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A BOUND ON THE SIZE OF POINT CLUSTERS OF A RANDOM WALK
WITH STATIONARY INCREMENTS

By HENRY BERBEE

Mathematisch Centrum

Consider a random walk on R? with stationary, possibly dependent
increments. Let N(V') count the number of visits to a bounded set V. We give
bounds on the size of N (¢ + V), uniformly in ¢, in terms of the behavior of N
in a neighborhood of the origin.

1. Introduction. Let ({.).cz be a stationary sequence of random vectors in the d-
dimensional Euclidean space (R?, #°). The process (S,)ncz, determined by

So = O, S,, = §n + Sn—l, ne Z,

is called a random walk with stationary increments. This definition of S, for all n € Z is
uncommon but will be useful in the present context. Define the point process N by

N(B) := Ynez 18(S,), B€E 8°.

We assume that the random walk is transient, i.e. N is finite on bounded Borel sets B.

For random walks on R' with stationary, non-negative increments, Kaplan (1955)
proved that EN(¢, t + h) < EN(—h, h) for real ¢t and 2 > 0. When the increments are
independent, this inequality is a simple consequence of the Markov property (see Feller,
1970, VI.10) and in fact N (¢, t + h) is stochastically dominated by N(—A, k). Below we
shall see that this domination does not hold without independence.

Let us now consider random walks on R®. Assume V is a bounded Borel set with
translate V+ ¢t := {s+ t:s € V}, and suppose V;:= {s — t:s, t € V} is also a Borel set. We
prove that if f= 0 is a function, growing not too slowly such that

1) n(f(n + 1) — f(n)) = 0 is non-decreasing
then
(2) Ef(N(V)) = Ef(N (Vo).

The condition (1) is satisfied for e.g. f(r) = n% a > 0, or f(n) = (log n).. If (2) were true
for any non-decreasing fthen N (V) would be stochastically dominated by N (Vo). However,
we prove

(3) P(N(V)=p) <yP(N(V,) =p) wherey=2 —})

for p =1, -... An example will show that y cannot be smaller without restricting V. The
two results above will follow from the more general Theorem 1 below. Inequality (3) can
also be proved directly using the method of Berbee (1979), Theorem 2.2.3.

Suppose 0 = f(0) =< f(1) < - -- is given. Let c(n) := (1/n) Y%= f (k) be a Cesaro average
and let

h(n) := c(n) + supr=n(f(k) — c(k)).
We shall see that (1) implies that f — ¢ is non-decreasing and then f = A. In Section 2 show
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THEOREM 1. Ef(N(V)) < ER(N(Vy)).

This result and also (2), (3) and (5) can be improved slightly if —V is a translate of V.
In that case we may replace N (V;) by

(4) supy-solV (V)

where V'’ runs over the translates of V.

In Section 3 we pay special attention to random walks on the real line. We prove for an
interval V= (¢, ¢t + h)

(5) P(N(V) =p) =yP(N(Vo) = p) where y =g —51[;
forp=1, 2, --. . An example shows that y cannot be smaller.

Replacing V by V + t in the inequalities does not change V;. As a consequence an
important application of our results concerns uniform integrability. Suppose that EN (U)
< o0 on a neighborhood U of the origin. Using the fact that the bounded set V is contained
in a finite union of translates of U, it is proved easily from our inequalities that N(V + ¢)
is integrable, uniformly in ¢. This result is used in Berbee (1979) to obtain Blackwell’s
theorem for stationary processes. A related integrability problem is solved in Daley (1971)
in connection with the global renewal theorem. A condition for finiteness of EN (U) can be
found in Lai (1977) in terms of strong mixing. In the limit theory of semi-Markov chains,
very complicated integrability conditions are used (see Kesten, 1974).

2. Inequalities for General V. The proof of Theorem 1 is based on a combinatorial
lemma. Let A := (so, ---, s,) be a finite sequence of points in R*. Define the distant
cluster of s € A as the subsequence A(s) = A N (V + s) of points of A in V + s (with the
same multiplicities) and the close cluster as Ao(s) = A N (Vy + s). Let n(s) and no(s)
denote the number of points in the distant and close cluster of s; note that s € Ay(s) so
no(s) = 1.

With f and % as in Theorem 1 we have the following comparison lemma for the sizes of
distant and close clusters.

LEMMA 2. Y f(n(s)) = Y h(no(s)).
Here as in the proof below the sums are over the points in A with the right multiplicities.

Proor. Obviously for s € A
f(n(s)) = c(no(s)) + (f(n(s)) — c(no(s))*.
Observing that n(s) = 1 when ¢t € A(s), define

Puls, £) = WZ) clnols)), t€ Als),

ha(s, t) := ;22—) (f(n(s)) — c(m(s)))*, tE A(s),

hi(s, t) = ha(s, t) := 0, otherwise.
Because n(s) = #A(s) we have, rewriting sums,
s F(n(s)) = Y3 (s, &) + X, halr, 5))

and it suffices to prove that the term in brackets is at most A(no(s)). This term equals

(6) c(no(s)) + Yrseam ;(lr—) (f(n(r)) — c(no(r)))*.
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If s€ A(r) then V+ r C Vo + s so n(r) < no(s). Hence (6) is at most
1
c(no(s)) + Yrscaw) SUPn=ny(s) - (f(n) = c(no(r)))*.

The sum above is taken over & := #A4A N (—V + s) terms. If s € A(r) then -V + s C V, +
r, 50 k < no(r). Because c is non-decreasing (f (n) — ¢(7))* is non-increasing in j. Hence (6)
is at most

™ elra(s)) + ksupnaniy = () = c()".

Since c is the Cesaro average of the monotomic sequence {f(n)}, the difference
k k-1 1
- (f(n) — c(k)) i— (f(n) —c(k - 1)) = o (f(n) — f(R)

is non-negative for 2 < n and non-positive for 2 = n. So the expression (7) is maximal for
k = n. Therefore (7) and so also (6) is at most A(no(s)). O

REMARK 3. If —Vis a translate of V we can strengthen Lemma 2 by replacing no(s)
there by
(8) no(s) :==supyss #FAN V'

where V’ runs over all translates V + ¢ of V: in proving this assertion we use the facts that
n(r) < no(s) and & < no(r) if s € A(r), and follow the arguments as above with the obvious
changes.

Theorem 1 follows from Lemma 2 using the ergodic theorem as follows.

ProoF oF THEOREM 1. Take A := (So, -+, S,) and define
N(B) := ¥ 1a(Si).
By Lemma 2
9 Tio f(N(Sk + V) = Tico AN (Se + Vo).
Choose some large constant m and define for — < 2 < ® a stationary sequence
N =N(Sy+V) ifSu &S, +V foral |j|=m,
=0 otherwise.
With these definitions
N <N(S,+V) form=k<n-m,
=2m-—-1 for all %,
and hence
SE o f(NE) — 2mf(2m — 1) < Yo f(N (S + V)).

By (9) the right hand side is dominated by

S0 (N (S + Vo)) = Yizo A(N(Sk + Vo)),

where to deduce the last inequality we have used the facts that 4 is non-decreasing and
N = N. Hence

Yio F(NE) — 2mf(2m — 1) < Y30 A(N(S, + V).

Divide by n + 1, let n — o and apply the ergodic theorem. After taking expectations we
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obtain
Ef(N§{™) <= ER(N (V).

Let m — «. By the monotone convergence theorem this implies the assertion. 0
To get (2) from (1) we apply Theorem 1 and the following remark.

REMARK 4. Obviously 4 = fif and only if f(n) — ¢(n) is non-decreasing. This property
holds under (1). To see this observe that f can be expressed as f = Y'1" a, f, where a, := f (1)
and

n=1(f(n) —f(n—=1)=as+ --- +ap,, n=2,

species the other a,. They are non-negative by (1). Here f, is defined by

1
fr(n) 3=2;m n=p>1

That f — ¢ is non-decreasing is checked easily for f = f,, and hence also holds for f =

X7 apfo.
Inequality (3) follows from Theorem 1 by using f = 1, and observing that for n = p
-1 -1 1
(10) hny=1-2—— 42— "< —9l=-
n p p

The constant in (3) cannot be smaller because of the following example for d = 1.

ExamPLE 5. Fix some m = 1. We construct a sequence A of reals x; < y; < +++ < X
<ymn<zandaset Vsuchthaty, €Ex;+ V,z€y, + Vand (x; + Vo) N A = {x,}.

Suppose this is done. Let A = (so, - -, s,) consist of (p — 1)-tuplets at x1, - - -, x,, and
p-tuplets at yi, -+, ¥m, 2. Then, counting with the right multiplicities

#{(s€A:n(s)=p}=m(p—1)+mp
#{sEA : ny(s)=p}=mp+p.

If m is large the ratio y,, of these numbers is close to 2 — 1/p.

To construct the probabilistic example, let w := (wr)rez have period n + 1 such that
w, =8 — §-1, 1 =i =< n, and wo is some very large number. Let each element of Q :=
{T'w, 0 =i = n} have equal probability. The identitity £ on € is stationary and the ratio
of the probabilities in (3) is y., as above.

To construct A let 2 < p, < ps < .- - be primes. Take z := 0 and

Y= TPUE ek P
X, =Y, —Preeckp, 1< i< m,

and let V := {p;*-.-#p,:1 < i < 2m}. The only property of A that is not obvious is
(x. + Vo) N A = {x;}. Let us call products of more than m primes long and the other
products short. Each v € V; is uniquely represented as difference of two elements in V. Let
v, be obtained by replacing in this difference the short products by 0. Also (x,);:= y..

Suppose x, € x, + V,. It is easily proved that for the long productsinx, —x, =veE V,
we have y, — y, = v, and then we should have v = v,. So y, — 3. = x, — x, and { = j. Similar
considerations disprove y; or 0 € x, + V,. Hence (x, + Vo) N A = {x,}.

3. Inequalities for intervals. Let d = 1 and assume V = (¢, ¢ + h). Let A :=
(S0, *++ , 8,) and take n(s) := # A N (V + s) as before but define no(s) by (8). Because —V
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is a translate of V, Lemma 2 holds. We get (5) from Lemma 6 as in the proof of Theorem
1. Counting s € A with its multiplicity, we have

LEMMA 6. # {sE€E A:n(s) =p} = (3/2 — 1/2p) # {s € A:ny(s) = p}.

Proor. Let f= 1. Then h(n) < 3/2 — 1/2p for n < 2p by (10). Hence if no(s) = 2p
for all s € A, then the assertion follows from Lemma 2.

Let v(A) := #/# be the ratio of the numbers at the left and right in the assertion. If
v(A4) = 1, nothing has to be proved. Otherwise there may exist an interval I = (x, x + h)
with more than 2p points of A. We will remove one of these points to get A’ and will show
v(A) = y(4’). Continuing this procedure, we would come in finitely many steps to A” with
no such intervals I. For such A” we already obtained the assertion and so y(4) < y(4”)
= 3/2 — 1/2p would complete the proof.

So consider A and I as above and remove § € A N I from A such that both in (x, 5] and
[5, x + h) at least p points of A are left. One checks easily that then # A’ N V' = p if
# A N V' =p for any translate V’ of V. Hence in y(A) := #/#, the removal of § causes the
denominator (numerator) to decrease by (at most) 1. Because y(4) = 1 we may conclude
y(A) =vy(A4).0

ExampLE 7. The constant y in (5) cannot be smaller than 3/2 — 1/2p. To see this let
0<eg<--+ <éen <1 Let A contain p-tuplets at 5% and 5% + ¢, and (p — 1)-tuplets at
5k + e, + 1,0 < k< m. With V:= (5, 6) the ratio y» of

#{(s€EA:n(s)=p}=0@Bp—1m
#{s€E A :no(s) =p} =2p(m + 1)

is close to 3/2 — 1/2p for large m. Here we may take no(s) := # A N (V, + s). Just as in
example 5 we can construct a probability space where the ratio of the probabilities in (5)
iS Ym.

Acknowledgment. I am grateful to a referee for comments that led to much more
general results. Also Example 5 is due to this referee.
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