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SUPERCRITICAL CONTACT PROCESSES ON Z

By RicHARD DURRETT' AND DAVID GRIFFEATH?

U.C.L.A. and University of Wisconsin

In this paper we introduce a percolation construction which allows us to
reduce problems about supercritical contact processes to problems about 1-
dependent oriented percolation with density p close to 1. Using this method
we obtain a number of results about the growth of supercritical contact
processes and the wet region in oriented percolation. As a corollary to our
results we find that the critical probability for oriented site percolation is
greater than (>) that for bond percolation.

1. Introduction. In (1974) Harris introduced a class of Markov processes with state
space S = {all subsets of Z} which he called contact processes. The process £7(\) with
initial state A C Z and parameter A may be thought of as the evolution of an infection. In
this interpretation £7(\) is the set of infected site at time ¢ and the evolution of the system
may be described as follows: each infected site infects healthy neighbors at rate A and
recovers at rate 1.

As the reader can probably guess, the contact process changes from subcritical to
supercritical as the parameter varies, i.e. for small A (e.g. A < 1) £2(\) — & with probability
1; for large A the infection persists for all ¢ with positive probability; and there is a critical
value A. where the change occurs. (Here 0 = {0}.) Over the past several years many results
have been proved about A. and about sub- and super-critical contact processes (see
Griffeath (1981) for a survey). In this paper we will prove some new results about the
supercritical contact process. To explain our results we need to recall briefly some of the
known results. The reader should refer to Sections 1-6 of Griffeath (1981) for more details.

For each \ > 0 there is an invariant measure », for £,(\) such that

N =v, as t—>»
" (here = denotes weak convergence). The measure », has the property that
n{0 infected} = P(£2()) is never &)

S0 ) = 8y (a point mass on &) if A < A. and is a nontrivial invariant measure if A > A.. The
reason for our interest in v, is the following: the set of invariant measures for the contact
process is {(1 — @)vx + 605:0 € [0, 1]} so », is the only nontrivial invariant measure
(Liggett, 1978).

In this paper we will investigate properties of the contact process for A > A.. The key to
our investigation is a percolation construction inspired by recent work of Russo and Kesten
which allows us to reduce results concerning supercritical contact processes to correspond-
ing results about 1-dependent oriented percolation in which the density of wet sites is
arbitrarily close to 1. In the latter situation the results are easy to prove using “contour
methods” (i.e. “Peierls’ argument”).

Using this method we have proved a number of exponential estimates for supercritical
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2 RICHARD DURRETT AND DAVID GRIFFEATH

contact processes. The most important of these is the following inequality. Let 74 =
inf{t:&) = @}. If A > A,, there are constants C, v (which depend on A but not on A) so
that

Pt<t* <o) =< Ce™.

This rather curious result has many useful consequences. From this it follows that if
A > A, £ converges to v, exponentially rapidly, i.e. if p,(A) = P(0 € £Z(\)) and p(A) = »A
{0 € .} then there are constants C, y so that | p:(A) — p(\)| = Ce ™. (Here and below the
constants depend upon A and will change from line to line). Using the last result and the
contact process duality equation, it follows that there are C, y so that

O0=w{x,y€ -} —pAN?=< Ce |

i.e. v) has exponentially decreasing correlations. The last inequality implies that under v,
the number of infected sites in [—n, n] obeys the classical laws of probability—the strong
law, central limit theorem - - . .

Another consequence of the exponential bound given above is a strong law for | £7| (the
number of infected sites) when A > A .. Durrett [1] has shown that if 7§ = sup £7 and ¢) =
inf £7, then there is a constant a(\) > 0 so that as ¢ — o,

0 0
) r_t‘—) a(), %—> —a(\) as.on {r° = w).

From this and the coupling result
8=¢6n1¢rY (see [1], Section 3),

it is natural to conjecture that

0
I-%—'—» 20(A\)p A a.s. on {7° = }.
In [1] the convergence was shown to occur in L. In this paper we prove the a.s. convergence
(settling a conjecture of Harris, 1978).
The results mentioned above are just a few of the exponential bounds we can obtain

from our percolation construction. We can also show
P(r* < ) < Ce™"™

and prove large deviations results for P(r¢ < at, 7° = ©) when a < a()). (Griffeath (1981)
gives results for P(r? > bt) b > a()\)). These results are described in Section 4 and are
useful in studying the contact processes in several dimensions (see Durrett and Griffeath,
1981).

Another type of application of the percolation construction (and historically the first)
is to critical systems. In Section 3 we show that for the contact process a (A ;) = 0, suggesting
that p(\;) = 0, i.e. the contact process dies out at the critical value, but we have not been
able to prove this stronger result. The problem of determining whether p (A.) is positive or
zero is a very important one since it is a necessary first step in studying properties of the
contact process near A. (which is the object of the study of phase transitions).

The result a(A.) = 0, when generalized, is useful in proving strict inequalities between
critical values. Consider the one parameter family of processes with jump rates as shown
in Table (1). -

TaBLE 1
at x at rate iflENn{x-1,x+1}| =
1-0 1 anything
() 01 0 0
A 1
N 2
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For each 6 there is a critical value A (@) defined in the obvious way. Our results will show
that if «(6, A) is the asymptotic speed of r? (in the sense of (1)) and 1 < 6 < 2, then «/(4,
Ac(8)) = 0. A simple generalization of Lemma 4.2 of [1] shows that if 1 < § < § < » then
a(@, N) < a(d, N, so it follows that if 1 = § < § < 2 then A.(8) > A.(8), a result which is
“obvious” but not easy to prove. In fact, the reader should note that we have not been able
to prove the result for the full range of parameter values 6 € [0, ). The restriction to [1,
2] arises because in our construction we assume the process is additive, i.e. it can be
constructed from a percolation structure of the type described in Harris (1978) (or
Griffeath, 1979, or Durrett, 1981).

As the last remarks may suggest, many of the results in this paper hold for interacting
systems other than the basic contact process. Since one of our aims is to prove the
comparison of critical values mentioned in the last paragraph, we have proved all our
results for the systems described by (*). At the end of Section 2 we describe some of the
possible generalizations and throughout the paper we mention some of the results which
can be obtained. Perhaps the most noteworthy of these is that oriented percolation (site,
bond, or mixed) can be treated by our methods and we can show that the critical
probability for the site problem is larger than that for the bond problem. This result has
been proved recently for unoriented percolation by Kesten (private communication). The
referee informs us that related results have recently been obtained by Higuchi.

The paper is organized as follows. Section 2 describes the percolation construction. In
Section 3 we obtain our results about «(\.) and the critical values A.(#). Our exponential
estimates are proved in Section 4 and, finally, Section 5 contains the proof of the strong
law for | £!| mentioned above.

2. The percolation construction. In this section we will introduce a construction
which allows us to reduce problems about supercritical contact processes to analogous
questions about an oriented percolation process. To begin, we introduce the percolation
process. Let U = {(m, n) € Z®:n =0, m + n even}. By a d-dependent random field n with
density p on U, we mean a collection of {0, 1}-valued random variables n(z), z € U, such

that P(n(z) = 1) =p, and

PN {n(z) =0}) =1 -p)"

for all zy, -+, 2, € U with | z; — z;|| > d for all i # j (here and throughout the paper we
use the norm ||(m, n)|| = (|m| + | n|)/2 which is the most natural for percolation estimates
on U). We say there is a path from x to y in 7 if there are sites zo = x, 21, -+ , 2, = y with
|| 2: — zi-1|| = 1, increasing second coordinates, and 5(2;) = 1 for all i = 1. Put

W = {y: 3 path from (0, 0) to y} (the set of wet sites),
H = sup{n : (m, n) € W for some m} (the height of W).

We say there is percolation from 0 in n if H = .

Let £; be a supercritical contact system with rates of the form (*). Let £ be the
percolation structure for ¢, (see Griffeath, 1979, or Durrett, 1981, for a description). To
relate the contact process to the percolation problem, we begin by covering R X R* with
rectangles R, = (jJ, kL) + [-K, K] X [0, 1.2 L) (to be described below) and then use the
a.s. properties of 7 to define “good events” E;; which are adapted to %, = the ¢-algebra
generated by £ restricted to R, in such a way that

(i) the field on U given by n,» = 1g has density p and is d-dependent, for some d < =,
(ii) {percolation for 0 in 5} C {£}™**] lives forever},
(iii) p — 1 as J, K, L grow appropriately.

Now for the details of the percolation construction. As in Griffeath’s (1981) survey we
write
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4 = inf(t: & = @),
ri =sup ¢, sup@=-—w,
/8 = inf &2, inf @ = oo,

A fundamental result from Durrett (1980) asserts that if A > A (@) then there is a constant
a = a(d, A) > 0 so that for any finite A C Z as t — oo,

re 8
(2) T—» a, T—» —a  as.on {14 = o).
The strong laws above have proved to be useful in studying the contact process (see
Griffeath, 1981) and are indispensible in what follows. Let

R = (-14alL,1l.4aL) X [0, 1.2L), and for (j, k) € U let
cr =(1-.1)jaL, kL),
Ry =cir + R,
Iy =cpp+ ([—.1laL, .1laL] X {0}),
Eg = {there is a path in R from [—.11aL, —.1aL] X {0}
to ((1 — .1)aL, ) X {1.2L} which passes through
I;; and (0), ) X {.2L}}
N {there is a path in Ry from [.1aL, .11aL] X {0}
to (—oo, (—1 + .1)aL) X {1.2L} which passes through
I_;; and (—, 0) X {.2L}},
Ej, = {Eq occurs in the translated percolation structure 22 — c;}.

Figure 1 illustrates the notation introduced above and shows the paths which are required
for Eq to happen. The constraints in the definition say that the paths must cross each
other before the *, pass through the opening marked by () and then end on one side of a
* at 1.2L.

The motivating force behind the definitions given above is that if the sequence (j», &),
n=0,1, ..., is a path in U and all the events E; ; occur, then there is a “path to »” in 2
starting in c;x, + ([—.11aL, .11aL] X {0}). To see this observe that on E¢ N E1; we can
find a path from [—.11aL, .11a L] X {0} through I;; and on to both Iy, and I, (see Figure
1 for a picture proof). And so on.

To prove (ii) we observe that the induced field n has constant density and Ry intersects
only R_;1, R11, R—20, Rs0, R-1,1, and R;_1, so 1 is 1-dependent.
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To prove (iii) we observe that as M — oo, P(r'™9% < 00) = P((2 N [-M, 0] = ¢) — 0
(see Griffeath, 1979, page 39) so we can choose M large enough that P(rI™% < o) < ¢,
Temporarily write 7, = r{=% and ¢, = ¢1**. According to Durrett (1980), ¢ 'r, — « a.s. as
t — o, so we can pick L large enough that each of the following probabilities is also less
than &

(a) P(rop < .15aL),
(b) P(ry < 95aL),

(c) P(r.> 1.1aL),

(d) P(riz < 1.1aL),

(e) P(supi<i2r7: > 1.25a L),
(®) P(infi<io0r: < —.1aL).

Let A(L) = [-.11aL, —.1aL]. On {r4® > ¢}, rf®) = pi=—1el) .= p, — 1aL, so if L is
large enough then with probability at least 1 — 7¢ the right edge r¢*, 0 < ¢ < 1.2L has the
properties we want. Unfortunately the right edge is not a path, so we have to do a bit more
work to finish the construction. Let

s¥ = sup{x € £ : 3 path from (x, t) to Z X {1.2L}}.

Then sf, 0 < ¢ < 1.2L, is the rightmost path from A(L) X {0} to Z X {1.2L}. By definition
st = ri™, so the path does not wander too far to the right. To ensure that it doesn’t fall
too far left, we have saved an extra .05 in (a) and (b) above. Since » is ergodic (cf. [1]) we
can choose N large enough that

v(- N [0, N] contains an interval of length M) > 1 — .

By monotonicity, if .05aL > N, then with probability at least 1 — ¢, £%; N [0, .05aL]
contains an interval of length M. Hence with probability at least 1 — 2¢ there is a path
from Z X {0} to [0, .05aL] X {.2L} and on up to Z X {1.2L}. On{r4{¥ > .05aL} N {£2
< —.15a L} we can use the last path and paths from [0, ©) X {0} to (—, —.15aL) X {.2L}
and from A(L) X {0} to (4, .2L) to get a composite path from A(L) X {0} to [0, .05aL]
- X {.2L} and on up to Z X {1.2L}, so that s, > 0.

A similar argument shows that when r£%) > 85a L, then with probability 1 — 2¢, s >
8aL. Since sty = ri§f, there is no need to worry about the position at time 1.2L. Finally,
at time ¢ we clearly have s¥ = ¢[~11«L=) g6 from (d) it follows that s¥ = —1.4aL for all ¢
= 1.2L with probability at least 1 — e. Combining all our estimates shows that for large L
there is a path of the first type needed for Eq with probability at least 1 — 13e. By
symmetry P(Eq) = 1 — 26¢, which proves (iii).

At this point we have developed the correspondence between the contact process and
1-dependent percolation. This will be exploited in later sections to prove results about the
contact process. We conclude this section by mentioning variations on the construction
just completed which allow us to obtain results for other systems as corollaries.

(a) Discrete time systems. Let £& = A and for n = 0 if we are given £2, then
independently for each x let x € £4,4

with probability if|énn{x—1, x}i =
0 . 0
ab 1
a(2b — b%) 2

where a, b € [0, 1]. These are the discrete time counterparts of the systems with jump
rates (*). As explained in Griffeath (1981), the case a = p, b = 1 is equivalent to oriented
site percolation on Z* and the case a = 1 b = p is equivalent to oriented bond percolation
on Z?. Since our techniques apply in the discrete setting, the discrete versions of several
theorems in this paper give new results for oriented percolation. Some of these will be
mentioned later as corollaries.
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(b) Contact processes on the half line {0, 1,2, --.}. (See Durrett and Griffeath, 1981,
for application of these systems). The dynamics are given by (), except that now S = {all
subsets of Z*}, so that site 1 is the only neighbor of site 0. Some thought reveals that our
percolation scheme can be modified to work in this case. The key observation is that if p
is close enough to 1, then with positive probability there will be an infinite path up in £
which never enters a rectangle further left than the one it starts in. Letting A" be the
critical value for the contact process on {0, 1, 2, - - -}, an immediate corollary is A = A..

(c) One sided contact processes. Consider a contact process with jump rates

at x at rate
1-0 1
0—1 Al&EN {x—1}.

In Durrett (1980) it was shown that if A > A. there are constants 1 < 8 < y < « so that as
t— o©

t7—> Bt 'ri >y as. on Q.

Using this as a substitute for (2), it is possible to repeat the argument above: One lets T be
the linear transformation which maps (—.9«, —1) —» (8 + §, —1) and (9a, 1) > (y — 6, 1)
(6 > 0 sufficiently small) and then creates new “gates” from the old by applying 7.

(d) Nearest neighbor additive growth models. 'These terms are explained in Durrett
(1980), and it is clear from results in that paper and above that the percolation construction
can be carried out for these systems. Since this is a rather limited class of models, and the
already cumbersome details become more complicated, we will leave it to the reader to see
that our techniques apply.

3. Applications to critical values. Our first applications of the percolation con-
struction in the last section are to the critical contact processes and the critical values of

contact processes. Our first result is
THEOREM 1. If1=6 =<2, then a(\.()) =0.
Combining this with an idea due to Liggett (see Section 4 in Durrett, 1980), we easily get
THEOREM 2. If1=<0<0=<2,then \.(6) > \.(6).
(This is obvious from the rates but not so easy to prove.) As a corollary to Theorem 2 we
show that the critical probability of oriented site percolation is larger than that for oriented
bond percolation.

The key to the proof of Theorem 1 is the following.

LEMMA. If  is a d-dependent random field on U with density p > 1 — 37"V then

3) Ph<=H<o)<3™
and
(4) P(H = ») > .888.

Proor. We use the contour method. Since similar arguments have appeared many
times in the literature ([4], [6], [7], [9], [21], [22]) we will not give all the details. Let

D(z) = {y:llz—yll= %)}, W=U.ewD(2),
T' = d(unbounded component of W¢).
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FiG. 2

T is the contour associated with W. In words, we inflate W to W by placing a diamond of
radius % at each point of W and then T is the outer boundary of W (see Figure 2).

Orient I" so that the segment (0, —1) — (1, 0) is oriented in the direction indicated. A
little thought (and a peek at Figure 2) shows that a boundary segment for which the x
coordinate is decreasing in the orientation must have an unoccupied site on its right and
that at most two segments may share the same boundary site (see a, b, c, d, e on Figure 2),
so if the length of I" is 2% (in our metric ||||), then there are at least %/2 sites z adjacent to
I with 5(z) = 0. These sites are not independent butifa =1+81+2+ .-« +d) =1+
4d(d + 1) = 4(d + 1), there is a subset B of these vacant sites so that | B| = £/2a and
every two distinct sites in B are separated by a distance more than d. Now the total
number of contours with 2% edges is at most 3%*71((0, —1) — (1, 0) always belongs to I" and
after that at each stage there are at most 3 choices), {n = H< o} C {|[I'|=2n} and 1 —
p < 3—6a

Pn=H<o)=<Y5,3% 1 (1-p)"**<387"'¥5,3"=38787"(%)"=37",
proving (3). To prove (4) note that

,. PH=2=1-31-p)>1-37%

soP(H=w)=PH=2) -P2=H<w)=(1-3%) —%>.888.0

Proor oF THEOREM 1. The main step is to show that if a(d, A) > 0 then A > A.(6). Fix
6, Mo, with a(Ao) = a(f, Ao) > 0, and note that the percolation construction of the previous
section applies. Hence we can choose L < o so that P(Ew (L)) > 1 — 371% Now, with L
fixed, and R and c;» determined by L and a()o), consider the function

f(A) = P(Eq with =’a()\0) occurs for Z(\)).

Since Eo € %o, the event in question depends on only a finite number of Poisson processes

run for a fixed amount of time so it follows from simple estimates on the Poisson process
that f is continuous, and we can choose A; < Ao so that f(A;) > 1 — 37'®. Arguing as for (i),
and using (4), we get

P (&l 20)L2a00)L] () 1) ]ives forever) > .888.

Thus A;: = Ac(6) and Ao > A (6) as desii‘ed‘ We conclude that a(\;) < 0. The easy fact that
a(Ae) = 0 is noted in Griffeath (1981). Thus a(A.) = 0.0

PrOOF oF THEOREM 2. Fix A, 8 < 8, and let r,, 7; be the right edge processes for the
(A, 8) and (A, 8), contact processes respectively, each starting from (—o, 0]. Accordmg to
Durrett (1980), the asymptotic edge velocities are given by

. a .. 7
(5) a=lim,,. 7’ , a=lim, 7‘ ,
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where a; = Er; and o; = ET.
Suppose we can find an ¢ > 0 and £ < », depending only on A, such that

(6) &,—atZE(g—O)t,tz to

Letting A = A\.(6), and using (5) we get

aA:(0) = lim,_,mg_fi}-\%@-)—z limt_,ooa—t(—):;(ﬂ +e(0—0)=¢e@ -0 >0,

so it follows from Theorem 1 that A.(6) > A.(6). Thus we need only check (6) ForACZ
infinite and bounded above, call £ alternating whenever rif — 1 & &8, rft — 2 € ¢4
Consider a comparison process 5, which agrees with £ (= £, )\)), except that
whenever £/ is alternating the site 7, — 1 is infected at rate G\. Then &, & E (=00,
A)) can be constructed so that

¢rcéiceg forall t as,
and in particular,
rn=r=r forall ¢ as.

Note that r; = 7, until a chain of three effects occur:

() & = £ are alternating,
then

(ii) with x = r; = 7, x — 1 becomes infected in the 7. process but remains healthy in the
r. process,

then
(iii) recovery occurs at x in both processes before recovery occurs at x — 1 in the 7.

process.

Let 7 be thg first time such a chain of effects occurs; at time 7, £, C §~Z andr, <7, — 1. By
modifying £~ to have the same dynamics as £~ after time 7, and arguing as in Lemma 4.2
of Durrett (1980), we get

(7) E[Fi—r]=P(r=<t).

(Note that additivity of {(£7 (6, \))} is used at this point.) Next, observe that

(a) infsP(£9 is alternating) = y, > 0 (JA]| = o0, sup A < ),

(b) effect (ii) occurs at rate A(d — ) whenever § = é; is alternating,

(c) effect (iii) occurs with probability 4 whenever effect (ii) has taken place.
By virtue of (a) — (c) and the Markov property, we can find constants ¢ > 0, £, < o
depending only on A, so that

(8) P(r>t) < e—0-0t t=t¢,.
Combining (7) and (8) we get
9) &—a=1—e—0-0, t=¢g.
To improve this to (6) we write af’ = E[r{’], where r{” is the right edge of the
(6 + (k/n) (6 — 6), \) process starting from (—, 0](0 < £ < n). From (9),
Y
- = Zkla(k)—aik V=pndl-en™ ).

Let n — o to complete the proof. [

In light of the remarks at the end of Section 2, Theorems 1 and 2 have many variants.
For example, if p.(6) is the critical probability for the family of discrete time systems (a)
with ¢ =8 + (1 — )p and b = p/a, then an analogous argument shows that p. () is strictly

decreasing. In particular, if p, denotes the oriented site percolation (§ = 0) critical
probability, p, the oriented bond percolation (# = 1) critical probability, then
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Ds > Po.

As another variant, consider the coalescing branching processes (€20, MIA>0,0€
[1, 2] (see Griffeath, 1979). The evolution of these processes may be described as follows:

{x} dies at rate 1,
{x} branches to {x, x — 1} at rate ( — 1)A,
{x} branches to {x, x + 1} at rate (@ — 1)A,

{x} branches to {x — 1, x, x + 1} at rate (2 — 0)A,

and two particles which try to occupy the same site coalesce to one. Let A6 = sup{A:
lime P(EZ(N, 0) D 0) = 0}. Since one of the rates decreases as  increases, it is not obvious
(to us at least) that A. is a decreasing function of 4. This is true, however, because

(10) A0 =A.(6) for each 6.

To prove (10), write a,(8, \) = E[r; (6, A)], &(6, \) = E[#; — (8, A)] (as above “—” denotes
(—o, 0]) and recall that

M) = inf{}\: lim,_.., 2@ 0},
(11) ¢

A (0) = inf{}\: limyor “‘(i’ N o} ,
so it suffices to show

(12) a0, A) = ax(6,\) forall ¢8,A.

Identity (12) seems to have been overlooked until now. The proof is easy: using the duality
equation

PUANB#Q)=P(ENA#Q)
and translation invariance we see that
& =Yr-1PFr=k)—P(Fi=—k)
= Y51 P(é7 N[k, ) # QD) — P(E7 N (=k, ) = Q)
= Yi-1 P& N [k, ©) # D) — P(§ N (—k, ©) =D)
=Yi1 Pri=k)—P(ri = —-k) = a..

In passing we note that this implies for nearest neighbor additive systems, using the
notation of [1],

a—B>0=G—p>0=>P(£ never @)>0=> (- 30) = lim. P(/20)>0
so combining this with the trivial observation that
a—B<0=a—f<0= P(£ never@) = 0= p(- 50) =0,
we see that the two notions of “supercritica.lity”
(13) P (& never @) >0
(14) v(-20)>0
coincide, except possibly when a = .
4. Exponential estimates in the supercritical case. For the remainder of the

paper we will deal only with supercritical contact systems (of type (*)). Our objective here
is to derive exponential estimates of five basic types. In the statements and proofs of these
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results, C and y will denote positive finite constants which may depend on 6, A, but do not
depend upon any other variables (unless this is explicitly indicated as in Theorem 4). The
values of C and y are unimportant. In fact, the values will often change from line to line
in our proofs, an abuse of notation which helps suppress trivial computations. The
theorems proved in the section are as follows:

THEOREM 3. P(r* <o) = Ce™4, |A| < .

THEOREM 4. For any a < a = a(f, M),
P(ri~%<at)<=Ce™, t=0,

where C and y depend on a.
THEOREM 5. P(t<t<ow)=<Ce™ t=0,|A|< .
THEOREM 6. P(sup;r{>n, " <ow)<Ce™, n=0.

THEOREM 7. Forx,y€E€Z, t=0,
0=<P({x,y} C¢/) —P(xEE)P(yE t)) = Ce "™\,

We will prove the results in the order they are stated. As the reader will see, our basic
methodology is to derive analogous results for discrete percolation processes with param-
eter p close to 1, and then to exploit the construction of Section 2 to apply those results to
contact processes with arbitrary A > A..

Proor oF THEOREM 3. First suppose A = [—2n, 2n]. Consider oriented 1-dependent
percolation on U, let W,, = { y: there is a path from [—2n, 2n] X {0} to y in U}, and say
there is percolation from [—2n, 2n] if | W,| = . If | W,,| < o then the contour I" for W,
has at least 4n + 2 edges in R X R* so by an argument in Section 3,

(15) P(|W,| <x) =P("has=4n + 2 edges in R X R*)
< Ym=ans2 3"(1 = p)y P =37

provided p > 1 — 37'. Now choose the grid of 2K X 2L rectangles R., z € U, for the
construction of Section 2 so that the induced 1-dependent field n on U has density p >
1 — 37'%, Then by the construction and (15),

P(rl72K2nK] < o0) < P(no percolation from [—n, n] inn) < 372",

By monotonicity, we get P (/"™ < w) < Ce™" for suitable C, y. To complete the proof we
will show

(16) P(r* <) = P(r'" < ) whenever |A|=n.

This inequality is due to T. Liggett (private communication), and is true for any nearest
neighbor attractive system with constant death rates. For the applications in this paper,
we only need Theorem 3 for blocks, so we will merely sketch Liggett’s proof of (16). The
idea is to couple (£/*™) and (£7) (JA| = n) so that the latter process is always “more

spread out,” i.e. we can find a (random) function ¢,: £"™ — £ so that

an lo:(¥) — @e(x)| = |y — x| forall x,ye€ ™

(16) follows from (17).

To prove (17) we let a,, 1 < i < n, be the elements of A in inceasing order and let ¢ (i)
= a;. To define ££, £/ and ¢, we use the following coupling:

(i) recovery at x € £ and ¢, (x) € ¢# at the same (mean 1) exponential time,

(i) whenever infection from x to y occurs in £ it also occurs from ¢;(x) to ¢ (x) +
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(y — x) in £, and we define @+ (y) = @.(x) + (y — x).
Further details are left to the reader. [0

ProOF OF THEOREM 4. Again, we begin with oriented 1-dependent percolation on U.
Introduce:
W~ = {y: for some m =< 0 there is a path from (m, 0) toy in U},
r, = sup{m: (m,n) € W}.
The first step is to prove:
(18) Ifg<landp>1-— 3200/=g),
then P(r.<nq)= 37+l forall n=1.

This involves another contour argument. Namely, fix n and let I" be the contour for W™~ up
to time n; that is, let W* = U,ew- D(2), I' = d (unbounded component of (W*)° N R X
[0,7]) + (T runs from (1, 0) to (r» + 1, n).) If I" is given the orientation of Section 3, W™ is
always to the left. Let N1, N2, N3, N, be the number of edges (of length \/5) in I" oriented
N, ¢, 7, \ respectively. Then N3 + Ny — N; — N, = r, + 1 so if I" has length n + 2% and
r, < gn we have

ANy + No) = N1+ No+ Ny + Ny — rn— 1= (1 — g)n + 2k,

which implies

N1+sz(1—q)<”;'k).

As before there are at least (IN; + N;)/2 points z ‘adjacent to I' which have n(z) = 0 and
there is a subset of these sites of size (IN; + N:)/36 which are independent. Since there are
at most 3"*% contours with n + 2k edges, we arrive at the estimate

P(rn < qn) < Z;;=O 3n+2k(1 _p)(l—q)(n+k)/72 < 2:;=n {9(1 _p)(l—q)/72} m

Since (1 — p) < 37209 it follows that

(55

Pir.<gn)<Yy3 ™= 5 3 "< 3"t

so (18) is proved. Now consider events E . defined as in Section 2, except with .1 replaced
by 6, .01 by 82 throughout. Given a < a, choose § < a — a and pick ¢ < 1 so that g(a —
8) > a. We can take L sufficiently large that the field  on U induced by the E is
1-dependent with density p > 1 — 372°0~9"' If r, is defined as above and r; = r{"" is the
right edge of the contact process, then from the percolation construction we have

ri =rala— 8L — % aL forall t€[nL,(n+ 1)L].

Since g (a — §) > a, it follows that for n sufficiently large and ¢ € [nL, (n + 1)L],

Pri<at)<P(r.<qn)=<3""' = Ce,

proving Theorem 4.0
Theorem 4 can be improved to assert that for ¢ < a

1
lim,, o 7 log P(r; < at) = y(a) <0.

To do this we observe that
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P(ros<a(t+s)=P(ri <at)P(ries —ri <as|ry <at)
= P(r; <at)P(r; < as),
and so it follows from a simple computation that
lim,_,x-} log P(r; <at) =vy(a),
where y(a) = sup=1 ¢~ log P(r; < at) <0.

Proor or THEOREM 5. Again we could prove the corresponding result for 1-dependent
percolation on U and then exploit the percolation construction. This approach is somewhat
involved, so fortunately there is another alternative: we can obtain the result from Theorem
4. Namely, for A > A, and a € (0, «), Theorem 4 yields

P(rn<am for some integer m = N) = Ce™™".

Also, r; is majorized by a rate A simple Poisson process, so
P(rr <0 forsome tE€[m,m+ 1], rp+1 >a(m+ 1)) < Ce™™™,
Combining these two inequalities we see that
P(r; <0 forsome t=N)= Ce ",
and hence
P(rr <0 forsome t=T)=<Ce7, (Treal).
By symmetry
P(¢f=0=<r; forall t=T)=1-2Ce™"".

The desired result for A = 0 now follows from the fact that on {£% % @}, ° = inf{¢: ¢/ >
r; }. The result for general A is obtained by an easy restart argument similar to ones in [1]
and [3]. Only the A = 0 case is needed below, so we omit the extension.

Proor oF THEOREM 6. This is quite easy in light of Theorem 5. On {r° > ¢}, r? = r;
(Lemma 3.1 of Durrett, 1980, again). If there were no deaths, r; would move right one unit
at rate A so a simple estimate on the rate A Poisson process shows P(r; > 2\t) < Ce™™.
Combining this estimate with Theorem 5, we have

Pup r!>n, 1’ <o) = P<% <7< oo) + P(sup, rf>n =< %) =Ce ™. 0O

In the next section we will need an extension of Theorem 7 which establishes exponential
decay of higher order correlation functions. Theorem 7 is the special case £ = 2 of the
following result.

THEOREM 8. Let p; = P(x € &), &(x) = ¢2(x) — po. If |21 — %, | = 2m fori=2, -+ , k,
then there are constants C < o and y > 0 depending only on k such that
0 < E[[[%: &(x)] = Ce™.
ProOF. The left inequality is due to Harris; an easy proof can be fashioned after
Theorem (2.17) of [5]. It suffices to prove the right inequality for the variables {;(x) =

1{¢: = 4} — Pr, Which have the same joint distribution as the £(x). The argument splits into
two cases: t < m/2\ and t > m/2\. To handle the first case, let

Gx)={&C[-m+x,m+x]Vs=m/2A}, G=nN%Gx).
A by now familiar comparison with a rate A simple Poisson process yields

P(G°) = kCe™ ™™,
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Conditional on G, {(x:) and (§(x2), - - - , &(xx)) are independent if ¢ < m/2A, so
E[[T% $x)] = P(GY) + | E[I]% i), G|
The second term on the right is majorized by
| E[[=1 $x)| G| = | E[$(x)| GIE[[[M=2 (x| G
= | E[ft(x1)| G]| = I E[ft(xlll G(xl):”
= | E[{d(x1), G(x1)]|/P(G (x1))
= | E[{i(x1), G(x)]|/P(G(x1))
=P(G)/(1 - P(G°)) = 2P(GY),
this last provided m is large enough. Hence the result holds for ¢ < m/2A. To establish the
result for £ > m/2A, let {i(x) = iz mu0) — o, §7(X) = 1z}, 0) = Pms2r. By Theorem 5,

P(§i(x) # Gil) = p(% <ri< oo) < G,

and hence
E[| TI%: &lx) = [Tk S]] < 2kCe™ ™2,
Also, if we have numbers -1 =a, = b, =<1,
[ ks b = T5e1 @i | = Tk (i — @),
and so
E[| TT%1 $ix) — [Tk §7 (x)[] = kP(m/2\ < r* < 00) < kCe "™,
Finally, the argument for ¢ < m/2A\ yields
E[| [T §/ (x)|] < Ce™,

so combining the last three expectation estimates completes the proof for ¢ > m/2A. 0

To close this section we simply remark that Theorems 3 through 8 hold for all the
systems described at the end of Section 2.

5. A strong law for the size process. This section deals with the growth rate of
supercritical contact processes on Z. Roughly speaking, since (£7) spreads at rate 2a, and
has limiting density p, if it survives we expect that |¢7| should be about 2apt. As an
application of the exponential estimates in the last section, we prove the following strong
law. ’

THEOREM 9. Let {(£})} be the contact system of type (*) with parameters § and
A > A(0). Let o be its edge velocity, p its equilibrium density. Then
K3
t

=2ap as.on {r°=ow).

limy e

_ Proor oF THEOREM 9. Let & = &7, &(x) = 1 if x € & (=0 otherwise), p, = P(x € £),
&(x) = &(x) — pi. The main step is to show that for any a € (0, ),

1
(19) lim, 7 Yo aélx) =2ap as.

To get (21), we first show that

(20) J' p(‘ Ly &)
o t

>€) dt < o,
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Followi_ng Borel, we check (20) by means of a 4th moment computation. Let Z;, =
Y% . &(x); one then has

(21) E[Z!] = Yumyect-aart | E[E(w)Edx) f—t(y)gt(z)]l
=24 Zﬁatswsxsyszsat l E[%Tt(w) ét(x) gt(y)gt(z)]l

Now the number of terms with max{|w — x|, |y — 2|} = 2m is at most (2at + 1)*2(m + 1):
the number of ways to pick w and z is at most (2at + 1), and having chosen w and z there
are at most 2(2m + 1) ways to pick x and y. If the max above is attained by the first term,
we apply Theorem 8 with x; = w; otherwise we take x; = z. It follows that

E[Z{] = (24 Y5e0 (4m + 2)Ce™™) (2at + 1)? < CE2

The claim (20) now follows from Chebyshev’s inequality. To get from (20) to (19) we next
introduce the stopping times

Z
To =0, Tn+1=inf{t> Tn+1:¥> 105}, n=0,

and show that

(22) J lg1zpp dt = as.on (T, <o Vn}.
[

Since (20) shows the expectation of the last integral is finite, and e is arbitrary, this will
prove (19). Write E = (T, < Vn}, F1 = E N {T7'Zr,> 10ei.0.}, Fo = EN {T'Zr, < —10¢
i.0.}, and note that E = F; U F>. We check (22) by arguing separately on F; and F.. For the
first argument, observe that it is enough to show

(23) inf,e1P(Z; > (2e)'Z, Vs € [t, t + 1]|(Z)osu=t) = 6 >0 a.s.

This is established by (a) comparing (Z)) with the process in which all infection is
suppressed from time ¢ to time ¢ + 1, so that each of the Z, infected sites at time ¢
independently remains infected until time ¢ + 1 with probability e, and (b) noticing that
p. is decreasing so we can ignore the change in the normalization. For the second argument
we choose 0 < 4 < 1 so that 2(e?*”" — 1)(2a) < ¢, and observe that it is enough to show that
for T sufficiently large,

(24) inforP(Z, < Z, + 2t VS € [t, t + h]|(Zu)omuzt) = 8: >0 a.s.

To get (24) one dominates (Z,) s € [¢, t + h] by a continuous time branching process with
binary branching at rate 2A, starting from Z, < 2at. If we pick T large enough that 2a(pr
— p) <e¢, (24) follows. Having demonstrated (19), the theorem follows quite easily. Recall
that from [1] we have
=¢(N[¢rY] forall ¢ on {r°= oo},
and
49 rf

et —ti—nx as.on {r°= o},

Thus, for any a € (0, a) we have

0 Z 0 ,.0 Z
. N[z, o N [—at, at
| gtt l_ lim lnf:—mMZ lim mft__mlg‘[—taa]l= 2ap

lim inf; ..,

a.s. on {r° = o}. Similarly, for any a > «,
| €] | ¢ N[-at at]| _
13 13

lim sup;—e =< lim sup;—« 2ap

a.s. on {r° ='}. This forces



SUPERCRITICAL CONTACT PROCESSES ON Z 15

lim; . t 7| £2 | = 2ap as.on {1°= ),

as was to be proved. 0

Versions of Theorem 9, with suitable modifications, can be proved for the systems
mentioned in Section 2, and, as we prove in Durrett and Griffeath (1981), there is also a
strong law for the size of the basic contact process on Z¢, d > 1. Our result states that if
A is sufficiently large (e.g. A = 2) then ¢™%¢7| — const. a.s. on {r° = o}, This result is
clearly not the best possible, but it will require new methods to prove the results for all A
>\,

Added in revision. 'The authors would like to thank the referee for his careful reading
of the paper. His conscientious effort eliminated many typos and bozos in the original
version.

Since this work was completed, Larry Gray has developed a graphical representation
for attractive processes which allows him to prove the results in this paper for nearest
neighbor attractive systems. His results show in particular that Theorems 1 and 2 are
valid for 1 = 6 < o, Whether strict monotonicity holds for § < 1 is not known and would
seem to require very different methods.
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