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STRONG LIMITING BOUNDS FOR MAXIMAL UNIFORM SPACINGS

By PauL DEHEUVELS

Université Paris VI, Ecole Pratique des Hautes Etudes

Let U, Uz, :-- be a sequence of independent uniformly distributed
random variables on (0, 1) and M, be the largest spacing induced by Uy, - - -,
U.. We show that P(M, = (log n + 2 logzn + logsn + --- + log,n)/n i.0.) =
1, where log, is the j times iterated logarithm, and j = 4. If 1 = N, < N, <
+++ <N < ... is the sequence of the successive times n where M,, < M,_,, we
derive strong limiting bounds for {N;, k = 1}.

1. Introduction. Let Uy, Uy, --- be a sequence of i.i.d. random variables uniformly
distributed on (0, 1). F U’ =0 < U™ < ... < UP < U™, = 1 are the order statistics
corresponding to 0, 1, Uy, - - -, U,, then the maximal uniform spacing M, is defined by

M, = maxlsisnﬂsf"),

where S = U™ — U™ for 1 =i =<n + 1. The S are called spacings of order n.
Devroye [5] has shown that w.p.1,

1) lim sup..(nM, — log n)/2 logan = 1, lim inf,..(nM,, — log n)/logsn = —1,

where log; is the j times iterated logarithm.

The aim of this exposition is to make this result more precise by studying the sequence
of the random times of decrease associated with {M,, n = 1} and defined in the following
way:

Ni=1, Ni=inf(n>Ny; M, <My}, k=23, ---.

The definition of Ny, Ny, .- - corresponds to the fact that M, remains constant when 7
varies between NV, and N,_i, then decreases at the time n = N, when U, takes its value in
the spacing interval associated with M,,.

The main result about N1, N, - -- is expressed in the following:

THEOREM 1. When k tends to infinity, almost surely

@) Ni = exp(V2k + (&), with |¥(k)| = (log k)(1 + o(1)),

and, for any j = 4, almost surely

3) lim sup,m{ { (LN_Nf)log N — 2 log: N,
k
—logsNpy — «++ — log;_lNk}/log,Nk} =1.

As a consequence of Theorem 1 and of (1), we will obtain that for j = 4,
(4) lim supn.{nM, — log n — 2 logsn — logsn — -.. —log,_1n}/log,n =1 as.
This makes precise the result obtained by Devroye [5], who showed that for j = 4,
(5) lim supn.{nM, — log n — 2 logsn — logsn — -.. —log,-in}/log;n<1 as.,
and proves that the upper bound given in (5) is the best possible.
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2. Strong bounds for the times of decrease of the maximal spacing. It is clear
that the sequence M, M5, - - - is non-increasing, and that if i, stands for the w.p.1 uniquely
defined index such that S = M,,n =1, 2, ..., then for £ = 2, N, may be defined as the
smallest value of m such that U, falls into the interval [U®,, UN[, where N = N,_;.

If we let m, = My, then it follows that the distribution of N;, — N,_;, knowing the past
anterior to N1, depends only upon m,_; and is given by

P(Np = Ne-r = r|myp—y) = (1 — my—1), r=12..

The next step is given in a strong approximation lemma, analogous to [4]:

LEMMA 1. On a possibly enlarged probability space, there exists an ii.d. sequence
{Y:, k = 1} of exponentially E(1) distributed random variables, such that

. [ Y )
(i) Ny = Ny = [m:l +1, k=23, ...,

where [u] stands for the integer part of u,

(ii) for k=2,83, ..., Y1 isindependentof my, ---,m.1 and of Np_i.

Proor. Let us consider, in a more general setting, two r.v. G and Z, such that (i) 0 <
Z<las, (i) P(G=r|Z=2)=21—-2""r=12 ..., 0r equivalently P(G=r|Z = z)
=(1-2"%r=1,2, ..., G taking integer values.

The lemma will be proved if we show that there exists an exponentially E(1) distributed
r.v. Y, independent of Z, such that G = [Y/(—log(1 — Z))] + 1. The latter in turn follows
from

LEMMA 2. Let G and Z be two r.v. satisfying (i) 0 < Z < 1 as,, (ii) P(G = r|Z=2z)
=(1-2"%4r=12 ..., and let { be a uniformly distributed on (0, 1) r.v., independent
of G and Z. If

(6) Y =(G - 1)(-log(1 — Z)) — log(1 — {Z),
then Y is exponentially E(1) distributed, independent of Z, and such that
(7) G=[Y/(-log1 - Z))] + 1.

Proor. First, we can see that Y/(—log(1—Z)) +1=G + (log(1 — ¢Z))/(log(1 — Z)).
Since0<1-Z<1-{Z<1as, (log(l — {Z))/(log(1 — Z)) <1 as., and (7) follows.

Secondly, if Y is given by (6), then U=1—-e ¥ =1-(1-2)% "+ {((1 - Z)¢! —
(1 - Z)%) has, given G = r and Z = z, a uniform distribution on the interval 1-@1-=2"
1-(1-2))sinceP(G=r|Z=2)=1-(1-2))—1-(1- 2)"1), the distribution of
U, given that Z = z, is uniform on (0, 1), and hence, U and Y = —log(1 — U) are
independent of Z, Y being exponentially E(1) distributed. Hence Lemmas 1 and 2 are
proved.

We will now go back to the sequence N;, Ns, .- -, and evaluate its rate of increase to
infinity. By definition, for £ = 2, 3, ..., N, — Ny_; = 1; hence lim infre Nx/k = 1, and
limy N, = +o. Since m; = My, it follows from Devroye’s [6] results (1), that for an
arbitrary ¢ > 0, there exists almost surely a %, such that if 2 = k,,

_ 1+ 8)10g3Nk < my— log N, < 2+ s)logsz .

N, k N, 3 N k
From this and Lemma 1, an easy deduction gives that, almost surely when & — o,
(8) Nivt = Np = Yr(Ne/log Ni)(1 + O((logzNi)/log Ni)).

By adding the inequalities of (8), we get that for 2 — oo,
9) Ny =1+ 35 Y.(N/log N)(1 + o(1)).
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We note that the Y, are positive, and hence, by Kronecker’s lemma, that
(10) Ny = (T Y.)/o(1),

which implies, by the law of large numbers, that lim,.N./k = +o. This enables one to
iterate the reasoning to show in turn that N, =1 + Y% Y.(i/log i) a.s. for % large enough.
Using now Theorem 2.10.3 of [10] or Theorem 4.1.1 of [12] (see Jamison et al. [7]), it can
be deduced that lim infy.. N,/ (k*/log k) = % a.s.

By using this result again as in (9), (10), and by a straightforward feedback, we obtain:

LEMMA 3. For an arbitrary r = 1, limp.Np/k" = + a.s.

Let us now consider the ii.d. E(1) sequence Yi, Y3, ---. By using any of the strong
bounds given in [1], [3], or [11], it can be seen that for any & > 0, there exists almost surely
a k., such that for £ = k.,

(11) 1/(k(log k)'**) = Yr < log k + (1 + ¢)log: /.

By (8), (11), and Lemma 3, we can deduce from this that for an arbitrary r = 1,
lim;.(Ni+1 — Np)/k™ = +o a.s. As a consequence, if we put

(12) Nk+1 _Nk=Nk(YkPk/log Nk); k=2» 3» M)

then lim;..p. = 1, and by (11) and Lemma 3, lim;., Y./log N, = 0 a.s.
If we write (12) as N1 = Ni(1 + Yrpr/log N.), the preceding result proves that if we
put

(13) ar=1log N, and op1=ar+ Yebi/o, k=23, .-,
then lim;..6; = 1, and lim. Y:/ax = 0 a.s. By taking squares of (13), we get
(14) o1 — ok = 2Yi0, + Yi0i/ak, k=23, ...

It follows, by adding the inequalities in (14), and using the law of large numbers
(limpwn™ Y5y Y, =1a.s.), that

(15) limpoai/2k =1 as.
Likewise , we can deduce from (14), (15), as in the proof of Lemma 3, that
Yi0; 1
(16) lim,(log n)~' Yioy — == as.
op 2

Now (15) shows that N, = exp(«/é%(l + o(1))), which does not enable one to get (2)
without an evaluation of the rate of convergence of 6, to 1 when & — . For this, getting
back to Lemma 1, (i), and using (1), (11), (12) and (15), we can see that, as in (8),

(17)  lim supe|pr — 1| (log Ni/2 logzNy) = lim supee | pr — 1| («/ﬁ/log k)=1 as.

A close look at (12) and (13) shows that (6, — 1) — (o — 1) ~ Yx/2 log N, = (1 +
o(1y)(og ky/ (@) a.s. when £ — . Adding this to (17) and using the law of iterated
legarithm for Y, yields (2).

By (12); we get (Nyz; — Ni)(log Ni)/Ni = Y,px. Thus (3) is equivalent to

Yipr = 2 log: Ny, + 168Ny + -+ + (1 + e)log/ N, as.if k—> o when &£>0, and

Yior = 2 logs Ny, + logaNy + - -+ + (1 + e)log; N, i.0. w.p.1 when ¢<0.

To prove these assertions, we use the fact that, as in (11), P(Y, = log & + logk + - --
+ (1 + ¢)log, £ i.0.) = 0 when ¢ > 0, and 1 when ¢ < 0. If we note that, by (2), almost surely
as k — oo,

log Ni. = V2k + O(log ),
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logs N, = Y log k + % log 2 + O((log )/ VF),

logs N, = logak — log 2 + O(1/log k),

log,N). = log,1k + O(1/[[:=5 log:k), r = 4,
we get easily:

log & + logsk + «++ + (1 + ¢)log, &
=2 log N + lOg3Nk + oo+ (1 + S)IOgJ‘Nk + 0(1/log2 k).

Since by (17), pr = 1 + O((logk)/ \/I;), it follows that
Yror = 2 logaNi + logsNy + -+ - + (1 + ¢)log, N, + O(1/log: k)
as.if k—> o when £>0, and
Yior = 2 loga Ny, + logsNy + -+ - + (1 + e)log; N, + O(1/logs k) i.0. w.p.1 when &=0.
Thus (3) is true and the proof of Theorem 1 is now complete.
Our next result is given in
THEOREM 2. For any j =4,
4) lim sup,.{nM, — log n — 2 logan — logsn — --- — log;—1n} /log,n ="1 as.
PRrOOF. As noted before, Devroye [5] has proved (5), and we only need to show that,
for an arbitrary € > 0, the inequality
(18) nM, — log n — 2 logsn —logsn — -+. — log;1n — (1 — e)log,n =0

occurs infinitely often with probability 1.

In the proof, we use the fact that the values of n for which (18) occurs must include a
subset of {N, — 1, j = 1}. More precisely, suppose that (18) occurs, and let 2 = k(n) be such
that N = n < Nj+1. Since M,, = M,, for any m such that N, < n < m < Nj.1, we get for 0
<e<1l:

mM, —logm — ... — (1 — ¢)log,m
={nM,—logn— ... — (1 —¢)log,n}
+(m—n)M, — {logm+ ... + (1 —¢)log,m —logn — - .- — (1 — ¢)log,n}

= (m — n)n"'(log n) — (j + 1)(log m — log n)
=(m-nn'(logn—(j+1)=0

for n large enough. Hence there exists a non-random n, such that if (18) occurs for n = ny,
then it also occurs for any m: N, < n < m < Nj1, and in particular for m = N,, — 1.

Let us now consider an arbitrary n = 1, and the corresponding integer % = k(n) such
that N, = n < Np41. It can be seen that the distribution of Ny — n, knowing the past
anterior to n, depends only upon M, and is given by

P(Niwri—nzr|M,=m)=(01-m)", r=1,2 +...
Hence, by Lemma 1, it follows that there exists an exponentially distributed random

variable Z,, independent of M, and of U, - - -, U,, and such that

Zy
(19) Nim+1 —n = I:m”—):l + 1

We shall now consider the sequence n, = [exp(\/2_/ )L, £=1,2, -.- and put T) = Z,,.
Although {T,, /= 1} is a sequence of marginally exponentially E(1) distributed random
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variables, it can be noted that they are not independent. In fact, if M, = M,,,, since then
N, ) = Niw,), Ts+1is correlated with T,. On the other hand, if M, > M, , then clearly
T, and T,+ are independent. Let us therefore put & = I(M,, > M"/+|)’ Z=1,2, ... and
consider the random sequence defined by

(1) =min{¢= 1; M, > M,, ) =min{¢= 1 ¢,= 1},

(20) Ar) = min{¢> Ar — 1); M,,> M, }
=min{/>Ar-1);¢{,=1}, r=2/3, ...

It may be verified that {n,»+1, 7 = 1} is an increasing sequence of stopping times on
{o(U, ---, U,), n = 1}. The preceding argument shows that

LEmMMA 4. Let { Ar), r = 1} be defined by (20), and put forr=1,2, -+, w, = T/py+1,
{T,, ¢= 1} being defined in (19)-(20), then {w,, r = 1} is a sequence on independent
exponentially E(1) distributed random variables.

Our next step is given in the following.

LEMMA 5. Iffor £=1,2, -+, n,= [exp(vV24)] and {4r), r = 1} is defined by (20), then

1) lim. A7)/ = °_ as
Proor. To prove (21), it is enough to prove that
1 1
(22) lime ﬁ 25\,:1 I(Mn/ > Mn/+|) limNm N Zlfv=1 £[= 1- e_l a.s.

It 1s easily seen that P(§; 0|M,, =m,M,, ,---,M,)=(1- m)”’“_”’ Next Nev1 — Ny
~ V(e VP _ 1) ~ Y%/ \/2¢ and, by (1), M,l~(logn,)/nf~«/_/e a.s. as £— o
hence lim;.P(¢, = 0|M,,, -+, M,) = ¢! as., and, as a consequence, lim/E(¢/| &1,
* gl) =1- e_l a.s. Furthermore, lim;wE(gg) =1- e_l and limngz(&) = lilnwa(gf)(l
— E(¢,)) = e”' — e This suffices for (22) and (21), since Y%, D%¢,)/¢? < w, which in
turn implies that (1/N) Y, (¢, — E(&s| &1, + -+, &)) — 0 as N — o (see Loeve [9] page
387, Révész [10] page 137-138). The proof of Lemma 5 is now complete.

LEMMA 6. Forany j=4and c>0,

1
(23) limys N Y I(nM, —logn,= —clogn,) =1 as.

Proor. Let u, = I(n,M, — log n, < —c logn,); (23) is equivalent to
limy..(1/N) YL n, = 0 a.s. For the proof, we will use the following evaluation given by
Devroye [5], Lemma 3.2:

LeEmMma 7. If a,— 0 and a,log n — « as n — o, then,

(24) P(nM,/logn — 1< —a,) ~ exp(—n"™), n— o,

If we put a, = (c log,n)/log n in (24), we obtain that P(nM, < log n — ¢ log;n) ~
exp(—exp(a,log n)) = exp(—(log,_1n)°). Hence, E(n,) ~exp(—(log,-2v2¢)). This evalua-
tion taken with j = 4, ¢ > 1 yields E(n,) = o(1/(log ¢)*). It-follows that ¥, 1,/4 having
a finite expectation, is finite a.s.; by Kronecker’s lemma (see Stout [12] page 120-121), it
implies that limy.(1/N) Y2, n,= 0 a.s., given an easy proof of (23) in that case.

To get the result for j = 5, we must think that if we could treat 7, 7, - - - as independent
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r.v., since they are evidently bounded, the result would follow easily from limy.(1/N) Y2,
(n,= E(n,)) = 0 a.s,, the latter being true in that case (see Révész [10], page 59).

From this idea, we will prove (23) by classical techniques of the theory of laws of large
numbers. First, it is easy to check that if {y = (1/N) 25‘21 1/, limpe {v = 0 a.s. iff there exists
an a > 1 such that lim,., {{.»; = 0 a.s. (it follows from the positivity of the 1,). This is in turn
implied by

(25) Yoot D*($tam) < oo.

Thus we have to evaluate D*({y) = N2 YN, Y, (E(nin,) — E(.)E(n,)). Let us now
choose ¢ > 1 and j = 4; by Lemma 7, we get

(26) E(n,) = o((log,—3¢)7?), £— o0,

On an other hand, | E(pin/) — E(m)E(n,) | = |E(.(n,— E(n,))) | < E(y.). Hence, if f; =
[i/(log i)'**], and Ay = N2 Y, Y . Cov(mi, 1.), it follows from (26) that Ay =
O((log N)™'"*(log;—sN)™®) as N — . Consequently if ¢ > 0 and a > 1 then Y%, A <
0o,

For (25), it suffices therefore to prove that Y71 Bjan) < oo, where By = N2 Y, Y,
Cov(n., n,). This follows from the fact that Ay + 2By = 0, and hence, that it suffices for
(25) to get an upper bound for By.

We will now evaluate E(n;1,), when £> i + f;. To do so, let Cp.n = P(Mypsm < u, M, <
v), and consider the maximal spacing M, generated by U1, -+, Upim. Clearly P(M}, <
u) = PM,, < u). Since M+, = M), and because of the fact that M, and M), are
independent, we have therefore Cp,, = P(M,, < u)P(M, < v). This gives By = N2 ZL
Yiirer EM){P(n/M, - <log n,— clog,n,) — E(n,)}.

Next, if ¢> i + f,, then n,/n, < exp(—fi(1 +0(1))/v2i) =exp(—vi/2(1 + o(1)))/(log i)**
=c,— 0 as i — oo, It follows that log n,= log(n, — n.) + O(c,), and likewise, for any r = 2,
that log.n, = log.(n, — n;) + o(c). By similar arguments, one can check that
n,(log n/)/n, < n,(log n.iz) /N = exp(—fi(1 +o(1))/~/2_i) = ¢, — 0 as i — . Noting that
¢, =n;/nivs = o(c;), it follows, by taking together the preceding evaluations, that P(nM,,-n,
=logn,— clog,n,) = P((n,— n,)M,, ., <log(n,— n;) — clog,n,+ O(c})).

To conclude, we must now precise Devroye’s bound (24) by evaluating an upper bound
of | P(nM,/log n — 1 < —a,) — exp(—n™) |, with the assumption that a, ~ c(log;jn)/log n.

Devroye’s proof (see [5]) relies on the fact that M,,—; = K, is distributed as L’/ T, where
L’ is the largest of n independent identically exponentially distributed random variables
whose sum is T5,. It follows from the inequalities (see [5], (3.3)):

P(L,<(1—a-blogn)— P(T,<n(1-20))
=P(nM,/logn<1—a)=P(L;,<(1—a+ b)logn)+ P(T,=n(l + b)),

where @ = a, and b = n~"/*. By [5], Lemma 3.1, P(| T, — n| = bn) < 2 exp(—vn/4). Thus,
it remains to evaluate P(L, < (1 — a * b)log n) = (1 — n=47%=)" = exp(—n ™™ +
O(n™'**¥)) = exp(—n*)(1 + O((n“"*)log n)). Finally, if @ = a, ~ c(log,n)/log n, it
follows that for any 6 > 0,

27 P(nM,/log n — 1 < —a,) = exp(—n")(1 + o(n?"/*)).
' Going back to By, we deduce from (27) the following upper bound:
By=N2Y Y r E(n,)
-{exp(—c log,n, + O(c!)) — exp(—c log,n,) + o(nf~/*)}
= N3, Yt E@)EM,)(O(cl) + o(nf™*))(1 + o(1)).

By choosing 0 < 6 < Y%, a straightforward evaluation shows that By = O(N'). Hence
=1 Bian < . The proof of Lemma 6 is now complete.
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Going back to the sequence {/(r), r = 1} defined in (20), we extract from it a
subsequence, by putting:
(28) AQ) =min{Ar), r = 1, nypya1 My, — log(n,m+1) = — ¢ log; (1)},

A(r) = min{4() > A(r —1), nwa My, —log(n,w+1) = — clog, (nw+1)}, r=2,
LEmMA 8. If {A(r), r = 1} is defined by (28), then

(29) lim,A(r) /r =

° _ as
e—1 7
and {nyp+1, r = 1} is an increasing sequence of stopping times on {a(Us, - -, U,)}.

Proor. Itisa direct consequence of (21) and of Lemma 6, (23).

LEMMA 9. Let {A(r), r = 1} be defined by (28), and put forr =1, 2, -+- 8, = Taps1,
{T,, = 1) being defined in (19)-(20), then {8., r = 1} is a sequence of independent
exponentially E(1) distributed random variables.

Proor. It follows easily from (28) and Lemma 4.

LEmMA 10. Foranyj=1,

(30) P(6, = log(A(r)) + logz(A(r)) + -+ + log,(A(r))i.0.) = 1.

Proor. By Lemma 4 and as in (11), we get easily that for any j = 1, P(5, = log r +
logsr + -+ + logjsir i.0.) = 1. Let now C = e/(e — 1); it follows from Lemma 8 and the
preceding result that P(5, = log(A(r)) — log C + o(1) + loga(A(r)) + -+ + log,+1(A(r))i.0.)
= 1. This proves (30).

We are now ready to derive the final step of the proof of Theorem 2. If r = 1 is arbitrary,
put n = nyy+1, and Z = Z, = §,. From (28), we get:

nM, =log n — c logn.
On the other hand, by Lemma 10 and (30), remembering thatn, = [exp(«/_Z_i)],
Z, = 2logsn +logsn + -.. +log,n io,wp.l.
Since by (19), N1 — 1 = n + (Z,/M,)(1 + O(M,,)), if we put N = Nyy+1 — 1, then:
NMy = NM, = nM, + Z, + Z,0(M,),
and hence
NMpy = log n + 2 logen + logsn + - -+ + log—in + (1 — ¢)log,n + o(1) io.,

with probability one. Finally, since log n = log N + O(1) a.s., j = 4 and ¢ > 0 being
arbitrary, it implies that (18) is true. Hence the proof of Theorem 2 is complete.

The result can be stated in an equivalent form:

COROLLARY. Forany j=4,
(31) P(nM, —logn—2logan — +--- — (1 +e)log;n=0 io)=0 or 1,
according to whether e >0 or e < 0.

Proor. (31) can be deduced directly from (18) for ¢ > 0 and € < 0. The case ¢ = 0

follows from the fact that nM,, — log n — 2logen — « - - — (1 — ¢)log,n = 0 implies that nM,
—logn—2logon— .-« —log,-in=0for0<e<1.
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