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FINITE MARKOV CHAINS IN STATIONARY RANDOM
ENVIRONMENTS

By KURT NAWROTZKI

Friedrich-Schiller- Universitdt Jena

A formulation of a Markov chain in a stationary random environment is
given, and for the case of finite state space, necessary and sufficient conditions
are found under which a state of the chain is inessential, positively essential
or properly essential. It is shown that in this case improperly essential states
cannot exist.

0. Following Cogburn (1980) and Bourgin, Cogburn (1981), a random sequence (ay),=1
is said to be a Markov chain in a random environment (with values in a countable set A
and environments of a countable set X) if there exists a random sequence (£,).=1 (the
environment sequence with values in X) on the same probability space such that

«@(am+l =a I 1y ***y Omy 51, €2, .. ’) = Kfm(am, a) a.s.

for each @ € A and m = 1, where K. = (K.(a, @'))seea, x € X is a family of stochastic
matrices. The matrix K, describes the evolution in the environment x. )

Obviously, the distribution law of the random sequence ([, £:])n=1 is determined by
the family (K).cx and the distribution law @* = 2 ([a1, (£.)n=1] € (+)):

y(‘n:al)"”am:am,gl:xl, "‘,£m=xm)

1)

= Q+(a =anéi=x1, -, én= xm)Kx,(al) ag) - Kx,,,_,(am—l’ Qm).

Otherwise, it is easy to see that every family (K.).ex and every distribution law @™ on &/
X Z'T (o denotes the discrete g-algebra to A, & the discrete s-algebra to X, X7 the set of
all sequences (xy)=1 with x, € X and Z'{ the o-algebra of subsets of X generated by the
cylinders) by (1) define a Markov chain in a random environment.

For such a Markov chain in a random environment, Cogburn (1980) and Bourgin,
Cogburn (1981) assert that ([an, £.])»=1 is a Markov chain with transition probabilities
Wi(x, x')K.(a, a’) if (£,)n=1 is a time-homogeneous Markov chain (with transition proba-
bilities W (x, x’)). But, in general, this is not true. We give an example for this: Let A = X,
(K:):ex a family of stochastic matrices on A, (£.).>1 a time-homogeneous Markov chain
(the transition probabilities of which we denote by W(x, x’)) and @* = 2 ([&, (£)n=1] €
(+)) for any fixed % > 1. Then for the Markov chain in random environment defined by (1)
for m = k — 1 the following holds

0 if x#a

on a.s.
Kin(am, @), if x=a, ’

9’(am+1=a,£m+1=x|a1, v ,am,gl’ v »‘Em) ={
i.e. ([an, &:])n=1 is not a Markov chain.

It is remarkable that for a time-homogeneous Markovian environment (£,),=; the
sequence ([an, £:])n=1 is a Markov chain if it is stationary (see Nawrotzki, 1981, Theorem
7).

From the point of view of representation (1), we describe a Markov chain in a stationary
environment by a family K. = (K.(a, @'))aaeca, x € X, of stochastic matrices and a
stationary distribution P* on Z'¥ (i.e. a distribution law P* on &' { with P*o T~! = P*,
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where T'is the shift on X7 : T (X4)n=1 = (Xn+1)n=1). And a distribution law @ on .o/ X & ¥ we
call an initial distribution if @*(4 X (-)) = P™.

This is the concept of open systems which are investigated in Nawrotzki (1981).

These investigations show that it is advantageous to describe the stationary environ-
ment as a sequence (£,).cr (I is the set of integers), i.e. to consider the past environment
sequences, too. We denote its distribution law by P. (Then P is a distribution law on &,
where 2T is the o-algebra of subsets of XT = {(x,)ner : X, € X}, generated by the cylinders,
and we have PoT™' = P with the shift 7 on X'.) And an initial distribution @ is a
distribution law on .« X #T with @ (A X (-)) = P.

Such an initial distribution is called stationary if it is invariant with respect to the
stochastic kernel

K([a) (xn)nel"], (1) = le(a) ) X 8(x

n+-ner?

(where 9, is the distribution law with 8.(C) = 1 iff z € C). This kernel describes the joint
motion of the states and the environment in a time unit.
The stochastic kernel g with

(I(a, (xn)nEl") = Q(a =a | (gn)nel" = (xn)nEF)

is called the density of @. It is easy to prove (see Nawrotzki, 1977, Proposition 2.4) that
such kernel g is a density of a stationary initial distribution if and only if for all ¢’ € A

(2) q(a/) (xn+1)ner‘) = ZaEA (I(a, (xn)ner‘)Kx](a, a/) P-a.e.

In Nawrotzki (1981) it is shown (Theorem 2) that for stationary @ the density ¢ does not
essentially depend on (x,),=1.

We define (see also Cogburn, 1980):

(1) A state a € A is positively essential if there exists a stationary initial distribution @
with @ (a = a) > 0.

(2) A state a € A is inessential, if for all a’ € A

Kiplom=aio)=0  P-ae,

where K, ) is the distribution of the inhomogeneous Markov chain with values in A, the
initial state ¢’ and the transition kernels K, , K., - - - , and i.0. stands for “infinitely often”.
Otherwise the state a is essential.
(3) An essential state @ € A is improperly essential if there exist sets By, By, ---, €
ZT with U%_; B; = XT and such that for every a’ € 4,i =1

Ka’,P([am, (§n+m—1)nel"] S {a} X Bt i-0~) = O’

where
Ky p= j (Ka’,(x,,) X s(x,.),,ep)(‘)P(d(xn)ner‘)~
(4) An essential state @ € A is properly essential if it is not improperly essential.

ProOPOSITION. Let a € A.
(1) a is inessential if and only if
Ko p(am =aio) =0 P-ae.

(2) a is improperly essential if and only if a is essential and there exist sets By, By, - - -
€ T with U3-, B, = X" such that for every i = 1, holds

Ka,P([am, (§n+m—l)ner‘] € {(1} X B; 10) =0.

ProoF. We prove the Assertion (1). The Assertion (2) follows in the same way.
Obviously, the condition in (1) is necessary. Otherwise, by the stationarity of P from
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this condition, it follows that
Ko, plam =aio) =0 P-ae.
for every £ = 1. And for every a’ € A holds
Koylam=a 1.0) =Y Ko lon # @, -+, a1 # @, 00, = @, Gpsrs = @ 1.0.)
=Yim1 Kol # a, -+, a1 # @, 0 = a) Koy (s, et (Om = @ 1.0.).

Hence the condition is sufficient, too.

1. Now assume the state space A to be finite. Then for every family (K,).ex of
stochastic matrices and every stationary distribution P on 2T, there exists at least one
stationary initial distribution @ (see Nawrotzki, 1975, Theorem 2).

For x1, « - -, x» € X we denote the matrix product K -+ K. byK.,...n.

In the case of finite state space A the following holds:

THEOREM. Leta € A.
(1) a is positively essential if and only if a is properly essential.
(2) The following assertions are equivalent:

(i) a is not positively essential.

(ii) a is inessential.

(iii) For every a’ € A

Ym0 K ..xl@,a) <+ oo  Pae.

(iv) For every a’ € A

limpwKs ,...0(a’,a) =0  P-ae.

(v) For everya’ € A

lim, oKy, ...x,(a’, @) =0 P-ae.
(vi) For everya’ € A
Lt re J K ppoo @', @) P(d(%a)ner) = 0.
(vii) For everya’ € A
lim,,— e J' K. ...z (@', @) P(d(%p)ner) = 0.

(3) There exists at least one positively essential state and improperly essential states
do not exist.

Proor. The first part of the Assertion (3) follows from the existence of at least one
stationary distribution in the case of finite A and the second part from the assertions (1)
and (2).

We prove the assertion (2). Obviously, (iii) is sufficient for (iv). Furthermore, (vi) follows
from (iv) and (vii) from (v) by Lebesgue’s theorem. The stationarity of P yields

J' Kx,~~xm(a/’ a)P(d(xn)nEl") = f Kx_m+,~--x{)(a’, a)P(d(xn)nEF)

for all m = 1 and a’ € A. Therefore, (vi) and (vii) are equivalent.
If a is inessential then for every a’ € A
limy Ko, (o) (Uiem ay = @) =0 P-a.e.
Otherwise,

Ko\ olam = a) = Ky, ... 0 (@, a).
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Therefore from (ii) follows (v).
If @ is a stationary initial distribution and ¢ its density, then from relation (2) we obtain

Q(a’ (xn+m)n50) = Ea’EA q(a’, (xn)nso)Kx,u.xm(a’, a) P-ae.

for all m = 1. And from the stationarity of P it follows that
Qla=a)= J' q(a, (xn)n=o) P(d(%n)ner)
=fq(a, (Xn+m)n=0) P(d(xn)ner)
= J' Yaea q(@, (Xn)n<0) Kyy... 5, (@', @) P(d(%n)ner)

= Za’EA J' Kx,---xm(a’) a)P(d(xn)nEI‘)~

Therefore, (vii) implies (i).
If a is inessential then for all @’ € A

(3) Ko (Unei NEmar#a) =1  P-ae.
Since
Koy (Um=1 NZm a1 # @) = Ko, (o) (N1 a1 # @) + Yot Ko, ) (@ = @ N Fomar a; # @)
=Ko, (NE1 s # @) + Ko () (01 = @, N2 oy 5 a)
+ 2;=1 Kx,---xm(a,’ a)Ka,(x,Hm)(n;;Z a # a),

by stationarity of P we obtain
J E:=1 Kx_,,,+,+kn~x,,(a/, a)Ka(xmk)(nﬁZ a; # a) P(d(xn)ner)
= E:=l j Kx,~~xm(a” a)Ka,(x,,+m)(h;°=2 o # a) P(d(xn)nel")

= J Z:=1 e P(d(xn)nel") = 1)
so that

(5) Koz, n(NiZ2 01 # @) Ym-1 K

—m+1+k "

g, a) <+ o P-a.e.

foralla’ € Aand k €T
Furthermore, (3) and (4) imply in case of a’ = a

Ko op(Niz 00 # a) + Yoe1 Ky ooxnl@, @) Ko (s, (N2 0% a) =1 Paae.
If the first term is positive then (5) for £ = 0 yields
Ym=1 Ko on (@), @) < + o0,
If the second term is positive there exists an integer r = 1 such that

(6) le '---‘:(a’ a)Ka,(xn+,)(n?c>=2 o F# a) >0
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and (5) for & = r yields

Ko (N2 00 # @) Yieri1 Ko,y 5(0, @)Ky, (a, @)

(M

=Ko (NZ2ar# a) Yme1 Koo (@, @) < + o0,
Now, (6) and (7) imply
Ymmrr1 Ko (@, @) < + o0,

Therefore, (ii) is sufficient for the validity of (iii).

Finally, we prove that from (i) follows (ii). In this part we use the notations and
constructions from Nawrotzki (1980).

From these construction it follows that a is not positively essential iff

K. (a€&y) =1 P-ae.
Furthermore, for all m = 0
Ki@)(a & ym) = Kis,,,)(a € v0)  P-ae.
such that by stationarity of P for not positively essential a holds
(8) Ki)(Nmoa&ym) =1  P-ae.
Otherwise, in Nawrotzki (1980) it was shown
Kuy(UZ1y-0=v) =1  P-ae.

and that from y_;0 = yo it follows y_y,» = y» forall m =1.
Therefore, we obtain

Ki)(UZiNmeoY-4m=7vm) =1  P-ae.
and together with (8)
K. )(UZiNnoa&vyym) =1  P-ae.
Besides, the above cited construction yields
Ko eni)(NMimmre1 am # @) = Ko ) (Mo @ € y-iym)

and y—gs1,m C y-1,m forall [=0.
Therefore, for all a’ € A we obtain

f Ko, ey (U1 Nicy i # @) P(d(X0)ner)
=lim, . j Ko, (o) (NMizti1 @ % @) P(d(%n)ner)
= lim;,o j Ko (opi)(Mimmit @m # @) P(d(Xp)ner)
= limye J’ Ky (Ni=0 @ € y—im) P(d(%n)ner)
= J’ K (Ui Unco @ € y—im) P(d(xn)ner)

=1’

i.e. a is inessential, and the second part of the theorem is proved.
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Let us prove the first part. From the second part it follows immediately that a properly
essential state a € A must be positively essential.

Otherwise, if @ € A is positively essential then there exists a stationary initial distribution
Q with @ (a = a) > 0. Furthermore, the Markov chain ([ay, (£n,n)ner])m=1 With the state
space A X X", the initial distribution @ and the transition kernel K is stationary and it
holds (¢, n)ner = (&1, nem-1)ner a.s. Therefore, by Poincaré’s recurrence theorem we obtain

e@([arrz) (gl,n+m—1)nel"] (S {a} X B i.O.) >0

for every B € T with @({a} X B) > 0.
Now, from the constructions it follows that

y([(an)nal) (gl,n)nel"] € (+))
= j ZQIEA (Ka’,(x,.) X a(x")"er)(’)q(a/, (xn)nSO)P(d(xn)neP))

where g is the density of €. Therefore, a positively essential state « € A can be neither
inessential nor improperly essential. 0

The Assertion (3) of the theorem was proved in Cogburn (1980, Proposition 2.3) for
Markovian environments.
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