s satisfying
g(k)=g(k+1).

When p (x, y) is recurrent, all positive solutions of ¥ 7 (x)p (x, y) = 7#(y) are multiples
of a given one. To simplify notation in the following theorem, we fix one solution 7 and
denote by p, the measure p,, and by A the set {p:p = 0 and p7(x) < sup g (k) for all x €
S}. (A is an interval containing 0 but might be open or closed on its right).

THEOREM 1.10. If p(x, y) is null recurrent, g(k) <= g(k+1) k=0,1, --. and p,(e)
=1 for all p € A then:

F={f pw, d\(p): X\ is a probability measure on A}.

As in Theorem 1.8, the assumption p,(e) = 1 can be dropped by using the construction
given in the appendix of [0].

In Section 7 we consider a nearest neighbor random walk in Z and, letting p, be as in
Theorem 1.9, we prove the following.

THEOREM 1.11. IfS=Z (p(x,x+1)=p,plx,x—1)=q)p+q=1g(ky<g(k+1)
k=0,1,--. and sup g(k) < o then

F={f wdA(p): A is a probability measure on [0, sup g(k))}.

The conclusion of this theorem is false is we do not require g(%) to be bounded. For
instance if g(k) = kand % < p < 1, #(x) = (p/q)* gives us an invariant measure pu, which
is not translation invariant, (p, will be an invariant measure for any g (%) 1 « if we use the
construction given in the appendix of [0]). Note that in the corresponding simple exclusion
process there are also invariant measures which are not translation invariant; see Theorem
1.4 in [13].

Since the measure i, mentioned above concentrates on configurations “growing” with
x and with finitely many particles to the left of zero, the following question becomes
natural: What happens to these configurations when g (%) is bounded? This is answered by
the following theorem proved in Section 8.

THEOREM 1.12. Suppose that 7: S — R. satisfies Yxes m(x)p(x, y) = n(y) and the set
{m(x):x € S} has a sequence of isolated points diverging to . Suppose, also,
that g(k) < g(k + 1) --- and sup g(k) < «. Then if n is any configuration such that
N ixinm<ry N(x) < o0 for all L € R then P(n(x) >0) > 0ast— o forallx €S.

In particular, if S=Z,, g(k) =g(k+1) k=1,2, ... sup g(k) <o and p(x, x + 1)
=p>qg=px,x—1)forallx=1,p(0,0) =gq,p(0, 1) = p, then the only invariant measure
is po, the point mass at the vacant configuration.

In Sections 7 and 8, g(k) = g(k + 1) and sup g(k) < «. Then under the restriction
sup, Y. p(x, y) < o it is possible to construct the process in the whole space (Z +)S with the
techniques of [8]. The auxiliary processes used in Section 8 can also be constructed
with these techniques. In this new context, Theorem 1.11 remains valid and, assuming
supy Y« p(x, y) < . Theorem 1.12 can be proved without the unnatural condition on the
divergent sequence contained in {7(x):x € S}; i.e. there is no need to require that the
elements of that sequence are isolated in {7 (x) : x € S}. We have not used this approach,
however, because it forces us to prove again technical lemmas like the ones in Section 2
and 4.

2. The construction. Since the proof of the existence of the process is very similar
to the one used in [16] for other processes, we will omit*many details. However, some
estimates are more complicated because the speed at which individual particles move is
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not independent of the presence of other particles. We will prove these estimates assuming
that (1.1) holds.

LEMMA 2.1.  Suppose S is finite; then

3
t) )

E"(m(y)) < Yxes n(x) Y=o (%, y).

Proor. Consider a process 1, with the following properties: each particle generates a
new particle at independent exponential times of parameter K; if the original particle is at
x the new particle is placed at y with probability p(x, y). The generator of this process is
given by:

(Q*f) () = Y yes Kn(x)p(x, y)(f@,) — f@))

(x) = {n(x) ifasy

where nx)+1 ifx=y.

A simple coupling argument shows that E (,(y)) < E(nf (y)) for ally € S.
7/ is a multi-type branching process; from Section V—7.2 of [1] we get:

(Kt)’ P
71

E @ (y) = Yres n(x) =0 (%, ¥)

and this proves the lemma.
Given a transition probability matrix p(x, y) on S, we define the generator of the zero
range process £ in the following way:

Qf (1) = Yres 8 (x)) Tyes P (x, ¥)(f(nxy) — f(O))

for all f € &, n € e. When S is finite, this generates a semi-group of operators S(¢) on &
having the following property:

S)f ) = E"(f ().
LEMMA 2.2.  Suppose S is finite and f € &, then S (¢)f € Land L (S(t)f) < L (f)eX™+V¢

Proor. Let S(t) be the semi-group of a process with state space Z5 X Z3 and
generator:

(Qf)("'b $) = zx:g(n(xnzg({(x» (gn(x) — g (§(x))) Zyesp(x) MM, $) =0, )
+ Yegnn=ecan (8§ (x) — &M (x))) Tyes p(x, ¥)(f M, &) — F@, $))
+ ers min({g(n(x)), g({(x))}) Eyesp X, Y My s $oy) — f, ).

This process is well defined since, for any initial configuration (n, {), it is a finite state
Markov chain. Note that both marginals of this process are the zero range process.

Suppose that f€ Land let g, h: (Z+)° X (Z.)S — R be given by g(n, ¢) = f(n) — f({)
and A (n, § —IIn— §I|

Now | S(®)fm) — SOFQ)| = | (SO, &] = LINS®R)m, §). But | @), £ <
K3, n06) — €60 | 5> p(, 3)(a(x) + a(y) < KO + D, . Therefore, IS(t)h(n, 9| =
eXM+ip (&) and this implies the lemma.

The following two lemmas are obvious:

LEMMA 2.3. IfSis finite and f € & satisfies | f(n) | < c||n|| for some constant c and all
7 then | S(t)f(n) | = ce® ™| n].

LEMMA 2.4. If S is finite, p1 and p; are two transition probability matrices on S,
and Q. the corresponding generators of the zero range process and f € & then

[ (R —Q2)f() | = LIHK Yy n(x)| pr(x, ¥) — palx, y) [(alx) + a(y)).
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Given €, and 9. as in Lemma 2.4, we denote by Si(¢) and S:(¢) the semigroups
corresponding to €; and £,. Now suppose that p; and p. satisfy (1.3); then from the identity

t

S1(@t)f(n) — S f(n) = J Si(s)( @1 — Q2)S:(t — ) f(y) ds

0

and Lemmas 2.2, 2.4 and 2.1 it follows that:
t
| S1(8)f(n) — Sz(t) f(n) | = KL(f) f AR Y
0

25
@ . (K9
()| Lo ——p1 (2, 2) || P1(x, 5) = p2(x, Y) | (alx) + a()) ds.

We consider now a countable set of sites S. Let S, be an increasing sequence of finite
subsets of S such that S = UT S, and define

plx, ) fx,y€S.x#y
pn(xyy)= 1 1fx=y€Sn
p(x, x) + Y.gs, plx,2) ifx=y€ES,

where p(x, y) is a transition probability on S satisfying (1.3). Since p. (x, y) = p(x, y) + dxy,
it follows that p, satisfies 1.3 with M replaced by M + 1.

Let S, () be the semigroup of operators on % corresponding to p.(x, y). This is well
defined since p, has no transitions off the finite set S,.

LEMMA 2.6. S,(¢)f(n) converges asn— o for all f€ £ and n E «.

Proor. Since the integrand of (2.5) is bounded by

(Ks)’
21

KMV 3 esN(2) Yoo p{(z, x)2(M + 1)a(x)

(KsM)*
2

= XMV 4 1) Y, 1(2) Toeo a(z)

= 2eK(M+l)t(M + 1)",”"

the lemma follows from p, (x, y) — p(x, y) and dominated convergence.

S(t)f(n) is now defined as the limit of S.(¢)f(n). Lemma 2.2 implies that | S(£)f(n) —
S@)f@) | = L(f)e" ™" g — &| forn, €«

Following the comments below Lemma 2.10 and the proofs of Lemmas 2.12 and 2.16 of
[16], one proves that S(t) satisfies the following equalities and inequalities for all f € &
and all n E e.

LEMMA 2.7.
a) S(t + ) =S(t)S(), SO) =L

t

b) S(&)f(m) = fn) +J Q28(s)f(n) ds.

0
) |S@&fm) — fm) | < I l|L(H XM —1)
d) S(s)f(n) is continuous in s.

e) 2S(s)f(n) is continuous in s.

f) 1im,ww= Qf ().

g) QS@)f(n) = S(E)Qf ().
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The purpose of the following two lemmas is to characterize invariant measures.
LemMa 2.8. (S@) || I )@) < XM V| 5 || for all € e.

Proor. It suffices to show this for the operators S, and for these it follows from:
121 1 ) | < Bsesuyes 8n@IPalx, y) « Clll nsy I = Ml 0 M)
= Yres, MK Yyesnymx Pn(® V) (a(x) + a(y) = KM + 1) || 9 ||

LEMMA 2.9. Ifuis a probability measure on ¢ satisfying [ ||| n ||| di < o, the following
properties are equivalent:

@) Jﬂfdu=0 forall fe %

(i) p € £
Proor. Note that for any f€ Landn E ¢
210) | S(s)Q2f () | = [RS()f () | = Tres 80 (%)) Tyes plx, )(| S(S)ftnsy) — S(s)ftn) )
= LN+ De > I q ||,

where the equality comes from 2.7 g) and the last inequality is implied by the comments
following the definition of S(¢)f(n).
Suppose that i) holds and f € &’, then:

J(S(t)f—f) d“=J (J &S(s)f) dS) dy.

By (2.10), we may use Fubini and the right hand side becomes

f(Jamgﬂm)@=o

by i) and the fact that S(s)f € £ Hence [ S(t)fdp = [ fdpand p € £
For the converse let

N iff(g) >N
—-N iffq) <-N

by ii) 0 = [ (S@)fv — fv) dp = [ (J6 S(s)fn ds) du = [6 (J S(s)Qfn du) ds. The second
equality follows from 2.7 b) and g) and the third from 2.10 and Fubini’s theorem.

By 2.7 e) and g) and 2.10, [ S(s)Qfwv du is a continuous function of s, hence it must be
identically 0; in particular [ Qfy du = 0.

But | Qf~| and | Qf| are bounded by

Y 8mx) Ty p&x, YL(f)(alx) + a(y) = M+ DL || 7 || € L (dp);

since Qfn(n) — Qf (n) for all n € ¢, i) follows from dominated convergence.
In Section 4, we will need Lemma 2.11. Before stating it we introduce some notation.
Let

f) if|f@q)|=N
fN(ﬂ) =

[nll,= Segs, n(®)a(x) and L'(f) = L(f) + 2 sup|f].
Note that L'(f) <« when f€ £’.

LEMMA 2.11.  Suppose i, is a sequence of probability measures on € converging weakly
to o and there exists a sequence of real numbers ¢, — 0 and satisfying [ (| 0| A 1) du»
<c/foralln., Then [ fdu.— [ fduo for all f€ £’
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Proor. Let

e nx) ifx €S,
(%) = {O otherwise

and A/(n) = f(n) — f(n?). Since
n ~—>w o J @) dun(n) — f f@) dpo(n) and J [ A (n) | din (n)

=L'(f) J (Inlle A 1) dun () = L'(f)ee,

we must have:

lim sup, f fn) dpn(n) = j f(’) dpo(n) + L'(f)e:.

Letting £ go to © we get:
lim sup, j f) dpn(n) = J fm) dpo(n).

Similarly one proves that lim inf, [ f(n) du.(n) = [ f(n) dpo(n).
As mentioned in the introduction, we give an example that shows the importance of
(1L1).Let S= {0, 1,2, - - -},
(k) = k ifk=n®+1forsomen=1
0 otherwise.

and

1
p(O,n)=§n2 lp(n,n—1)=1n=1.

The « given in Section 1 satisfies a(n) = 1/2""}; therefore the configuration 1 having x*
particles at site x is allowable and P(n,(0) > 0) = 0 for all ¢ since the particles do not move.
However if we start the process from 7, where

N E ifx#y
(%) _{x3+1 fx=y

we have lim,_,., P(n,,(0) > 0) > 0.
Although in this example we have g(k) = 0 for some positive %’s it is possible to modify
this g(k)’s to positive numbers and still have:

lim inf,e P(1,:(0) > 0) > P(n,(0) > 0).

3. The invariance of p,. To prove Theorem 1.8 we will need the following two
lemmas.

LEmMaA 3.1. If 7:S — R, satisfies Y. w(x)p(x, y) = =(y) for a12 y € S, then
¥ m(x)a(x) < co.

PROOF. Y. m(x)a(x) = Yo (1/M)" ¥res m(x)P ™ (x, x0) = (M/(M — 1)) m(xo) < oo.

LEMMA 3.2. If 7:S — R, satisfies Yyx n(x)p(x, y) = w(y) for all y € S and =(x) <
lim inf g(k) for allx € Sthen [ ||| 7 || dp. < .
ProoF. [ || n |l du-= [ Yses &(n(x))alx) du,
e (m(x))*
=Yi-1 Yxes g(k)a(x)Yxm

) () *?
Yot L ey oD

=Y:es w(x)a(x)< ) = Yies T(x)alx) <o
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by Lemma 3.1.

Proor oF THEOREM 1.8. Let S, be an increasing sequence of finite subsets of S such
that U S, = S and define

1 ifx=y&S,
Pn(x,y) = 1 0(x, y) + Q' [Tegs, (%, 2)I[Teps, 7(2)p(2, y)] if x,yE S,
0 otherwise

where @, = Y .es,ygs, m(2)p(2, y). Note that
@n = Y:es, m(2) — Yioesn m(2) Lyes, P(2, )
=Yyes, T(y) = Vyees, T(2P(2, ) = Y yesnz¢s, T(2)P(2, ¥).
Now a simple computation shows that
Yyespn(x,y) =1 forall x€S,
pn(x,y) = p(x,y) for all x, y € S and
Yies T(x)pn(x, y) = 7(y) forall y€S.

S, (¢) and £, will be the semigroup and generator respectively of the zero range process
corresponding to p.(x, ¥). This process has no transitions off S, and, therefore, can be
considered as having a finite number of sites. These approximations of p have been used
by Liggett in [15] to study a different process and by Waymire in [22] to prove Theorem
1.8 under the additional assumptions ¥ a(x) < o and sup.es 7(x) < 0.

In view of Lemma 2.9 to prove Theorem 1.8, it suffices to show that [ Qf du, = 0 for all
f€ & But [ Q,f du, = 0 since Theorem 1.8 is proved in [20] for finite S. Hence Theorem
1.8 follows if [ | Q. f — Qf| du, — 0 as n — . But

f | (@ — Q)| du. = L(f) f Yres 8N(X)) ¥yex |P(x, ¥) — pPulx, ¥) [ (a(x) + al(y)) du,
(3.3) = L(f) J’ Yres EM(X)) X ywr | P(x, ) — Po(x, y) |a(x) dps

+ L(f) J Y ees 8M(x)) Xywx |P(x, ¥) — Pu(x, ¥) |a(y) dits.

Now let £, (x) = Y,es|p(x, y) — pa(x, y) | = 2. With this notation, the first integrand is
bounded by:

Yees 8 x)fu(x)a(x) <2 |In|l € L' (du,)

by Lemma 3.2.
Suppose that x € S,,; then

fn(®) = Yyes, [P, y) = pa (X, Y) | + 3 e, (%, 7) = 2% 05 P(x,y)

and converges to 0 as n goes to «. Therefore, by dominated convergence, the first integral
of (3.3) goes to 0.

The second integrand of (3.3) is bounded by:
Yrzs, EM(x)) Lyesywr |P(x, ¥) — pu(x, y) | a(y)
+ Yres, 8 () Tyes, [P (%, ) = pa(x, y) |a(y)
+ Zres, M (%)) Tyes, (%, ¥) = pa(x, y) |a(y)

= Yies, EM(x)) Tyes (%, y)a(y) + Tees, 80 (%)) T e, P, ¥)a(y)
+ Yeves, EM X)) | p(x, ¥) — pu(x, y) |a(y).
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The first and second terms of this last expression are bounded by M ||| n|||, hence their
integrals go to 0 by Lemma 3.2 and dominated convergence. For the third term write:

JEx,yesng(n(x)) |p(x,y) — pn(x, )| a(y) dp,

(m(x))*

= YF=1 Yeyes, £(R)QR [Toes, P (%, 2)][X.gs, 7(2)p (2, y)]a(y)}'xm

= Q7' [Tees, Dogs, TX)P (x, 2) [V yes, Yo, 7(2)P (2, ¥)a(y)]
s=MY,cq m(2)a(z) >0 asn—

by Lemma 3.1.

4. The coupled process. In this section, and the ones that follow it, we assume that
gk)=gk+1) k=01, ---. As we shall see, this is crucial for the use of coupling
techniques.

We now introduce a Markov process, called the coupled process, on ¢ X ¢ = & This
process can be described by

i) The marginal processes have S(¢) as their semigroup. .
ii) Particles of different marginals occupying the same site move together as much as
possible.

More formally, we let Zbe the set of functions f: & X ¢ — R such that

[fn, &) — fOnz, &) | = LY — m2 |l + 160 — é21))

for some constant L (F). & will be the subset of bounded functions of 2
The semigroup of the coupled process S(¢) is constructed from the following formal
generator:

@), &) = Temrzer (8M(x)) — gE (%)) Tyes P(x, ¥) f01y, £) — [0, £))
+ Zx:n(x)si(x) (g(g(x)) —gn(x))) E}'ES plx, y)(f(n, gxy) - f("]» £))
+ Yres min(g(n (x))g ¢ (x))) Yyes p(x, ¥)(f0sy, &) — fO,£))

for all f€ Z.

S(¢t) and Q will satisfy Lemmas 2.7, 2.8 and 2.9 where || (1, £) ||, ||| n, £]|| and || (4, £) || are
defined as [0l + [| €], linlll + &Il and [[n]l,+ || ]l respectively.

The proofs concerning the construction and these lemmas are the same as the ones for
the single process.

We now prove the properties of the coupled process that will be needed later. In the
following lemma, the condition g(k) < g(k + 1) is essential.

LeEMMA 4.1. If we start the coupled process from (n, &) and n < £ then p™P(q, < &) =
1 for all t = 0. A similar statement holds for n = £ and for n = &.

ProoF. Let

fn, £) ={° it n=¢

sup{a(x):x €S and 7n(x) > £(x)} otherwise

and let S, (¢) be the sequence of semigroups approximating S(t), as in Section 2. Then if
n =< £&8S,(t)f(n, £) = 0 and passing to the limit we get S(¢)f(n, £) = 0, this implies the
lemma.

We will denote by .# the set of invariant measures for the coupled process; ie., the
probability_measures v on ¢ such that »S(¢) = ». In partic_ular if v € 4, its marginals are in
S. % and 4, will be the sets of extremal points in .# and .# respectively.
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LEMMA 4.2. If u, and ys are in 9 then there exists vo € £ with marginals ju, and .

PrROOF. Let » =, X pz. Since the marginals of »S(¢) are independent of ¢, the collection
of measures

1 T
= j vS(t) dt, TE]1, x),
T 0

is tight. Let T\, — o in such a way that », = (1/T,) [{" »vS(t) dt converges weakly to vo.
The marginals of », are y; and pq; hence vy () = 1.
Since the marginals of », are independent of n, Lemma 2.11 applies. Let f € #’. Then:

T, T,
J S (to)fdvo = limp_o J S(to)f<Tl J vS(t) dt) =1im,HwTi j (J S+ to)de) dt
n 0 n

Op

1 (™ 1 T ‘
= limpyoo — ( j s‘(t)fdv> dt = lim,_, . — J f< J »S(t) dt) = [ fdvo
T, ), 7. | '\J,

LEMMA 4.3. If w and ys are in %, then there exists a v € 4. with marginals 1 and
pz.

PrOOF. Let & be the subset of .#formed by the measures with marginals p; and p». By
Lemma 4.2. &/ # # and since &/ is compact in the weak topology, < # @ by the Krein-
Millman theorem. Take » € ./, and suppose » = Av; + (1 — A)v. where v, v2 € Fand 0 <
A < 1. Since the marginals of » are extremal, »; and », must have the same marginals as »,
therefore »;, v; € &/ and this implies that », = v, = » because » is extremal in /. Hence »
€ L.

and vy £

When S = Z¢ we denote by #and & the translation invariant probability measures on
¢ and & respectively.

LEMMA 4.4. Lemmas 4.2 and 4.3 hold if we replace £ by SN Land Fby FN &,
The proof is the same as in Lemmas 4.2 and 4.3.

LEMMA 4.5. Ifv € L(or (FNP).) and v{(n, e):m=¢oré=n} = 1then
v{né:inz=g =1 or »{n§):f{=n}=1
ProOOF. Let A = {(n, £):n = ¢}. We assume, without loss of generality, that »(A) = A
> 0. Then there exist two probability measures »; and »; such that »,(A) =1, r,(z — A) =

1and » = Avi + (1 — A)wy; then v = »S(t) = MnS(t) + (1 — A)».S(¢). By Lemma 4.1,
11 S(t)(A) = 1; therefore »,S(t) = v, and, since » is extremal, A must be one.

The purpose of the next two lemmas is to give sufficient conditions under which » € ¥
satisfies v{(n, §):n=&oré=1n} = 1.

LEMMA 4.6. Ifv € Fand x, y € S satisfy
v{(n, &) :n(x) > &x) =0,n(y) <&(y)} =0

then
v{(n, &) :n(x) > &(x), n(y) <&(y)} =0.

Proor. We prove »{(n, £) :q(x) > &(x) = k, 1(y) < &(y)} = 0 by induction on k. For
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k =0, it is part of the ﬁypothesis; suppose it is true for £ — 1 and let f (7, £) be the indicator
function of {(n, &) :n(x) > &(x) =k — 1, n(y) <&(y)}.

We would like to use Lemma 2.9 to conclude [ Qf dv = 0. Unfortunately we might have
§ 1l (n, &)1l dv = . For that reason we consider v the restriction of » to the set
{, &) : llm, €|l = K). vk is a subprobability measure and since f = 0 and [ St)f dv =
J f dv = 0 we must have: [ S(t)f dvk = [ f dvk = Q. Now the argument used in the proof of
Lemma 2.9 shows that [ @f dvx = 0. But &f(n, £) <0 only if f(n, £) = 1 and this occurs only
on a set of vk measure 0, hence

= J Qf dvk = g(k)v{(n, §):n(x) > &(x) =k, (y) <E(¥)} + (Berx P(x,2))= 0.
Since this is true for all K, we can complete our induction by letting K go to o.

LEMMA 4.7. Ifv € Fand v{(n, £) :n(x) > &(x), n(y) < £(y)} = 0 whenever p(x, y) >
0 then v{(n, &) :n(x) > &x), n(y) <&(y)} =0forallx and yin S.

ProoF. Since p(x, y) is irreducible, there exists a finite sequence xo = x, X1, X2, - =+ , Xn
= y such that p (x,, x;+:) >0,i=0,1, .-+, n — 1. We prove the lemma using induction on
n. Again the case n = 1 is trivial. We assume that it holds for n — 1.

Let f(n, £) be the indicator function of the set {(n, £) :n(x1) > &(x1), n(y) < &(y)} and
vk be as in the previous lemma. We now have

= J Qfdvk=Yr-18FR)p (%, x1)vx {(n, §):in(x) =

£(x) =0, n(x1) = £(x1), n(y) <&(y)}
= Yi-18(R)p (x, x1)vr{(n, §):n(x) =k, £(x) = 0,n(y) <&(y)}= 0.
Therefore, letting K go to «, we get:
v{(n, &) :m(x) =k &) =0,1(y) <&(y)} =0.

Since this is true for all £, Lemma 4.7 follows from Lemma 4.6,

COROLLARY 4.8. If v € 9 satisfies

v{(n, £):n(x) >0,&(x) =0,m(y) <&(y)} =0
whenever p(x, y) > 0 then

v{(n,&):n=§ or £=n} =1

DEFINITION 4.9. If yi; and y» are probability measures on ¢ we will say that pu, < e if
there exists a probability measures » on & with first marginal p,, second marginal ., and
such that »({(n, §) :n = §£}) = 1.

LEMMA 4.10. If u1 < po then for all (x1, - -+, x,) € S" and all (ki, « -+ , k,) € (Z+)" we
have:

i) =k, 1=si=n})=v({(n,§):nx) =k, 1=1=n})
=v({(n, &) :éx) =k, 1=i=n})=w{&:éx) =k, 1=i=n}).

PROPOSITION 4.11.  The relation < is a partial order on the set of probability measures
on e.

,,7P‘R00F. If iy < p2 and p2 < p; then by lemma 4.10, p; and pe have the same finite
dimensional distributions and, therefore, are equal.
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If u is a probability measures on ¢ we can define a measure » on ¢ with the following
equality: »(A) = u(D"'(A)) where D is the diagonal embedding of € on & (D(n) = (3, 1))
and A is a measurable set in &. Both marginals of » are u and »({(n, 7)}) = 1, hence p < p.

Finally, suppose p1 < s, p2 < ps and let »;,» and », 3 be the corresponding measures on
£ Given Sy, a finite subset of S, denote by n|So the restriction of n € ¢ to So. Now we
construct a probability measure v, on (Z..)*X (Z. )*in this way: given (1o, &) € (Z+)*X (Z+)%
we let

20({n0, £03) = e (2,)0,m=b,=bps((5:5] Su=8))>0
1
p2({8:8]So =&})
A simple computation shows that the marginals of », are equal to the restriction of u; and

Us to (Z+)%. Since v ({(n, &) :n = £}) = 1, the Kolmogorof extension theorem provides a
measure » on & which shows that p; < pus.

v, 3({(8, £): 8|S0 = do, £|So = &}) -

LEMMA 4.12. If m, and m, are strictly positive real valued function on S, m < m, and
Ur is @ probability measure on ¢ (i = 1, 2) then p, < i,

Proor. Since u, and u,, are product measures, it suffices to show that u., ({n:7(x) =
k}) = pn,({n:n(x) = k}) for all x € S and all & in the set of positive integers. This inequality
is equivalent to:

B ({n:n(x) = k}) - Py ({021 (x) = k})
p (i (x) <R} ™ pm({n:im(x) < k})

and this is implied by:

pr ({020 (x) = £}) _ pm({n:n(x) = £})
pm({n:n(x) =71 7 pm({n:n(x) =/3})

forall j<4

A straightforward computation shows that this inequality, and hence the lemma, hold.

5. The translation invariant case. Throughout this section, S will be the d-dimen-
sional integer lattice Z 4 and p will satisfy: p(x, y) = p(0, y — x) for all x, y € Z°.

ProposITION 5.1. Ifv € £N Pand [ || || dv (n, §) < «, then

v{,&)im=¢ or {=n)=1
Proor. By Corollary 4.8 it suffices to show that

v{(n, &):n(x) > &x) =0,m(y) <&(y)ip(x,y) =0

for all x, y € Z% Fix x, y € Z¢ x # y and consider the map A: £ — & defined by A(n, £) =
(n’, €) where

/(Z)= g(z)/\n(z) if z#x
K ME) AV @) ALR) if z=x

Then »'(A) = v(h~'(A)) defines a measure on &.

Let f(n, £) = | £(y) —n(y)|* and consider a coupling of 3 copies of the process such that
the projection over any pair of coordinates coincides with the coupled process of Section
4. Starting this process from the configuration (y’, 3, ¢) where A(m, £) = (n’, £) and noting
that n’ = n, we deduce:

S@)f) hn, &) = SO, §).

Since [ (S(t)f)(n, &) dv'(n, &) = [ (S@)f) | h(n, &) |dv(n, &) and [ S@t)f dv = [ fdv', it
follows that [ S(¢)f dv’ = [ fdv’ and since [ ||, || dv’ < %, an argument similar to the
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proof of Lemma 2.9 shows that [ f d»’ < 0. But among the negative terms of [ Qf dv’ we .
have:

Yy P(Y, 2) Yisr(8(R) — gW {(n(y) =4 E(y) = R}

(5.2)
= (Yewy (Y, 2)) L=l g(R) — g {n(y) =4 &(y) =k}
and
gL' {n(x) =1,&(x) =0,n(y) <&(¥)Ip(x, ¥)
(5.3)

=gMr{nx) = 1,£(x) =0,n(y) <&(y)}p(x,y)
and the positive terms are bounded by:
Dery P(2, ) Y-8 (R) — ()W {£(2) = k,m(2) = ¢}
= 2wy P(2,5) Lar(8(R) — W)W {E(2) = k,m(2) = ¢},

Since p and » are translation invariant, this last expression is equal to 5.2; hence 5.3 is 0
and the proposition follows from Corollary 4.8.

COROLLARY 5.4. Ifui, p2 € (FNFeand [ ||| dui< oo fori=1or2 then s < ps or
B2 = p. :

Proor. This follows from Proposition 5.1 and Lemmas 4.4 and 4.5.

Since 7 (x) = p satisfies ), 7 (x)p(x, y) = 7(y), it follows from Lemmas 3.1 and 3.2 that
Y a(x) <owand [ ||n]]| due < o for all 0 < p < sup g(k). A simple estimate also shows
that [ n(x)dup (n) < = for all 0 =< p < sup g(k), hence by Theorem 1.8 up € .# for these
p’s.

PROPOSITION 5.5. If p €E(FN &), then u = ppo for some 0 < po < sup g(k).

PRrOOF. Since pp is ergodic, pp € Fe and since it is invariant, pp € (F N &¥)e. By
Corollary 5.4, p = up or u < pp for all 0 < p < sup g(k). But y = y, cannot hdld for all 0
< p < sup g (k) because lim, jsupger) o {1 :1(x) = k} = 1 for all k£ € Z... Hence by Proposition
4.11 and Lemma 4.12, there exists a po such that pu = p, for all p < po and p < up for all p
> po; this forces p to be equal to ppo on sets of the form {n:n(x1) < ky, -+, N(x) =< kn)
because of the continuity and monotonicity in p of the pp measures of these sets. Hence u
= KPo.

ProOF oF THEOREM 1.9. To simplify the notation, we denote again by S the set of
sites. Let Z, be the one point compactification of Z, and consider Z5 embedded in (Z.)5,
a compact metric space. .# N & becomes a set of probability measures on (Z,)° and
C(#N &) will denote its weak closure. C(#£N &) is convex, compact and metrizable in the
weak topology. See Theorem 1.11 on [19]. By Choquet’s Theorem (page 19-20 in [17]) for
any p € SN Sthere is probability measure A on the set of extreme points of C(# N &)
such that:

p= J B dX(B).

Since 1 = u(e) = [ B(e) dA(B), A must concentrate on B’s such that B(¢) = 1. Hence
Theorem 1.9 is implied by Proposition 5.5 and the following lemma.

LEMMA 5.6. If B is an extreme point of C(FN &) and B(e) = 1then BE SN L.

To prove this lemma we first establish the convention A > n for all n € Z. where {A}
= Z+ — Z+. The definition of n = £, 1, £ € (Z.)5 is now extended to elements of (Z.)° and
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this allows us to extend definition 4.9 to probability measure on (Z,) 5. Lemma 5.6 follows
from the next lemma.

LEmMMA 5.7. If B is an extreme point of C(FN &) and 0 < p < sup g(k) then B = pp
or 3 = up.

ProOF. Fix 0 < p < sup g(k) and let B, be a sequence in £ N & converging to B and
v, elements of # N &% with marginals 8, and up. By Proposition 5.1, v, ,{n = £ or £ = 7}
= 1. Let A, = v,,{n = £}. If there is a subsequence where A, = 0 or 1, the lemma is obvious;
we can, therefore, assume that 0 < A, < 1. Take »},, and »% , to be probability measures on
gsuch that v}, {n=¢} =1, % ,{é=n) =1 and va, = Auvn, + (1 = As)v%,,. The proof of
Lemma 4.5 shows that »5, € % N & hence v%, € ¥ N % Since up is ergodic, it is in
(£ N #)e; therefore the second marginal of v, is up, i = 1, 2. Taking an appropriate
subsequence we get vp = Av}, + (1 — A\)»2 where vp, v} and v2 are probability measures on
(Z.)® % (Z.)° such that the first marginal of »p is B, the first marginal of »; is in C(#N
&), i =1, 2, the second marginals of »p, v} and »2 are all pp, v5{n = ¢} = 1 and »3{£ =7}
= 1. If A = 0 or 1 the lemma is proved; if 0 < A < 1, since B is extremal, the first marginal
of »iis 8i =1, 2 and the lemma follows.

6. The null-recurrent case. In this section p(x, y) will be null recurrent, hence all
positive solutions of Y. #(x)p(x, y) = w(y) are multiples of a given one. To simplify
notation, we fix a solution 7 and denote by pp the measure pp,.

Let A = {p = 0:p7(x) < sup g(k) for all x € S}. Throughout this section we assume
that pp(e) = 1 for all p € A.

LEMMA 6.1. Let h(x) = Y5-1 8(R)u{n(x) =k} wherep € Fand [ ||| n || du < o, then
h(x) = ¥yes h(y)p(y, x).

ProoF. We apply Lemma 2.9 to g(n) =n = (x): [ g dp = 0. Computing the positive
and negative terms we get A(x) Y. p(x, 2) = ¥y (y)p(y, x). Adding A (x)p(x, x) to both
sides of this equality proves the lemma.

LEMMA 6.2. Suppose f is a non-negative function on S satisfying f(x) < Y., f(y)p(y,x)
for all x € S and f(x) < pw(x) for some positive p and all x € S; then f(x) =
¥, fY)P(y, x) for all x € S.

Proor. Let g(x) = pm(x) — f(x) = 0; then Y. g(x)p(x, y) < g(y). By Proposition 6.4
in [7], ¥« g(x)p(x, y) = g(y); since w(x) also satisfies this equality, so does f(x).

PrROPOSITION 6.3. IfvE Fand § ||| £ || dv(n, &) <o thenv{(n&):n=Eoré=n) =
1.

PROOF. As in the proof of Proposition 5.1 we get

Yoy PV, 2) D (g(R) — gNv{n(y) =7, &(y) = k}
+gMr{nlx) =1, £(x) =0, n(y) <&(y)}plx, )
= Yewy P2, Y) ks (g(R) — (€)W {£(2) = k,n(2) = ¢}].

Adding to both sides p(y, y) Yisc(g(R) — g(£))v{&(y) = &, n(y) = ¢}, we conclude that
f(x) = Y (g(R) — g(£))v{£(x) = k, n(x) = ¢} satisfies f(x) = Y, f(y)p(y, x). Since f(x)
= Y%= 8(kR)v{£(x) = k} = h(x) and, by Lemma 6.1, A(x) = Y, A(y)p(y, x) we can apply
Lemma 6.2 to conclude that f(x) = Y, f(y)p(y, x). This implies that g(1)»{£(x) = 0, n(x)
=1,n(y) <&(y)lp(x,y) =0and the Proposition follows from Corollary 4.8.
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PROPOSITION 6.4. Ifu € Se then Apo € A such that p = y, for all p < po and p. <y, for
all p > po(p € A).

ProoF. It is not possible to follow the argument of Section 5 because we cannot prove
directly that p, € Fe.

Let p € A, by Lemma 4.2 there exists », € £ with marginals u and y,. By Proposition
6.3, v,{n=&oré=n} =1. Let A\p = vp{n = £} and suppose 0 < Ay < 1; then the proof of
Lemma 4.5 shows that vp = A,v) + (1 — A,)»2 where v, € £ ,i= 1,2, vi{n=¢} =1 and
vi{n = ¢) = 1. Since p is extremal, the first marginal of » is u, i = 1, 2. The second
marginals u} and u? are absolutely continuous with respect to u, and satisfy p, < p,
B =g

Since ¥, m(x) = o we can write an array of elements x;, ESi=1,2, ... ,1=<j=<n;such
that x,;, # xnr if i # h or j # & and

Yiim(x,) =1 for i=1,2,.--

Now we estimate the first two moments of

21 8(€(xy))

¥y w(x;)

fi(§) =

where the distribution of £ is given by p,:

_ Vo L1 Ve (pm(x))*
J g (x)) dp,(n) = Y31 g(R)p, {n (x) = k} = ¥ g(k)kxm
_ . (pm(x)* '\ _
= Pﬂ(x)<Yx + Yi-1 Yxm> = pm(x).
Hence
(6.5) Jﬂ(&) dup(§) =p
[gm @) dpo(n) = Xim1 2(R) o (1 (x) = &}
- (pm(x))"
= C[Yxpﬂ(x) + Yi2 glk)g(k — 1)Yxm]
where
_ £® g0
C_ Sup{g(l)y g(l) 7g(2) }.

But our last expression is bounded by Cpw(x) + C (o7 (x))? since yx < 1. Using this estimate
and the independence of n(x) and 7n(y) for x # y under u, we get:

J fitm) dp,(m) = (Xje1 Cp’r(x,)) + Y1t Com(xy)).

2
+ STy i) m(a)) = 6" + Co + p°
Theorem 5.1.2 in [2], (6.5) and (6.6) show that (1/n) YL fi(n) — p. a.s. (du,). Since ut
and p? are absolutely continuous with respect to pp andy, < p and u’ = p, we must have
(1/n) Y %1 fi(n) — p a.s. (dp). This can happen for at most one value of p. For all others,
our assumption 0 < A, < 1 must be false; hence u = y, or u < u, for all values of p except,
at most, one. This, together with 4.11 and 4.12, prove the proposition if A is a bounded
closed interval. If A = [0, o) then limyje p,{n:n(x) =k} = 1for all X € Z, and u > p,
cannot be satisfied for all p € A; hence, in this case, the proposition also holds. Finally if

1

(6.6) (Z;"‘=1 (%) )?
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A =[0, a), a < « then there exists an element z in S such that #(z) = sup #(y),y € S and
7(z).a = supg (k). Then lim,ap, {n:n(z) = k} = 1for all £ € Z, and again u =y, cannot be
satisfied for all p € A and the proposition holds in this case too.

PROPOSITION 6.7. If u € Je then p = pp, for some po € A.

Proor. Let po € A be as in the conclusion of Proposition 6.4. Two cases have to be
considered:

a) po<sup A

b) po=sup A
In case a) the proof of 6.7 is the same as the proof of Proposition 5.5. In case b) we need
the next two lemmas.

LEMMA 6.8. If suprg(k) < 0 and p € Fthen f(x) = Y, (g(k))(u{n(x) = k}) satisfies .
f(x) =%y () p(y, x).

Proor. Let An(n) = n(x) A N, then

t t

()2 ) ds = J' S() [y )" — [Rhw o)) ds

0

S(¢)hn () — hn(n) =f

0

where the first equality comes from Lemma 2.7.b).
Since [2An(n)]” =< sup g(k) < =, we can separate the integral in two parts and get:

¢t t

S(s)[Qhn()]" ds —f S(s)[Qhvm)] ds.

0

S(t)hnm) — hn(n) = f

0

Now, integrating both sides against y, the left hand side becomes 0 and because the second
term of the right hand side is bounded by ¢ supg(k) < ®, we can write this side as
JUS(s)[QAn()]" ds) dp — [([6S(s)[QAn(n)] ds) du. Hence

f <J S(s)[QAn )] du) ds =J (J S(s)[Q~hxm)]” du) ds.

Since u € % this implies [[Qhn(n)]* dp = [[QAn(1)]" dp. Computing both sides of this
last equality proves the Lemma.

LEMMA 69. I = i, . # y, and p € 5 then Ti (R p{n(x) = k) > s g (k) (n(x)
=k} for some x € S.

Proor. Take », € . with marginals p and y,, and such that vpo{n = £} = 1. Since p
# 1, there exists an x € S and % < Zsatisfying vpo{n(x) = 4 ¢ (3}) =k} > 0. Using the same
inductive argument as in the proof of Lemma 4.6, one shows that vpo{n(x) = ¢— k, £(x)
= 0} > 0. This implies the lemma.

To finish the proof of Proposition 6.7 note first that case b) can only occur if sup g (k)
< o, Given that po = sup A, we must also have sup.po7(x) = sup.g (k). po being as in the
conclusion of Proposition 6.4, we must have y = p, for all p < po, hence u = p,,. We argue
by contradiction: suppose p # p,, then by Lemma 6.9 for some x € S, Y g(k)u{n(x) = k}
> Y8 (k) o, {n(x) = k}. By Lemma 6.8 and the recurrence of p(x, y), fi(x) = Y g(k)u{n(x}
= k} is a multiple of fo(x) = Y g(k)u,{n(x) = k}. Hence sup.fi(x) > sup.fox) =
sup. Y& (k) o, {n(x) = k} =

(pom(x))*

20 g Supspom(x) = supig (k).

Sup: ), i=1 (k) yx
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This is not possible since fi(x) is bounded by supxg (k). Therefore p = p,, and Proposition
6.7 is proved.

The special case of Theorem 12.2 in [3], obtained by considering the measurable
function #as identically one, says that any p € .# can be written as [ 8 dA(8) where Ais a
probability measure on fe. This and Proposition 6.7 prove Theorem 1.10.

7. The asymmetric simple random walk on Z. In this section the set of sites will
be Z, gk) =gk +1) k=12, --.,sup g(k) = Ko < and p will correspond to an
asymmetric simple random walk, i.e. p(x, x + 1) = p, p(x, x — 1) = g for all x € Z and
p + g = 1. We will assume that 0 <p <. The case 4 <p <1 is similar.

Since in this case ¥ a(x) < , the condition sup g(k) < « guarantees [ || 7 [l du < oo for
any probability measure p on e. As in Section 5, we write y, instead of u, if 7(x) = p. By
Theorem 1.8, u, € £if 0 < p < Ko. Informally, the property of the process we will use to
prove that all extremal invariant measures are the y,’s is that the number of change of
signs of n¢(x) — & (x) does not increase with £ when n, and & are coupled in the natural way.

LEMMA 7.1. Let p € % v, € F with marginal p and p,, 0 < p < Ko, fa(n, §) be the
number of changes of sign of n(—n) — £(=n), ---,n(n) —én)n=1,2, --- and A, =
[ (fus1 — f) dv,. Then there exists a subsequence of A, converging to 0.

ProoF. We argue by contradiction: suppose A, > & > 0 for all n = no. Then there
exists a k such that [ (fosx — fx) dv, > 4 for all n; since | forx — fo| = 2k this implies that
there exists & > 0 such that v, { fu+x — f» = 3} > & for all n. Hence there is an &> > 0 such
that for all n there exists a and b satisfying:

v{n(@)>&@),na+1)=é@+1),---,nb—1 =£b—1),7(b) <)}
+y,{n(@) <é@),na+ 1) =f@+1), -+ ,nb -1 =£0b-1),7(0)>£0)) >e

and either n < a < b=n + k or —n —k < a < b < —n. Since the second marginal of », is
1, there is an &; > 0 and L € Z, such that for all n there exist @ and b satisfying:

v{n(@) > @), n@+1) =é@+1), -+ ,mb—1) =£0b-1),n(b) <£(b),
¢@)<Li=aa+1,.--,b)
+ v {n@) =t@),na+1) =£&@+1), -+, —1) =£0b-1),1()>£(0),
¢i)<Li=aa+1,---,b)>e

and either n <a<b=n+ kor —n —k < a < b < —n. Now a long and tedious induction
shows that there is an & > 0 such that for all n there exists an a satisfying:

vo{n(a) >£(@),0=n(a+1) <é{a+1)}
+2,{0=7n(a) <&(a),n(@+1)>é(a+ 1)} >e.

and either n < a =n + k or —n — k < a < —n. This induction is similar to the one used in
Lemmas 4.6 and 4.7. One has to note, however, that if f is the indicator function of a
cylinder set depending only on coordinates a, @ + 1, --+, b where b — a = k, then the
negative terms of [ f dv, are bounded by the product of ff dv, and Ko(k + 2). Also note
that [ Qf dv, = 0, since [ ||n, £|| dv, < e, and there is no need here to truncate the
measure », as we did in the proofs on Lemmas 4.6 and 4.7.

Let gu(n, £) = Yecr-ma | 1(x) — £(x) |, by Lemma 2.9 [ gy dv, = 0. Take M = k¢,
then the negative terms of [ &gu dv, are in absolute value greater than or equal to
2 min{ p, ¢ }g(1)es¢ but the positive terms are bounded by Ko; since ¢ is arbitrary we have
a contradiction.

LEMMA 7.2. Let v, and f, be as in Lemma 7.1 then
v {(n, &) :fu(n, €) <8} =1 forall n=1.
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PRrROOF. Again we argue by contradiction: suppose there exist a, b, ¢, d such that
a<b<c<dand

vo{n(a) < é(a), (b) >£(b),n(c) <&(c),n(d) >£&(d),n (@) =£@)
i=a+1..-,0—-1,b+1+..,c—1c+1,...,d—1}>0.
Then an inductive argument shows that:
v,{na) <é(a),n(@+1)>&@+ 1), n(a +2)<é(a+ 2),n(}1+ 3)>¢(a+3)}>0
but this implies:
v{n(a) <é@),l=nla+1),&a+1)=0,0=n(a+2) <&a+2),n(a+3)>Ea+3))
(7.3) + v {n(a) <é&(a),n(a+1)>§{(a+1) =0,
0=n(a+2),1=¢a+2),n(a@+3)>Ef(a+3)})>0.

Now take A, — 0. By Lemma 2.9 [ &f, dv, = 0. The positive terms of this integral are
bounded by A, K, and, therefore, go to 0 as £goes to «, but according to 7.3 the absolute
value of the negative terms is bounded below by a positive constant for n, > |a| + 3; a
contradiction.

DEFINITION. Given 7, £ € ¢ we will say that n@& ¢ if there exists xo € Z such that n(x) -
= £(x) for all x = xo.

LEMMA 74. Ifn@¢ then P™*(n.@é&) =1forallt = 0.

Proor. Letn@®¢

_J1 if n(x) <é&(x) forsome m;=<x<m,
Bmym,y (1, €) = {O otherwise.

and S, () be the sequence of semigroups that approximate S(¢) as in Section 2.

Since the Markov processes, starting at (n, £), corresponding to S,(¢) have a finite
number of states and there is a bound, independent of n, for the rate at which particles
move we must have:

i, < mysee SUPs S (E)gimmy (m, £) = O for all £ 0.
This shows that
limml<mg,ml—>oo S(t)gmhmz (T), g) =0 for a.ll t=0.

Hence, given & > 0 there exists m, such that for all m, P™(n,(x) < & (x) for some m; < x
= my) < ¢. Letting m, go to © we have

PO (n(x) < &(x) for some x=m,) <e.

Since ¢ is arbitrary, the lemma follows.

DEFINITION. Given two probability measures p; and 2 on ¢, we will say that u; Spu. if
there exists a probability measure » on & with marginals p, and p and such that

v{(n, &) D¢} = 1.
PROPOSITION 7.5. If u € Je then u = u, for some 0 < p < Kj.

ProoF. By Lemma 7.2 »,{n&¢ or £&7) = 1. Let »} and »] be the restrictions of », to
{n2 ¢} and its complement respectively. Let A =»; {¢} and suppose 0 < A < 1.

Using Lemma 7.4 and the same argument as in Lemma 4.5 we can show that v} S(¢)
= »} and »2'S(t) = »2. Hence the first marginals of »}) and »% are in .% and since p is
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extremal they must both be u. This shows that there exist measures p, and p,, absolutely
continuous with respect to p, and such that p (& p, and p O,u,, This 1mplles that

p{n] lim,o ¥i-1 (n(x)/n) = h(p)} = 1 where h(p) = ¥¥ v,k(p"/g(1) --- g(k)). Since
h(p) is a strictly increasing function of p, this can happen for at most one p. For all the
others, A must be 0 or 1. Therefore:

(7.6) @8 =1 or 518 =1

except for at most one p. Let
filx) = Yusr (8(R) — g (), (n(x) =k, {(x) =)

and
fo(x) = Yo (8(R) — ()0, {n(x) =4 £(x) = ).

By Lemma 2.9 [ Q(n(x) — £(x)) dv, = 0. Computing the positive and negative terms, we
get:

hx) — £(x) =3, p(y, x)(A(y) — £(y)) forall x€Z.
Similarly, [ @|7n(x) — £(x) | dv, = 0 and this gives rise to:

filx) + folx) =3, p(y, x)(fiy) + 2(y)) forall xEZ.

Therefore,

(7.7) filx) =¥, p(y, x)(fi(y)) forall xeZzZ i=1,2

since f,(x) = Kogi(x) = Ko — fi(x) is greater than or equal to 0 and satisfies g,(x) =
Yyp(y, x)g(y) for all x i = 1, 2. By Proposition 3.4 in Chapter 2 of [18] and Theorem 1.3
in Chapter 5 of [18], g.(x) is a decreasing function of x. (Here we use that our random walk
has a drift to the left). Hence f,(x) increases with x. This and 7.6 shows that either £, (x)
=0 or f2(x) = 0, therefore v,{n = ¢} =1 or »,{£ = n} = 1. Hence, except for at most one
Py I = 1, OF pu < p,, by reasoning as in Proposition 5.5 we can prove that y = p, for some 0
< po< K.
Theorem 1.11 follows from this Proposition and Theorem 12.2 in [3].

8. Convergence to the vacant configuration. In this section we consider the case
in which sup g(k) = Ko < o, K = sup |g(k + 1) — g(k)|, g(k) = g(k + 1) and there
exists an unbounded 7: S — R, satisfying ) #(x)p(x, y) = w(y) for all y € S. For
technical reasons we also assume that there exists a sequence of isolated points of the
set {7 (x):x € S} that diverges to .

First we introduce the following notation: L will be an isolated point in {7 (x):x € S},

={x€S:m(x)<L}, T"=S—Tandp=inf{A=0:7(x) = K, for all x € T"}. Now we
construct a process on a subset of (Z.)” with formal generator:

Qf ) = Teyer 8M@E)P(x, ) (fO1ey) — F@))+ Teer €0 (%)) Xyer p(x, ¥) (fe) — f())
+ Yeer pm(x) Y yer p(x, Y)(fO0y) — f(0)),

where

[ iy o )=
n"*(y)_{n(x)—l if y=x and 7n(x)>0.

The intuitive meaning of this generator is: when a particle attempts to move to 7" it
disappears but the sites in 7" act as sources of particles. Note that when S is finite, this
defines a nonexplosive countable state Markov chain.

Proceeding as in Section 2, we construct this process on

E=mE(Z)": Tier n(x)a(x) < ®)
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where a is as in the previous sections, i.e. a(x) = ¥, (1/M")p"(x, x0), M > 1. Again for 7,
§ € ¢, we define || 9|| = Yxer n(x)a(x) and ||n — £ = Yier |n(x) — §(x) [ a(x). Our process
will be given by a semigroup S(¢) of operators on ¥ where = {f:¢— R:|f(n) — f(§)|
< c||p — &|| for all , ¢ € £}. Given f € &, L(f) will be the smallest number satisfying
[fm) = &) | = L(f)||n— &| for all n, £ € € This construction is similar to the one given
in Section 2; for this reason details are omitted.

We denote by .7 the set of probability measures on & invariant for this process. As in
Section 2, one shows that a measure p on £ such that [ ||| du < o is in .Zif and only if
[Qfdu=0forallfE £

Let p,, be the product measure on (Z.)” having marginals given by.

(pm(x)* |

¢ e if
womin(x) =y =1 g - gk) k>0
Yx if k=0

where v, is a normalizing constant.
The following lemma is a special case of Theorem 4.5 in [6] and can be checked by
means of a routine computation.

LeEmma 8.1. If S is finite then y,, € 9.

PROPOSITION 8.2. Let S be countable; then p,.(§) = 1 and p,, € J.

Proor. The first statement follows from our condition on L (i.e., L is an isolated point
of {7(x):x € S}) and the invariance of y,, can be proved by proceeding as in Section 3.
Details are omitted again.

Given 1 € ¢ and £ € ¢, we say that n < £ if n(x) = £(x) for all x € T, and given p and A
probability measures on ¢ and ¢ respectively we say that u < A if there exists a probability
measure » on (Z,) X (Z.) T with marginals p and A and such that v{(n, §) :n = £} = 1. We
also define a partial order for 5, £ € £ and for u and A probability measures on ¢ in the same
way.

PROPOSITION 8.3. Ifn € e is such that Y er n(x) < ®, then
lim sup;—« p"(n:(x) > 0) = p, {n:n(x) > 0} -
forallx € T.

PrOOF. Let 17 be the restriction of 9 to T'and §,, §8,, the point mass measures at 5 and
11 respectively.
A simple coupling arguments shows that for all ¢ = 0

(8.4) 8,S(t) = S,,S().

Let s, be the product probability measures on (Z.) T whose marginals are: point mass
at n(x) if n(x) > 0 and the same marginal as p,,if n(x) = 0. Another simple coupling shows
that for all

(8.5) t=0,8,S(t) = por,n,S(t).

Since y,, € £ and ,,= Allor,n, + (1 — A)p for some A > 0 and some probability measure
1 on , the collection of measures ,u.,,,,,,,,l,g(t) t = 0 is tight. In view of this, (8.4) and (8.5) to
prove the proposition, it suffices to show that if u, is a weak limit of ,u.,,,,,,,Tg (t) then po =
Mor -

To prove this last statement, consider a probability measure » on (Z:)” X (Z,)” with
marginals g, . and p,, and such that »{(n, ) :9(x) = £(x)} = 1 for all x € T such that
nr(x) = 0. Denote by S(¢) the semigroup corresponding to the natural coupling of two
versions of S (t).
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Consider the measures vy = (1/N) [¥ vS(t)dt N e [1, ). Due to our previous remark
on ;L,,,,,"Tg (t) and the fact that p,, € .7, this set of measures is tight. Taking a subsequence
N,, we get as limit an invariant measure .

Let A = Y,e7 n(x). Approximating S(¢) as it was done for S(¢) in Section 2, one shows
that

w§(6) (0, £): Ter [n(x) — £(x)]* > A} =0 forall ¢=0.
Hence vo{(m, &) : Yrern(x) — £(x)]" > A} =0;

since v0§ (t) = v and p is irreducible, this and an inductive argument show that
o {(n, §) : Yxern(x) — £(x)]" >0} = 0. _

Again using the approximations of S(¢) one shows that [ Y.er[n(x) — £(x)]" d[» S(¢)(n,
£)] is non-increasing in ¢. This together with our result on », show that:

lim, J Seerln(x) — £@)] dxS(t) @, )1 =0

and this proves our statement on the weak limits of ,u.p.,,',,Tg (t) and, therefore, the proposi-
tion.

Proor orF THEOREM 1.12. Let L, be an increasing sequence of isolated points of
{m(x):x € S} going to o,

T.={x€S:n(x)<L,},pn=InfA=0:A7(x)= K, forall x€S-T,}

and 7 € € such that Y.ern(x) < oo for all n = 1.

Fix x € S and let n, be large enough for x € T,,,. Then by Proposition 8.3 for all n = n,
lim sup/mw P'(n:(x) > 0) < pp.r {n:m(x) > 0} and, letting n go to «, Theorem 1.12 follows
since p, — 0.
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