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A CENTRAL LIMIT THEOREM FOR k-MEANS CLUSTERING'

By DaviD PoLLARD

Yale University

A set of n points in Euclidean space is partitioned into the % groups that
minimize the within groups sum of squares. Under the assumption that the n
points come from independent sampling on a fixed distribution, conditions are
found to assure asymptotic normality of the vector of means of the % groups.
The method of proof makes novel application of a functional central limit
theorem for empirical processes—a generalization of Donsker’s theorem due
to Dudley.

1. Introduction. In this paper a central limit theorem is proved for the procedure
known in the cluster analysis literature (see, for example, Hartigan, 1975) as the method
of k-means. The theorem generalizes a result of Hartigan (1978) to a multidimensional
setting.

Independent observations xi, X2, - -+, X, are made on a probability measure P on R
The k-means procedure prescribes a criterion for partitioning these observations into &
groups, or clusters: minimize the within cluster sum of squares. Equivalently, a vector of
optimal centers b, = [ba1, b2, -+, baz] can be chosen to minimize

We(a) = n7' Y min <<l x: — a;®

as a function of the vector a = [a,, - - -, a:]. Associated with each center q; is the convex
polyhedron A, of all points in R“ closer to a; than to any other center. (The precise
convention adopted for allocating points common to the boundaries of two or more of the
A/s is unimportant.) The polyhedral regions corresponding to the optimal centers b,
partition {xi, xz, - - -, X, } into the optimal clusters, which minimize the within cluster sum
of squares; each b,, is the mean of those x/s in its cluster. The main result of this paper
(stated and proved in Section 3) gives conditions under which b, suitably normalized, has
an asymptotic normal distribution.

The difficulty in extending Hartigan’s (1978) central limit theorem beyond one dimen-
sion is due to added complication in the way A, responds to changes in the cluster centers.
For d = 1, small changes in a shift the boundary points of A; by only a small amount. For
d = 2, a small change in a can augment or reduce A; by an unbounded wedge-shaped
region; the contributions to W, (a) from such unbounded wedges are hard to handle. This
difficulty is overcome (Lemma B) by application of a generalized Donsker theorem for
empirical measures, due to Dudley (1981).

The proof of the main theorem depends on a quadratic approximation

(1) Wa(a) = Wa(n) —n™"’Z(a — p) + %(a — p)T(a — p),

for a in a neighbourhood of a fixed vector u, where I' is a fixed positive definite matrix and
Z, is an asymptotically normally distributed random vector. The optimal b, that minimizes
W,.(-) lies close to the vector u + n~*/*I""'Z, that minimizes the righthand side of (1), in
the sense that n'/?(b, — u) — I'"'Z, converges to zero in probability. A precise formulation
of approximation (1) appears in Lemma D of Section 2 as the culmination of three lemmas
establishing differentiability properties of W, (-).
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For typographical convenience, all integrals in this paper are written in linear functional
notation, and sets are identified with their indicator functions. Thus, instead of [4 f dP, I
write P(fA). Convergence in distribution will be denoted by the symbol ~>. The stochastic
order symbols 0,(-) and O,(-) will be employed with random arguments—the definitions
given by Chernoff (1956) carry over without change.

2. The quadratic approximation. Most of the regularity conditions needed for the
proof of the main theorem are introduced in this section in the context of the three
differentiability lemmas needed to formalize (1), which is justified by a Taylor expansion
to quadratic terms of a deterministic component of W, (-) together with a linear approxi-
mation to a stochastic component.

The decomposition of W, (-) into these two components can be expressed most easily
in terms of the empirical measure P,, obtained by placing mass n ™' at each of x1, x2, - - -,
X», and the associated empirical process X, (-) = n'/*(P,(-) — P(-)). For every vector a =
[ai, az, -+, ar] in R* and every x in R define

é(x, a) = min, << x — a;||%
Then
@) W.(a) = P.¢(-, a) = Po(-, a) + n~"X.¢(-, a).
The deterministic component P¢(-, a) is known as the population within cluster sum of

squares; I shall denote it by W(a).

LEMMA A. Suppose P| x||*> < « and that P gives zero measure to every hyperplane
in R®. Then the map a — ¢(-, a) from R into ¥*(P) is differentiable in quadratic
mean. In consequence, the map a — P (-, a) is differentiable.

Proor. If x € int A; and h is small enough,

o(x,a+h) =|x—a-k|*=o¢(a) - 2hjx - a) + L]

Define A(x, a) to be the % vector of #*(P) functions —2A4,(x — a;). Then, because the
boundary of each A, has zero P measure, the function ¢(-, a + h) can be expanded for all
x € R into

(3) ¢(x,a + h) = ¢(x, a) + h'A(x, a) + |h||R(x, a, h)

where
R(x,a,h) - 0 for P almost all x ash — 0.

The first part of the lemma then follows from the domination
|R(x,a,h)| = [h] (WA a)| + max,||x - a - hl* — | x — @ |*])
= A, @)l + B Dot llx = @ = B — 1% - o ||
= C(1+|x|) forh small enough and some constant C
€ L*(P).

Convergence in .#*(P) implies convergence in £ '(P). From expansion (3) and what has
just been proved, it therefore follows that Pe(., a) is differentiable with derivative

v(a) = PA(-, a). 0

To convert #*(P) differentiability of ¢ (-, a) into stochastic differentiability of X, ¢(-,
a), I need to use the properties of Donsker classes of functions. If ¥ C #*(P), the empirical
process X, may be thought of as a stochastic process indexed by %. Dudley (1981) called
such a ¢ a Donsker class for P if a functional central limit theorem holds for the sequence
of processes {X,(g):g € ¥}. The key property of a Donsker class is that to every ¢ > 0
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and n > 0 there exists a § > 0 and an n, such that, for all n greater than n,,
(4) P{supis;| Xn(&1) — Xa(&2) | > 1} <e.

The [8] indicates that the supremum here runs over all pairs of functions g, g2 in ¥ less
than 8 apart in #*(P) norm. The class ¢ in this paper will consist of all functions R(-, ,
a — p) with a ranging over a neighbourhood of a fixed p, chosen so that | R(x, u, a — p) |
< C(1 + || x|)) for all a in the neighbourhood and all x, for some constant C. (The processes
{X.(g):g € %)} are separable in the sense of Section 5 of Pollard (1981a) so there is no
measurability problem with the supremum in (4).)

As before, write A;, --- A, for the convex polyhedra associated with the centres
ai, + -+ ap, write My, - - - M, for the polyhedra associated with i, --- ux. Then

Rx,p,a—p) =|a—pl| '[ox a) —olx, p) — (@a—p)Ax, p)]
=Y, MAjlla—pl| '[lx—al® = |2 — pll® + 2(a; — )" (x — pa)]
= Y, MiAjla — p)|'[2(ai — @) x + ||p]® — 2uiai + | o).

Thus every function in % can be written as a sum of k* members of the class & of all
functions f with these properties:

(i) | fx)| =C1 + | x]|]) = F(x) for all x;
(i) f = LQ, where L is a linear function and @ is a convex region expressible as an
intersection of at most 2% open or closed half spaces.

By Theorem 10(i) of Pollard (1982a), to prove that % is a Donsker class it suffices to check
the entropy condition of Theorem 7 of that same paper for the class .% To do this I borrow
an idea of LeCam (1981).

Let S be any finite subset of R*. For any function 4 on R define

[ Alls = [Txes Ax)*]%
Given 8 > 0, choose a maximal subclass { fi, - - -, fn} of & for which
Ifi = fills>8||F|ls for i#j.

To check the entropy condition it is enough to show that m < B§~" for some constants B
and W.
Represent each f; by its graph

G={(xt) ER" :0<t=fi(x) or 0>t=fi(x)}.

By the defining property (ii) of %, each Gi is a union of at most two convex regions in R**,
each expressible as an intersection of 2% + 2 open or closed half spaces. The collection of
all such sets has the Vapnik-éervonenkis property (Dudley, 1978, Proposition 7.12).

Define a probability measure @ on R**' in two steps. First select a point in S according
to the distribution that places mass F(x)?/|| F||% on x. Given x, choose ¢ according to the
uniform distribution on [—F(x), F(x)]. The maximality property of the subclass implies
that for i # J,

F(x)* | fix) — fi(0)] _ 5 F(x)® [fi(x) — (0]
[FIZ~ 2F(x)  “°|FF 4F&)?

The rest of the argument follows Theorem 9 of Pollard (1982a) almost verbatim. Thus ¥
is a Donsker class.

Q(GAG)) = Y ces = 8%/4.

LEMMA B. Let {a,} be a sequence of random vectors with | a, — u | = 0,(1), for some
fixed vector p. Then, under the conditions of Lemma A,

(5) Xnd)('y an) = Xn¢('7 l-") + (an - ,‘)/XIIA('y "') + Op(rn)

wherer, = |a, —p]|.
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ProoF. From the expansion (3), the remainder term in (5) can be written as || a, —
p|| X.R(-, u, a, — n). Remember from Lemma A that R(-, u, a — p) converges in £*(P)
norm to zero as a — p. If a is close enough to p, the pair g, = R(-, p,a — p) and g =0
therefore falls into the class [8] appearing in inequality (4). With high probability, this
reasoning also applies to a,, if n is large enough. 0

Second derivatives of P¢(-, a) involve integrals over faces of the A;’s with respect to (d
— 1) dimensional Lebesgue measure o(-). In the next lemma, F;; denotes the face (possibly
empty) common to A; and A;, and I; denotes the d X d identity matrix.

LEmMma C. Suppose P| x|? < o and that P(-) has a continuous density f(-) with
respect to d dimensional Lebesgue measure A(-). Assume that the integral o[ F;; f(x)(x —
m)(x — m)’] exists and depends continuously on the location of the centres, for each i and
J and for each fixed m € R. Then, if the centres a; are all distinct, the map a — P¢(-, a)
has a second derivative I' made up of d X d blocks

{2PAJd —2Ywiro[Fuf(x)(x — a)(x — a:)’] for j=1i
=

6
© =2ri'o[Fyf(x)(x — a;)(x — a;)’] for i#j

where ri; = || ai — a;||.

Proor. From Lemma A, P¢(-, a) has derivative y(a) with components —2PA;(x — a;)
fori=1,2, ---, k. I shall prove differentiability of y(-) at any fixed u by demonstrating
differentiability of the map a — PA;(x — p;). This suffices because (3/da;)PA;(x — a;) =
—PA.Id, which depends continuously on a.

Write PA;(x — p;) as A[A; f(x)(x — p;)]. An application of Stokes’s theorem (justified by
the continuity assumptions on the surface integrals), as in Theorem 1 of Baddeley (1977),
establishes differentiability of this integral as a function of a. The derivative is given in
differential form at a = p by

(7) dPA;(x — p;) = o[oM; f(x)(x — u;)vi] da

where the kd vector v; denotes the velocity vector for motion of A; orthogonal to its
boundary dA4;, evaluated at a = u. The form of this velocity vector depends on the
boundary face F;.

Write n; = r;'(u, — w) for the unit normal pointing outward from the face Fj;.
Elementary calculations show that on F;,

vida=—(x — %(w + w)) dny + Y%nj(da; + da),

the first term coming from rotation of the face and the second from translation. With the
substitution

dn; = r;'Il;j(da; — da;),

where II; denotes the matrix for projection onto the affine hull of F;;, this last expression
reduces to

vida=—rj'(x — %(u + w)) (da; — da;) + 2ryj) ™ (u; — i)’ (da; + da;)
=ri' (x —p!) da; — ry' (x — )’ da;.
Multiply this expression for v; by f(x)(x — p.), then sum the integrals over all the faces of
dM; to obtain the second contribution to the right-hand side of (6).0

These three differentiability lemmas justify the approximation (1). It is more convenient
to express the approximation in terms of a sequence converging to u; it will then apply
directly to both the sequence {b,} and the sequence {u + n~"*T""'Z,}.



CLT FOR k-MEANS CLUSTERING 923

LeEmMMA D. Suppose W(-) has a minimum at p. Let {a,} be any sequence of random
vectors in R™ for which | a, — p || = 0,(1). Then, under the assumptions of Lemma C,
(8) Wn(an) = Wn(ﬂ) - n.—l/ZZ;z (a, — IJ‘)

+ %(@, — w)'T(a, — p) + 0,(n"%r) + 0,(r2)
where r, = || a, — p|| and Z, has an asymptotic N(0, V) distribution with V given by
Equation (10) below.

Proor. From Lemmas A and C,
Po(-,a) = Po(-, p) + (a — p)'y(p) + %(a —p)T(@—p) +o(]a—p|?).
The linear term must vanish because a = 1 minimizes W(.). Set a = a,, to find
9) Po(-, an) = Po(-, p) + Ye(a, — p)'T(a, — p) + o,(rl).
Substitution from (9) and (5) into (2) and regrouping of terms gives
Wa(an) = Wa(p) + n7%(a, — p)' X, A(-, p) + 0,(n"?r,) + Y(a, — p)'T(a, — 1) + op(r2).
It remains only to set
Z,=—-X,A(-, p).
This vector has an asymptotic normal distribution with mean vector
—PA(-, p) = —y(p) =0,
and variance matrix
PA(-, mA(-, p)’
whose (i, j)th block is
4P[(x — pi)(x — )’ M. M;].
This vanishes for i 5 j, but reduces to
(10) V.= 4P[(x — p)(x — )'M,]
for i = j. Thus
Z,~ N, V)

where Vis the kd X kd block diagonal matrix made up from the V,’s. O

3. The main theorem. Most of the assumptions needed to prove the central limit
theorem for the vector of optimal cluster centres have already been introduced through

the lemmas in Section 2. To these must be added the consistency conditions of Pollard
(1981b, 1982b), to justify application of the local approximation (8).

THEOREM. Let b, be the vector of optimal k-means cluster centres for independent
sampling from a distribution P on R“. Suppose
(i) the vector p that minimizes the population within cluster sum of squares W(.) is
unique up to relabeling of its coordinates;
(i) Pllx|?< oo
(ili) the probability measure P has a continuous density f with respect to Lebesgue
measure A on R?;
(iv) there exists a dominating function g(-) with f(x) < g( x|, for all x € R?, and
rg(r) integrable with respect to Lebesgue measures on [0, ©);
(v) the matrix T' defined by evaluating (6) at a = p is positive definite.
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Then n'(b, — ) » N(0, T7'VIT'™"), where V is the kd X kd diagonal matrix with

V. = 4P[M(x — p.)(x — w)’]
as its ith diagonal block. Here M, denotes the set of points in R closer to u; than to any
other ;.

Proor. Conditions (i) and (ii) allow me to assume (Theorem 1 of Pollard 1982b) that
b, converges in probability to p. Next I show that (iv) takes care of the continuity
assumption needed in Lemma C. For convenience, take the m of Lemma C to equal zero,
and write F for the face of the cluster instead of F,;. Decompose the surface integral into
the contributions made by the part of the face inside a ball B, of radius R and centre 0, and
the part outside B. Use (iv) to bound the absolute value of each component of
o(FBf(x)xx’) by

o(FBg(|| x| | x||*) = f [R, ©)g(r)r?-cri

where ¢ denotes the surface area of a (d — 1)-dimensional sphere. Integrability of 9g(r)
enables me to choose R large enough to make all these contributions less than some given
e. Simple uniform continuity arguments prove continuity of the dependence of
o(FBf(x)xx’) on the location of the cluster centres. The rest is easy. (Undoubtedly
condition (iv) could be improved upon.)

Put A, = || b, — p||, then apply Lemma D with a, = b,.. Since, by definition of b,,

Wa(b,) = Wa(p),
the representation (8) implies
(1) —n"2 L (b, — p) + Ya(b, — p)'T(b, — p) + 0,(n7?X,) + 0,(A7) < 0.
Positive definiteness of I" guarantees the existence of a positive constant k such that
yTy z«|y|*

for all y. Also Z, is of order O,(1) because it converges in distribution. Thus inequality (11)
leads to

A2 < 0,(n72\,) + 0,(n7V2N,) + 0p(A2)
which forces
An = 0p(n7"?).
For simplicity set n'/*(b, — u) = #,. Then (8) becomes
Wa(b,) = Wa(p) — n'Z,0, + %n"'0,16, + 0,(n")
= Wo(p) + %n~t | T2, — TVZ, |2 — Yon 24T~ Z + 0p(n ™)
= Wap + n 2T 'Z,) + %n | TV%0, — T7*Z, ||® + 0,(n™")
as may be seen by setting a, = u + n"*I'"'Z, in (8). Once again by definition of b,,
Wa(b,) < Wa(p + n™’T' "' Zy)
which forces the conclusion
Yon | 20, — T72Z, ||? = 0,(n7"),
or

0, =T""'Z, + 0,(1).
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The result follows. [

The positive definiteness required by (v) seems almost redundant. Because p minimizes
W(-), the matrix I' must necessarily be nonnegative definite, but I can see no general
method for ruling out possible singularity. The same sort of difficulty occurs in the
asymptotic theory for maximum likelihood estimators; the information matrix is usually
just assumed nonsingular. Some light is shed on the problem by the special case of two
clusters (k2 = 2) in one dimension (d = 1).

Specification of the boundary point m, = %(b,1 + b,2) uniquely determines the two
sample clusters; the population clusters are determined by m = Y%(u; + p2). With r = |,
— pz2| and p; = PM; = 1 — ps, the matrix I" becomes

<2p1 — Yorf(m)  Yrf(m) )

(12) Yrf(m)  2ps — Yerf(m)

which is singular if and only if rf(m) = 4p: p.. I have not yet succeeded in constructing a
distribution satisfying condition (i) for which this equality holds. Indeed condition (i) is
difficult to check for most distributions. The only general criterion I know of is due to
Fleischer (1964). For some standard distributions, ad hoc methods succeed though.

ExamMpPLE. Consider fitting two clusters to a sample from a distribution P that is
spread uniformly over the union of the two disjoint intervals (—1 — A, —1 + h) and (1 — h,
1 + h) on the real line. (Of course, 0 < A < 1.) This density function is not everywhere
continuous but that does not destroy the theorem—actually only continuity at the
boundary point m is needed.

Because the split point m must lie equidistant from the conditional means of the two
clusters it defines, the optimal population cluster centres must be +1 and —1.

From (12), the matrix I" can be read off as I,, the identity matrix. The diagonal elements
of V equal twice the within-cluster variance components—that is, 242/3 for both clusters.
The empirical cluster centres, suitably normalized, have asymptotically independent
N(0, 2h%/3) distributions.

All this might have been expected for a population distribution consisting of two well-
separated clusters. For large samples, the two population clusters are correctly identified
with very high probability; the cluster centres behave almost like n'/*(X,, + 1) and n'*(Y,
— 1), where X,, is the mean of a sample of % n observations from the left cluster and Y, is
the mean of 2n observations from the right cluster. In the general case, the cluster
boundaries cannot be so precisely located. Observations near the boundaries effectively
contribute to the means of the observations in both clusters. This dependence between the
means is the source of the surface integral contributions to (6); it generates the off-diagonal
elements of T".

Acknowledgment. Ithank Adrian Baddeley for help with Lemma C, and the referee,
who detected an error in my proof of the Donsker class property needed for Lemma B.
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