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A CONDITIONED LIMIT THEOREM FOR RANDOM WALK AND
BROWNIAN LOCAL TIME ON SQUARE ROOT BOUNDARIES

By PrisciLLA GREENWO0OD' AND EDWIN PERKINS?

University of British Columbia

We count the number of times a random walk exits from a square root
boundary and show that the normalized counting process and the normalized
random walk converge jointly in law to a “local time,” whose inverse is a
stable subordinator of a known index, and a Brownian motion. The study of
this limit process leads to some precise sample path properties of Brownian
motion. These properties improve earlier results of Dvoretsky and Kahane on
the existence of small oscillations in the Brownian path.

1. Introduction. Consider a Brownian motion, B;, and a random time set M. Think
of Y, as the process obtained by resetting B to zero at times in M, and suppose that M is
a regenerative random set, in the sense of Maisonneuve (1974), for Y. A familiar example
of such a'set is

M = {t| B, = inf,=.B.}.
In this case Lévy (1948) showed that
Y. = B, — inf,<.B(s)

is a reflecting Brownian motion and —inf;<, B is L., the local time of Y at 0 (or equivalently
the local time of M), and also the functional inverse of a stable subordinator of index %.
Intuitively the excursions of Y are (unsigned) Brownian excursions and when Y would exit
from [0, o), its local time increases to keep it positive.

Suppose that we replace “when Y would exit from [0, ®©)” with “when Y would exit
from a moving boundary.” A suitable class of boundaries is of the form I(f) =
[ex Vt, ¢ «/Z](—oo =<c¢; =<0 =< c; = ). (Note that ¢; = 0, c; = « gives the case described
above.) We would like to construct Y by running B, until it hits I(¢), at which time we
reset it to zero and then repeat this procedure. The set M would be the set of “renewal
times” for Y and the local time, L, of M would increase an infinitesimal amount at each
point in M. Strictly speaking this is nonsense since B, will exit from I(¢) immediately.
Nonetheless we will show that by using random walk and an invariance principle it is
possible to construct processes Y;, L, and a Brownian motion, B,, such that B, stays inside
the square root boundaries on the intervals of constancy of L (Theorem 13). Although we
are unable to construct Y and L directly from B (as Lévy does in the case (c1, ¢2) =
(0, =)), several other properties of the “Lévy case” do hold. Implicit in the above is the
fact that there are times ¢ such that B(¢ + h) — B(t) stays inside I(k) for small A. It has
been shown by Kahane (1974) that for large |c¢:| and c; this is true. We will not use
Kahane’s results but will refine them by our methods (see Theorems 1, 17 and 19).

We obtain L and Y as the weak limit of discrete processes, L., Y., defined as described
above, but from normalized random walks Si.gn~"? which converge weakly to B: (the
heuristic definitions of L and Y are easily made precise in the discrete setting). The
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convergence of {L,} is established by first showing that if
T =min{n|S, & [ Vn, c;Vn 1)

then (Theorem 5)

(1) lim,,oP(San™"? £ y|T> n) = Q((—, y])

(2) P(T > n)= n™*q(n), where = is slowly varying (i.e., lim,_,.m(¢n)m(n) " = 1, for all
¢ >0). Hence, T'is in the domain of attraction of a stable law of index min(2, Ao(c1, ¢2)).

Here —Ao(c1, ¢2) is the largest efigenvalue of

AV = -\¥,  ¥(c)=0 if |c|<o», (=1,2),

where A = Y%(d?/dx® — xd/dx), Q(dy) = ¥o(y)é”/*dy, and ¥, is the eigenfunction
corresponding to —Aq(c1, ¢z2), As L, is the properly normalized number of times the random
walk exits from a square root boundary, (2) implies that the functional inverses of L,
converge weakly to a stable subordinator of index Ao (c1, c2), assuming Ao(ci, ¢2) < 1, and
hence L, converges weakly to the inverse of this subordinator, Results of the form (2) have
also been found recently by Novikov (1981 and personal communications). Breiman (1965)
proves (1) and a stronger version of (2) with m(n) constant in the case ¢; = —¢, under
slightly stronger hypotheses than those in Theorem 5. The proof in [6], however, seems to
be incomplete since it uses Lemma 9 below without proof and a Tauberian theorem
without verification of its hypotheses. A complete proof of (1) and (2) is therefore given in
Section 2. We follow Breiman’s approach in our use of the eigenfunction expansion of the
transition density of the Ornstein-Uhlenbeck process, We also use some estimates from
Uchiyama (1980) (in the case ¢, = —). Actually, (1) and (2) are established for asymptot-
ically square root boundaries and a partial converse is stated (Theorem 11) which shows
that these are essentially the only boundaries for which (1) and (2) can hold. An explicit
formula for both @ and A¢(ci, ¢2) is given only in the familiar setting (ci, ¢2) = (0, ©). In
this case @ (dy) = ye”2dy (> 0), Ao (0, ) = % and our result includes the one-dimensional
version of a result of Iglehart (1974) and Bolthausen (1976, Corollary 10).

In Section 3 we show that (A., Y.)(¢) converges weakly to a homogeneous Markoy
process (A, Y), whose transition probabilities are described explicitly in terms of Wiener
measure, Here A, (¢), (A(t)) is the time since the last renewal of Y,,, (Y). From this follows
the joint convergence of (A, Y., S;r.1n7"2, L) to (A, Y, B, L) (Theorem 13). This theorem
is the heart of the paper and suggests two avenues for further study.

One is the limit process (4, Y, B, L) itself. Some properties are established in Theorem
13 and the generalization of the aforementioned results of Lévy are proved in Section 4.
Nonetheless a fundamental question that remains unanswered is:

Is L a measurable function of B?

The answer is known only when (c1, c2) = (0, ®) or (—, 0), in which case Y and L are
functions of B, as discussed above.

A second topic is the application of Theorem 13 to obtain further information about the
random walk. This, unlike the results of Section 5, requires the full strength of Theorem
13 and is pursued in a subsequent paper [14].

In Section 5, the construction of (4, Y, B, L) is used to establish the following theorem
on the sample path behaviour of Brownian motion:

THEOREM 1. Let B be a one-dimensional Brownian motion.
(a) y = infi=olim sups_o+| B(¢ + h) — B(t) |h™2 =1 as.
(b) Yo = infi=0,8y=0lim sups_,o+| B(¢ + h) |A~"/?
is a.s. the unique positive root of
Ta-1 (x%/2)"(2n - a7 =1
(and therefore v, = 1.3069). O



LOCAL TIME ON SQUARE ROOT BOUNDARIES 229

Note that (a) states that for ¢ > 1 there exist times ¢ and § > 0 such that | B(¢ + h) —
B(t)| = cvh for 0 < h < §, but for ¢ < 1 there are no such times. This refines results of
Dvoretsky (1963), (y > %) and Kahane (1974) (y < «). Part (b) is also concerned with the
existence of times ¢ for which | B(t + ) — B(¢) | = cvh (0 < h < §), only now ¢ must be in
the zero set B. This improves a result of Kahane (1976) (0 < yo < ). In fact we prove
versions of (a) and (b) which hold for asymmetric square root boundaries (Theorems 17
and 19).

Finally, let us mention that our original proofs of Theorems 1 and 13 used nonstandard
analysis. The intuitive description of the construction of L from the Brownian path
becomes a rigorous definition when one considers the Brownian motion as the standard
part of a random walk with infinitesimal step size (see Anderson, 1976). This nonstandard
viewpoint is used in the appendix, where the tightness of (4., Y., Sp..;n™"% L,) is
established.

2. A Conditioned Limit Theorem. Throughout most of this work we assume the
following hypotheses:

H) () {X:|i € N} areiid. random variables such that E(X;) = 0, E(X?) = 1, and
E(X?log*(X;)) < o(log*x = max(0, log(x)).
(i) fii:NU {0} » [—oo, ], i = 1, 2 satisfy f1 = 0 < f> and one of the following 3
conditions: ’
(H.) fi(n) is non-increasing for large n, f>(n) is nondecreasing for large n and
lim, o f;(n)n™"2 = ¢;, where —o < ¢; < ¢z < .
(Hy) lim,ufo(n)n™ 2 =cy<®andfi=—o = ¢,
(Ho) limpefi(r)n™2=c; > —w and fo = +% = c;.
(iii) IfS. =Y"%-1 X, and
T =min{n|8S, & [fi(n), :(n)]},

then P(T'<n) >0 for eachn € N.

In this section we wish to establish (1) and (2). Define
@.(B) =P(S,n""?€ B|T>n) for B a Borel set.

An Ornstein-Uhlenbeck process U(#) is a diffusion with scale function s(x) = [§ e” 2 dy
and speed measure m(dx) = 2¢~*/? dx. Such a process may be obtained from a one
dimensional Brownian motion, denoted always by B(¢), by

U(t) = e ?B(e’ — 1), (t=0)

(see Knight [21, page 96-98]). Square root boundaries for B become constant boundaries
for U. The notation P, is used to denote a measure for which P.(B(0) = x) =
P.(U©) =x) =1, and

p(Cl, Cz) = 1nf{t| U(t) E [01, Cz]}.

We now collect a few results from the theory of o.d.e’s.

PropPoSITION 2. Let A = %(d*/dx* — xd/dx) and consider the Sturm-Liouville
equation

3) A¥Y =AY on (o, ), ¥(a)=0 if |c|<o,
where —0 < ¢; < ¢; < o and min(| ¢ |, | c2|) < .

(a) There is a sequence of simple eigenvalues 0 = —\o(cy, c2) > +++ > =\, (c1, €2) > -+ -+
whose corresponding eigenfunctions {y(c1, cz)} form a complete orthonormal system
with respect to m(dx).

(b) Ar(=00, c2) > Ao(—00, c2) + %

(c) Aolc, c2) is strictly positive, jointly continuous on

C = {(c1, ¢2) € [—o0, ®]?| 1 < €2, min(| c1 |, | e2]) < 0},
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strictly increasing in c¢;. € (—», c¢;] for ¢z = «, and strictly decreasing in
¢ € [e1, ), for ¢; = —. Also,

lim ¢, ¢, 0Ao(C1, €2) = @, lim(q,,¢) (-m,0)NolC1, €2) = 0,

M(-LD =1, Ao(=,0) =%, ~ o(0, 0, x) = (2m) x.
(d) We may (and shall) choose yo(c1, c2) such that for each ¢ > 0,
inf{yo(c1, c2, x) |x € (c1 + &, ca —€)} > 0.

Proor. (a) If max(|c:|, |c2|) < o, this is a classical result which may be found in
Coddington and Levinson [8, Chapter 7] (see also Tricomi [35, pages 117-119, 124]). If
max (| ¢1, | c2|) = o, the result is in the appendix of Uchiyama [36].

(b) See Proposition 1.1 of Uchiyama [36].

(c) Recall that A is the infinitesimal generator of the Ornstein-Uhlenbeck process,
U(2), killed at {ci, c2} (see Knight [21, Theorem 4.3.3] for a precise description of the
domain of the generator). Let RS> denote the resolvent of this killed process (o = 0). If
max(|c:|, | e2|) < 0 and f is continuous on [ci, cz], then

R§vef(x) = f Go(cy, &) (x, ) f(y)m(dy),

where
(s(x) — s(c1))(s(ex) — s(Y))(s(c) —s(e))™! if asxsy=o
Golcey, c2)(x,y) =9 Goler, e2)(y, x) if c=y=x<c
0 if (x,y) & [a, ]’
(Knight [21, Lemma 4.3.4]). Note that

. - if =
llmc|—>—ooG0(cl; CZ)(x’ y) = {3(02) S(x\/y) :)th:’r‘\ﬂ/ige< 02} = GO(_OO’ CZ)(x’ y)’

s(xAy)—s(a) if xAy=q
0

otherwise } = Goler, ©)(x, y),

lim02—>+ooG0(cl) 02)(x> y) = {

Lm ,, oy (eoe<e. Goler, €2)(x, y) = 0= Go(e, c)(x, y).

For each (x, y), Go(c1, c2)(x, y) is strictly decreasing in ¢; € [—x, ¢;] and strictly increasing
in ¢; € [e1, ). A direct integration shows that Go(c1, ¢2) € L*(m X m)(min(| ¢, |ez]) <
). Therefore

Go:{(c1, c2) € [—0, ®]*|cr < ¢z, min(|c1],|cz]) < 0} = L*(m X m)

is continuous by the monotonicity established above and the dominated convergence
theorem. If f = 0 is bounded and continuous on R, then

R§f(x) = f Golcr, c2)(x, ) f(y)m(dy)

holds for all (ci1, cz) in C by the monotone convergence theorem. Therefore we may
consider R,"* as a Hilbert-Schmidt operator on L2(m). As the eigenvalues of R§"> = —A "
are {Ax(c1, c2) 7'}, we see that | R§"|| = Ao(c1, c2)™". The strict positivity of Ao on C is
immediate. The continuity of Ao on C follows from

[| RG> — R§* | = | Goler, c2) — Golct, c3) [lz20mmy -
Since lim (¢, ¢, R§"|| = 0, we see that lim ¢, c,)—o0Ao(c1, €2) = . Also

lHm e e, (—wemNo(Ct, €2) =k LM, e (—oyem || RE"2(1) |Zwm =0 (& € (0, )).
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Breiman [6, Theorem 1] shows A¢(—1, 1) = 1, Uchiyama [36, Proposition 1.1] shows
Ao(—00, 0) =%, and (0, o, x) = (27) ~*x(x = 0) follows from a short computation.
Suppose that —o0 < ¢; < ¢1 < ¢2 < . Then if Yy(c?, ¢2) is 0 on (—oo, ¢1],

Ao(el, e2) ™ = || RE"“9§" | L2om
2

=J' U Go(ci,02)(35,.)’)%(0'1,Cz,y)m(dy)] m(dx)

1

<Aoler, €2)72

by the strict monotonicity of Go(-, c2)(x, ¥).

This shows that ¢; — Ao(c1, ¢2) is strictly increasing on (—o, ¢z ]. Similarly ¢; — Ao(cy,
¢2) is strictly decreasing on [c;, ®) for ¢; = —oo.

(d) If max(|ei|, |e2|) < o, the result follows from Theorem 2.1 of Chapter 8 in
Coddington and Levinson [8]. Assume therefore that ¢; = —, ¢; < ©. Theorem 1.1 of
Uchiyama [36] shows that yo(—, ¢z) = 0. A calculus argument shows that d/dx (yo(—,
2, x)) < 0 for x large negative. Therefore if the statement of (d) is false there is an xo < ¢,
such that Yo(—, ¢z, x0) = 0 and Yo(—, ¢z, x) > 0 for x < xo. Therefore Yo(—, c;) €
L¥(m), A Yo(—0, ¢2)(x) = —Ao(—, c2)Yo(—0, ¢z, x) on (=0, xo), Yo(—0, c2, %) = 0. By (c),
Ao(—00, Xo) > Ao(—00, ¢2) and hence Yo(—, x0) and Yo(—x, c2) are orthogonal with respect
to m on (—o, x,) since they are eigenfunctions of the same Sturm-Liouville equation, with
different eigenvalues. As Yo(—, ¢z) > 0 on (—®, x,), this implies Yp(—x, x) = 0, a
contradiction. 0

NorATION. 6(c1, ¢2) = [& Yo(c1, €2, x)m(dx).

—,, denotes weak convergence.

Although the following Lemma is well-known, we sketch a proof for the sake of
completeness. In what follows we suppress dependence on (c;, ¢;) whenever possible.

LEmMA 3. (a) Let q(t, x, y) denote the transition density (with respect to m(dy)) of an
Ornstein-Uhlenbeck process U killed at {c1, c2}. If t > 0 is fixed, then

q(t, x,y) = Ti=0 e 4 (x)r (),

where the series converges absolutely, uniformly for (x, y) in compact subsets of [c1, c2]%
The convergence also holds in L*((c1, c2)?, m(dx)m(dy)).
(b) If t € (0, 1), then

j P, (p > log t " Wo(x)m(dx)§ ™" = ™.

1

Proor. (a) We only consider the case when ¢; = —o (see Itd and McKean [17, Chapter
4.11] for the case when [c;, c.] is bounded) and suppress dependence on c.. Let R, and
G.(x, y) (respectively R{ and G (x, y)) denote the resolvent and Green’s function for an
Ornstein-Uhlenbeck process killed at p = p(—x, ¢;) (respectively, p(—n, ¢z)). That is, if f
= 0 is defined on (—o, cz],

R.f(x) = Ex(f fUt))e dt) =f Ga(x, Y)f(y)m(dy).
0 —o0

Clearly G®(x, y) is non-decreasing in n for each (x, y) and it follows easily that
lim, G (x, y) = Ga(x, ). Using the explicit formula for G given by It6 and McKean
[17, page 128-129], it is easy to see that G, is continuous and symmetric. Moreover, G, €
L?(m X m) because G, < Gy and Go € L%(m X m) (see the proof of Proposition 1). The
eigenvalues of R, are {(a + Az) ™'} and the corresponding eigenfunctions are {yz} (recall
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R, = (e — A)™"). Although Mercer’s theorem (Riesz-Nagy [39, page 245]) applies to finite
-intervals, one can use the transformation y = m([—x, x]) to transform L2((—, ¢,], m) into
L*([0, m(—o», c»]], dz) and apply virtually the same arguments as in the proof of Mercer’s
Theorem in Riesz-Nagy [39] to see that '

Ga(x, y) = ¥i-0 (@ + M) "Wr (X)W (),

where the series converges absolutely, uniformly on compact sets, and in L%((c;, ¢2)% m
Xm).Ift >0, let

q'(t, x, y) = Ti-0 €Y (XN (),

where the series converges in the same sense as the previous one since e™ < (1 + A;)™!
for large k. Taking Laplace Transforms in ¢ and noting that the absolute convergence
allows us to interchange summation and integration, we see that

f e™q’'(t, x, y) dt = G, (x, y).
0

This identifies ¢’(¢, x, y) as the transition density with respect to m(dy) of U(¢), killed at
{c2}, and completes the proof of (a).

(b) J’ | P.(p >log t o (x)m(dx)d "

1

= limn_,e0 Yheo t™ J J Ve (X) Y ()0 (x)m (dx)m (dy)6 ",
by the L? convergence in (a),
= t""j Yo(y)m(dy)d" = th.0

The next proposition now follows easily from some estimates of Uchiyama [36, Theorem
1.1].

ProposITION 4. (a) Ify, c2 € R and € > 0, then

lim1—>°°sup—e"'t'/25ISC_>—e| P»’C(U(t) = ylP(_°°, c?) > t)

y
- J’ Yo(—00, ¢z, 2)m(dz)d (—, 02)_1| =0.
(b) If c1 < cz, max(| c1 |, | e2]) <, e >0 and y € R, then

Y
1imt—>oosupcl+esxsoz—e|Px(U(t) = ylP(Cl, c?) > t) - J’ 4’0(01) C2, Z)m(dz)e(C'l, 02)_1| =0.

Proor. (a) By Theorem 1.1 of Uchiyama [36], for each 8 > 0 there is a ¢; > 0 such
that

(4) Px(P(_°°’ 02) > t) = e—)\n(—w,c_»)f(a(_oo’ 02)\1/0(_00) Ca, x) + r(t> x)))
where
Ir(t, x) I < 05e—()\l—)\n)(_m,w)leﬁx'l.

Lemma 3 and (4) give us
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P(U@W)=ylp>0t) = J’ Yo(2)m(d2)(8 + r(t, X1 (x)™)"
5) -

+ J’y (Tr-1 €™ Yo (2)¥n (2))m(d2) e (B (x) + 7 (2, 2))7".
As in the proof of Theorem 1.1 in Uchiyama [36],
ch | St e ™Y, (X)yn (2) |m(d2) < cse ™M™,
Fix ¢ > 0 and choose 8 > 0 so that 8¢ > < 1. Then for large ¢,
SUP_,1y1m ym e f N | Sr=1 €Y (X)n (2) | m(d2) e (B (x) + (2, )"

= K exp{—(A1 — Ao}t + 8¢ 7%} ((inf_, 1prac e, o (x) — csexp{—A1 — Ao — 8e72)2})*) ™"
= K’ exp{—t(% — 8¢7?)}; (Proposition 2(b), (d)).
Similarly
SUP_, iz pmer| P(E ) [Y0(x) ' = K" exp{—t( — 8e72)).

The result follows by using these estimates in (5).
(b) Following the proof of Theorem 1.1 in Uchiyama [36], one obtains (for max(| ¢ |,
| e2]) < o).

(6) P.(p > t) = e ™ (Bdo(x) + r(t, x)),
where
|7(t, %) | < c exp{—(A1 — Ao)t}.
The proof now proceeds as in (a). 0
We are ready to state the main result of this section.
THEOREM 5. Assume the hypotheses (H). Recall that @.(A) = P(S.n""*€ A|T > n).
(a) @ —w Qw, where

Q-(B) = f Yoler, 2, YYm(dy)d(ci, c2) "
B

(b) P(T > n) = n™C 5 (n), where = is slowly varying.

We first prove a sequence of lemmas. The hypotheses (H) of Theorem 5 are assumed
in Lemmas 6 to 9.

NorAaTION. (i) If m < n, let
P.(m,n,y) = P(S,n"*=<y, S, € [fi(k), £(R)] for k=m, . -, n|S,m/* =x)
@ (m, n, y) = Pi(m, n, y)P:(m, n, ©)~".
We sometimes write P.(m, n, A) for [4 P.(m, n, dy).
(i) f £ NU {0} > R and x>0, let
Tr=min{n|S, > f(n)}, @) = f([xt)x""?, t=0.

In particular we have S™(¢) = S;.qn "2
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(iii) If L and M are topological spaces, C(L, M) denotes the space of continuous
functions from L to M with the compact-open topology.

LEmMa 6. Ift € (0, 1), then
lim ;o SUP—w=r=w| Px([nt], n, ©) — P.(o(c1, cz) >logt™)| =0
and for each M > 0,
lim o SUP —wosr=w, |y |<m| Pe([1t], 1, ¥) — Px(U(log t7') <, p(c1, c2) >log t™')| = 0.

Proor.
P.([nt], n,y) = P(x[nt]2n % + Sy pyn 2 = y,
x[nt]’n72 + Sin~ 2 € [fi(j + [nt])n 7,
f(j+[nthn™?Lj=0, ..., n — [nt])
and

P.(U(ogt™) =y, plcy,c)>logt™)
=P.(B(t"' =1t <y, B(v)El[a@+1)" e+ 1) Nost'-1),
since U(s) = B(e® — 1)e /2,
=P.i(Bl-ty=y, B@) Ela(v+t)? e+ t)?lVv=s1-1),

the last by scaling. Now the lemma is almost an immediate consequence of Donsker’s
Theorem (i.e., S*’ —,, B). To obtain the uniformity in (x, y), let n; 1 %, 2, — x € [—o0,
w]andy,— y € R. If f: N U {0} — R define f™: [0, ) — R by setting f ™ (k/n) f™ (k/n)
and then interpolating 7 * polygonally. If x} = x:[n:t]/?nz"? then

xp+ 8™ 5, xt2+ B on C([0, 1], [—, ]).

By Skorohod [30, page 10] and Dudley [10, Theorem 3] we may redefine the {S™'} on a
new probability space so that

x5 +8™ 5 xt'2+ B as.on C([0, 1], [0, ©]).
By the above,
P(U(logt™) =y, plcy,co) >logt™) = P(xt* + BE A),
where
A= {w e C([0, 1], [, ®])|w(1 - ?)
=y, w) Ela@+ 2 clw+t)”*]Vv=1-1t},

and
P.,([nit], i, i) = P(x}, + 8™ € Ay),
where
Ar={w € C([0, 1], [~ o, ®])|w((m —[mxt])nz")
=y, w(v) € [gF V), g5(v)IVv = (m — [t nz')
and

gHw) = FI" ((nev + [met ] nit).

Since limi_.«g# (v) = ¢:(v + ¢)*/2 uniformly on compacts, by using elementary properties of
Brownian motion one can show that



LOCAL TIME ON SQUARE ROOT BOUNDARIES 235

limgola, (x% + S™)) = Ly (xt'? + B) as.
(notice that if x = — and ¢; = —, then g# = — by (H,)). Therefore
limy, o Py, ([Rat], ny y&) = limg. P(x} + S™ € Ay)
= P(xt">+ B € A), which, as above,
=P (U(log t™") =y, p(ci, cz) >log t 7).
The uniformity of the second limit in the lemma follows immediately.

The proof of the first statement is similar. 0

LEmMMA 7. (a) Let f: N U {0} — R satisfy P(Tf>n) >0Vn € N. Then
PS,.=y|Tf>n)=P(S.<y)yER,nE N.
(b) If e > 0, then
lim,, ., osup/P (maxi=, | X;|n 2 =¢| Ty > n) = 0,

where the supremum is over all functions f: N U {0} — [0, «].

ProOF. (a) We proceed by induction. If n = 1, the result is obvious. Assume the result
holds for n. Let y < f(n + 1).

P(Sp=y|Tr>n+1) =j P(z+ X, =y)P(S,€dz|Ty>n)P(T;>n)

—o0

X P(Ty>n+ 1)
Zf £g(2) Fn(dz),

where g(z) = P(z + X, = y) and F.(dz) = P(S, € dz|T; > n). Note that g is left-
continuous, non-increasing, and satisfies g(—) = 1 and g(+») = 0. If g*(z) = g(z™*),
then, integrating by parts, we get

P(Sui=y|Tr>n+1) zf F.(2)d(-g*(2))

= J P(S,=2)d(—g"(2)) (by induction)

P(Si=y|Tr>n+1)=P(S,ri<y) (by parts).

The above result is obvious if y > f(n + 1), and the proof of (a) is complete.
(b) We first show there is a universal constant ¢ > 0 and a constant N, depending only
on the law of X, such that whenever f: N U {0} — [0, «),

7 P(T;>n|T;>i)=c(in™') forall N=<i=<n.

It clearly suffices to prove (7) for N <i=<n/2. Fix i< n/2.

f@)
P(Tf>n|Tf>i)=f P(y+Si<fG+k)for k=n—i)P(SEdy|T;>i)

= P(maxs=,Sy < Vi) P(S; < — Vi| Ty > i)
8) P(T;>n|T;>i) = P(maxs=.S, < Vi) P(S;= — Vi) (by (a))
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We may assume (Skorohod embedding—Breiman [7, page 276]) that there is a Brownian
motion, B, and non-negative i.i.d. random variables { A,} such that E(A;) =1 and if 7, =
>i1 A, then S, = B(r;). Therefore

P(max<,Sy < Vi) = P(max.<.,B(t) = Vi) = P(r, < n%, max,_;- B(t) < Vi)
9) = P(max,<;B(t) < in”') — P(r, > n%™)
=ki(in") — d,, in”,
where k; = (2/7)"%e™/? and
di= E(ron I(r,n"' > ni™")) < E(ron I(r,n' > 2)) = d,

1

(the last, because i < n/2). By the strong law of large numbers, 7,n™' — 1in L' and a.s.

This implies lim,,.d, = 0. From (8) and (9) we have
P(Ti>n|Ti>i)=P(S, = —Vi)(by — dy) i,

and (7) is ah immediate consequence of the Central Limit Theorem.
Spitzer showed [31, Theorem 3.5] that

(10) P(T;> n) = P(max;<,S; < 0) = ken V2
Therefore,
P(maxi<,|X.|n"2=¢|Tr>n) =Yk P(|Xi| = en)P(T;>i— 1)P(T; >n)™"
=P(|Xi| = enA (TN, n'2k;*
+ Y2V ¢ 'ni™")  (by (7) and (10))
< E(X?log"X:I(| Xi| = en'?)e *n""log* (evn) ™
-(Nn'?k;' + ¢ 'nlog n),
assuming N=2, en'’=1,
=KE(X}og* X\ I(|X: = en'’?).

As the above expression does not depend on f and converges to zero as n — =, the result
follows. O

LEMMA 8. Suppose K > ¢ > 0.
(a) lim supnqwsupfi’(inf,slS"”(t) = —K|T;>n) < 2¢ (K — &) 'exp{—(K — ¢)*/2}.
(b) lim inf,_.inf;P(inf,<;S"(¢) = —K|T;>n) = P(B(t) € [e — K,¢/2] for all t=< 1),
where the sup and inf are taken over all functions f: N U {0} — [0, ).

ProorF. Fix ¢, K as above and define

U, =inf{t|S"™(¢) < — ¢/2).
Choose f as above and let
Gh(dy X dx) = P((U,, S™(U,)) € dy x dz, Tyn™" > U,)

and #% = o(S"(u)| u < 5). Then

P(inf,<;S"™(t) = —K, T;>n) = E(P(U, < 1,inf<;S"™(t) = —K, Tin™" > 1|#%,))

= ff Iy=s1l,z=-¢)Pz+S™@t) s f"(t+y

forall t<1-y,  infici_,2+ 8™ () = —K)GL(dy X d2)
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+ P(U,=1,S"(U,) = —¢, Tr>n)
= P(inf,<;S”(t) = —K + e)P(U, =< 1, Tin™' > U,)
+ P(U,=1,8"(U,) = —¢, Ty > n).
We also have

P(T;>n) = ff Iy<s1)P(z+8™(t) < f"(t+y) forall t=1—y)Gi(dyX dz)

= P(supi<iS™(t) =¢/2) P(U, = 1, Tin™' > U,).
Combining the above inequalities, one gets
P(inf,.:S"™(¢) = —K| Ty > n) = P(infi.1S™ (¢) = —K + ) P(sup.=1S™ (¢) < £/2)™*
11) +P(U,=<1,8"(U,) = —¢|T;>n)
=< P(inf,<;S™(t) = —K + &) P(sup,;<;1 S (t) < ¢/2)7!
+ sups P(max;<, | X;|n ? = ¢/2| T; > n).

The last term in (11) converges to zero as n — » by Lemma 7, while the first term in (11)
converges to )

P(inf,<;B(t) = —K + ¢) P(sup;<: B(t) = ¢/2)"".

Using routine estimates for the above expression one obtains
lim sup,_,sup; P (inf<, S™(t) = —K| Ty > n) < 27 (K — e)exp{—(K — ¢)2/2},

and (a) is proved.
To prove (b) note that

P(inf,<;S™(¢) = =K, Ty > n)
=P(Tin AU, >1) + ff I(y<1)P(z + S™(¢)

E[-K, f"(t+y)]Vt= 1~ y)Gh(dyx dz)
(12) = P(Tin ' AU, >1) + P(S™(t) € [-K + ¢, ¢/2]Vt=< 1)
X P(Tfn‘l >U,, U, < 1, S(n)(Un) € [_5’ —e/2]).

If
eh=P(U,=<1,8"(U,) = —¢|T;>n),
and
&, = supyel,

(the sup is over all f: N U {0} — [0, »)), then

P(Ty>n)=sP(Tn ' AU, >1) + P(Tin' > U, U, < 1,
S"™(U,) € [—, —¢/2]) + ef, P(T, > n)?
and therefore

P(T;>n) < (1—&) (P(Tn AU, >1) + P(Ton™' > U,,
(13)
Un=1,8"(U,) € [ ¢, — /2])).
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Combining (12) and (13) we obtain
P(inf«;S"™(¢) = =K | T > n) = (1 — &,) P(S™(t) € [-K +¢,¢/2]VEt < 1).
The last expression is independent of £, and since lim,_,«&, = 0 by Lemma 7, and
lim, . P(S™(t) € [-K + ¢,¢/2]Vt < 1) = P(B(t) € [-K +¢,¢/2]Vt =< 1),
the result follows. O
LEMMA 9. lim,_ o lim sup.—«@=»([c2 —¢, ®]) = lim,_,;:lim sup,_,« @r((—x, ¢; + €]) = 0.

ProoF. By symmetry it suffices to assume c¢; < « and show the first limit is zero. If m
<n,
-1

Q@n(4) = J’ P.(m, n, A)Qm(dx)<J P.(m, n, °°)Qm(dx)>

and it therefore suffices to show
(14) lim, o+lim sup,.sup.Px([n/2], n, [c: — &, ©)) P:([n/2], n, ) =0,

where the supremum is over those values of x for which P.([n/2], n, ©) > 0. A similar
convention is used for sup and inf in what follows.

Assume first that (H,) holds. In order to prove (14) we first establish an auxiliary result.
If0<s<t<1, then

lim infn_minf,Px([sn], n, °°) Px([sn]’ [tn]’ 00)—1

= lim inf,_, . inf, f P,([tn], n, ©) Q.([sn], [tn], dy)
= lim inf,,_, . inf; J’ P,(p(—, c2) > log t 1) Q.([sn], [tn], dy) by Lemma 6

= lim infy_....(inf, @ ([sn], [tn], —1))(inf,=_ P,(p(—o0, cz) > log £™))
= P_i(p(~, ¢;) > log t ™) lim infp.einf, — guuppons
PIST =0 (1) < (—[tn]"* — x[sn]"*)([nt] — [ns]) ™|
Sk < ful[ns] + k) — x[ns]"* for k< [nt] — [ns]]
= P_(p(—, ¢s) > log t™)lim inf, .. P(STI ") (1) < (—[n]"2
= fo([sn]))([nt] — [ns])~"*), by Lemma 7

=P_i(p(—, ¢c;) >log t ) P(B(1) = —(t'* + c28™*)(t — 5) %) = §(s, t) > 0.
Therefore,

lim sup,_,qlim sup,_.«sup.Px([n/2], n, [c2 — &, ©)) Pi([n/2], n, )~
= lim sup,_, - lim Supn_»sups J Py([3n/4], n, [c2 — ¢, ©)) @«([n/2], [3n/4], dy)
X P([n/2], [3n/4], ©) P:([n/2], n, )™
= 8(1/2, 3/4)"'lim sup,_,o+lim sup,_..supx f P,(U(log(4/3))

=y — ¢, p(—, cz) > log 4/3)Q.([n/2], [3n/4], dy), by Lemma 6
< 8(1/2, 3/4)'lim sup,_,;+sup,=e, Py(U(log 4/3) € [c2 — &, c2], p(—, c2) > log 4/3)
= 8(1/2, 3/4)lim sup,_,q: Supy=c,P,(B(1/3)(4/3)"V* € [c2 — ¢, c2]) = 0
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and (14) holds. The same argument shows that if lim,_,-m (A4, N (—, ¢2]) = 0 (m denotes
Lebesgue measure), then
(15) lim sup, - lim sup,—.sup:Px([n/2], n, A,) P([n/2], n, ©)™' = 0.

Assume now that (H,) holds. Clearly (14) is implied by the “symmetrical” condition
lim sup,_,o+im supr—«sup.P«([1n/2], n,[c; — ¢, ¢z + €]
Ul =& e + &) Pul[n/2], n, 0)' =0,
By symmetry we need only prove
(16) lim sup,_,o+lim sup, .«SUpz=e P+([n/2], 1, I.) P.([n/2], n, ©)~* = 0,

where co = (c1 + ¢2)/2 and I. = [c1 — &, ¢1 + €] U [c2 — ¢, ¢z + €]. Let P%(m, n, y) be defined
as P.(m, n, y) but with f; replaced by — . Therefore (15) implies

0 = lim,_,;+lim sup,..sup.P%([n/2], n, I,) P’([n/2], n, )"
17) = lim sup,_,o+1im SupnwSuPs=a Px([n/2], n, I.) P:([1n/2], n, )~}
X (Px([n/2], n, ®) Pi([n/2], n, ©)7").
We may use Lemma 8(b) to get a lower bound on the last ratio as follows: ‘
lim inf, o infee o Pe([n/2], 0, ©) P([n/2], n, )™
= lim inf o infe=o P(S; = fi(7 + [n/2])—x[n/2]2Vj < n —[n/2]|
Sj=f(J +[n/2)—2{n/2]"*Vj=< n - [n/2])
= lim infy, o infy g (ysyee, P(infi<i S* 12 (¢) = [n/2]2(n—[n/2]) "2
(A1) —co) |8 = folj + [n/2)—x{n/21 ¥ j < n —[n/2])
=P(B(t) E[—(co— c1)/4, (co — ¢1)/8] forall ¢<1)=8>0.

We have used Lemma 8(b) in the last line with K = (co — ¢1)/2 and & = (¢o — ¢1)/4, since
for large n, f.n(j) = foj + [n/2])—x[n/2]"* = 0 for x = f{?(1) and [n/2]"*(n—
[n/2])72(F /(1) — co) < (1 — ¢o)/2. Substitute the above inequality into (17) to obtain
(16) and hence complete the proof. O

We are finally ready for the following.

PRrROOF OF THEOREM 5. (a) Assume first that (H,) holds. Lemma 8(a) shows that {Q,}
are tight. Clearly every limit point is supported on (—, ¢;]. Choose a subsequence such
that @,., — @ for some @. By the usual diagonalization procedure we may assume Qrn
— Q™ for some @™, for all n € N. Fix y such that @ ({y}) = 0. If n = 2, then

Q(=o0, y]) = limp @n, (=0, ¥])

= lims_,o f Pi([nen™"], me, y) @y, (d)

0 -1
(J P.([nen™"], ma, °°)Q[n,_.n—'](dx)>

=f P,(U(log n) =y, p(—, ¢z) >log n) Q™ (dx)

-1

( f P.(p(=, ¢;) >log n)Q‘"’(dx)> (Lemma 6)
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(18) S Q=] = J’ P.(U(log n) = y|p(—=, &) >log n) R.(dx),

where R, is the probability measure on (—, ¢;] defined by

-1

R.(B) = Jr Pi(p(—, cz) >1log n)Q(")(dx)<f | P.(p(—, ;) >log n)Q‘”’(dx))
B —0

The strong Markov property implies that P.(p(—%, c2) > log r) is non-increasing in x and
therefore

lim sups_,q+supr=2Rx([c2 — 8, c2]) < lim sups_,o* SUPr=2 Pe,—5(p(—, cz) > log n)
Q" ([c: — 8, c2])
(P,,_s(p(—, ) >log n) @™ (=0, c; — 8]))"
= lim sup, o+ @™ ([c2 — 8, c2]) @™ (=0, ¢ — 8))™
(19) s lim sups_,o*supinzan([cz —8,¢]) =0.

The last follows from Lemma 9 and the fact that @,,,-;— Q™.
Fix N > 0 such that (N — 1) > 2A(—, ¢2). We claim that

(20) lim;i. R, ((—%, —N(log n)'/?)) = 0.
By Lemma 8(a), there is a universal constant ¢ > 0 such that
Q™ ((—o, —N(log n)"*)) < lim infye @, n-1y((— 0, — N (log n)"%))
= cexp{—(N — 1)’log n/2} = en~(N-D72,
By Theorem 1.1 of Uchiyama [36], if x = — N (log n)"/? and
0 <8< (Ai(—=, c5)—Ao(—00, c2)) N2,
then there is a ¢’ > 0 and an no € N, both independent of x such that

P(p(=o, 2) >log n) = n7 M™% (B(— oo, )Yo(—®, ¢, x) — rMTHH el gt Hosn)

> c/n—)\u(—w,L‘z)
for n = no. We have used Proposition 2(d). Combine the above estimates to see that for n
= Ny,

R.((—%, —N(log n)'/?) = ce' NI/ 4N (1 cn—(N—l)"/Z)—l'

The choice of N shows that the right side of the above converges to zero as n — o and
hence (20) holds.
Let n — o in (18) and use (19), (20) and Proposition 4(a) to conclude that

Y
Q((=»,y]) = f Yo(— 00, ¢z, 2)m(dz)8 (— 0, &)™

for all y such that @({y}) = 0 and hence for all y. As @ is an arbitrary limit point of
{@.}, the proof is complete in this case. The theorem holds under (H.) by symmetry.

Assume (H,) holds. The proof proceeds almost exactly as above. In fact some simplifi-
cation occurs since {@,} and {R,} are trivially tight. The only change is in proving the
analogue of (19), namely

lim(;_,orlim Supn_.an([Cl, C + 8] ) [CZ - 8, 02]) = 0)
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where R, is defined in the obvious way. If e > 0 and I = [ey, ¢1 + 8] U [c2 — 8, ¢2], then
lim sup,_,«Rn(I5) = lim sup,_,. @ ™ (Is)sup.er,P:(o(c1, c2) > log n)
Q" ([cr + &, 2 — €]) T (nf e 4,0 Pr(p (1, €2) >1og n))~!
= lim sup,—=Q ™ (I;) Q"™ ([c: + ¢, c2 — e])™*
X (supzer¥o(cy, €2, X)) (0f,e(ere,c—eolCr, €2, )7 (see (6)).

Use Proposition 2(d) and Lemma 9 (recall that @,,,;—» @) to conclude that the right
side converges to zero as § — 0" for small enough & > 0. The rest of the proof proceeds as
before.

(b) Note that if £ € (0, 1),

lim,.oP(T > n) P(T > [nt])™" =limp_« f P,([nt];, n, ©) @ (dy)

= J | P,(p >log t ) do(y)m(dy)(8)™" (by (a) and Lemma 6)

1

= tho (Lemma 3(b)).

It follows that P(T > n) =n"x(n), where  is slowly varying. O

We suspect that the condition E (X3log*(X1)) < , used only to derive Lemma 7(b), is
unnecessary but we have been able to drop this hypothesis only in a few special cases. One
such case is f; = 0, fo = +. Indeed using Spitzer’s result (10) one obtains, instead of (7),
the stronger result

P(T;>n|T;>i)=c(in)/? forall N<i<nh

for some N. The proof of Lemma 7(b) now goes through without the condition
E(X3log* (X)) < . This observation gives us another proof of the following result,
originally due to Iglehart [16] if E (| X, |?) < o, and Bolthausen [5] if E (X3) < c.

CoroLLARY 10. If {X,} dre iid. random variables with E (X;) = 0 and E(X3) =1,
then fory=0
Y
lim, P (S;n*<y|S;=0i=1,-..,n) = j ze? % dz.

0

ProoF. By the above remarks we may use Theorem 5 with f; = 0 and f; = +c. The
result follows from that result and the fact that yo(0, o, 2)#(0, )™ = 2/2 (Proposition
2(c)). O

A functional form of Theorem 5, and in particular of the above Corollary (see Iglehart
[16], Bolthausen [5]); will be derived from the above results in a subsequent paper [14].
It is not hard to prove a partial converse of Theorem 5, namely the following.

THEOREM 11. Let {X;} be ii.d. with mean zero and variance one. Assume f,: N U
{0} = [~o, 0] and fo: N U {0} — [0, o] are non-increasing and non-decreasing,
respectively, for large n, and define @, and T as before. If @, — ., Q@ for some Q. and
lim sup,—.-P(T > n/2) P(T > n)™* < o, then lim,_.fi(n)n"? = ¢; € [~ o, ], where
[e1, c2] is the support of Q.. O
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We omit the proof. The basic idea is that, for a “reasonable” sequence of measures, Q.
— ., @ should imply support (®,.) — support (@.). One expects, moreover, that support
(@) = [filn)n™'2, fo(n)n"**], whence the result. The monotonicity of f; and f; play a
crucial role in the proof.

We close this section with another conditional limit theorem that will prove useful in
Section 5 and in subsequent applications [14] to random walk.

PROPOSITION 12. Assume the hypotheses (H) hold with | ¢;| < © (i = 1, 2). Then
lim,oP(Sr>0|T > n) = yolcy, )’ (ca) e 2 (Noler, €2)8(cr, €2)) "

=1+ olecy, )’ () e 2 (No(es, c2)B(cy, c2) 7

j (s(x) — s(c1)) (s(ez) — s(c1)) oler, ez, x)m(dx)8 (01, 2)~"

a(cy, c2),

where s(x) = [5e”* dy.

Proor. Let
T.(x) = inf{t|x + S™ () € [f{" A+ ¢8), £ (1 + )]}
and
p(n, x) = P(x + S™(T,(x)) > 0).
Since lim—f{™(1 + t) = ¢;(1 + ¢)*/* uniformly on compacts, it is easy to see that if
T’ = inf(¢t| B(#) & [e:(1 + )2, ea(1 + £)2]},
then
lim,—«p(n, x) = P.(B(T’) = c2(1 + T")"?)

(use Donsker’s Theorem and Theorem 5.5 of Billingsley [3]). Transforming B into an
Ornstein-Uhlenbeck process, one sees that this limiting probability equals

P.(U(p) = c2) = (s(x A ) — s(x A 1)) (s(e2) — s(c1)) ™"
Since this limit is continuous in x and p (n, x) is non-decreasing in x, it follows that
(21) lim,,,Supzer|p(n, x) — (s(x A ¢2) — s(x A e1))(s(e2) — s(er))™'| = 0.

By conditioning with respect to (X}, -, X,) one gets

lim, P (Sr>0|T>n) =lim,« J p(n, x)Q.(dx)

=f (s(x) — s(e1))(s(e2) — s(c1)) Yo(x)m(dx)8 ™!

(= aley, ¢2)
(by (21) and Theorem 5). To obtain the other expressions for « recall that
d/dx(o'(x)e™*7?) = 2hoyo(x) e 72
Integrate by parts to see that

aley, ¢2) = (Ao)™! J (s(x) — s(c1))(s(ez) — s(e1)) " d/dx o’ (x)e*7?) dx g7
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= (o) (co) ™20

= (o) (Yo' (cr)e™/? + f 2\ ovo(x) e 72 dx)

=1+ (M) o' (cr)e 72 |

3. Joint convergence. Throughout this section, in addition to the Conditions (H) at
the beginning of Section 2, we will assume that Ao = Ao(c1, ¢2) < 1. This will be true, for
example, if 1 = min (| ¢1], | e2]) and 1 < max(| 1], | c2]), or max (|c1], | c2|) = o (see
Proposition 2(c).)

Inductively define a sequence of stopping times, { 7;}, by To = 0 and

Tw1 =min{n > T;|S, — Sr, € [i(n — Ty), o(n — T})1}.

By Theorem 5 there is a slowly varying function « such that P(T, > n) = n M () —
Ao) L. Therefore T is in the domain of attraction of a stable law of index Ao. Let b, =
n’r(n)~L. Then 7,(¢) = T[,,",]n'l converges weakly to 7(¢) as n — o, where 7(¢) is a stable
subordinator of index Ao, scaled so that E (e ™) = exp{—u™} (u = 0) (see Feller [13, page
424] and Skorohod [29, Theorem 2.7] but note that {b,} is the inverse sequence of Feller’s
normalizing constants {a,}). The weak convergence is in the space D ([0, «), R) of right-
continuous functions with left limits, with the Skorohod </, topology (see Stone [32]). Let

L.,(t) =Y I(Tin"' = £)b;," = inf{u|1.(u) > t}.

By Whitt [37, Theorem 7.2] L, —,, L on D([0, «), R) where L is the continuous inverse of
the subordinator 7. Donsker’s theorem states that S converges weakly to a Brownian
motion B. We will show that (L,, S™) converges jointly. Some auxiliary processes will be
needed.

NotaTioN. Functions from D ([0, «), R) to D([0, «), R) are defined by
& (d)(t) =sup{d(w)|d(u) = ¢}, g"(d)(¢) =inf{d(u)|d(u) > ¢},
(sup P =inf@=0), i(d)(¢) =inf{u|d(u) >t).
Au(t) =t — g (12)(t); Yult) =S™(t) — S™ (g™ (1.)(2)). |

Note that for a non-decreasing function, d, i(d) is the right continuous inverse of d. It
is easy to show that if d is strictly increasing with d(0) = 0 and d() = o, then d is a
continuity point of {, g*, and g, e.g., through the nonstandard treatment of the ¢/; topology
outlined in the appendix.

For convenience we consider the joint law of (4., Y., S*, L,, 7.). It is natural to
consider the first four of these processes on a common time domain, and 7, on a separate
copy of [0, «). Hence we consider (A,, Y., S, L,, 7,) as a random vector in D([0, ), R*)
X D([0, =), R).

THEOREM 13. Under the hypotheses (H), if Ao(c1, ¢2) < 1, then (A,, Y., 8™, L,, 7,)
converges weakly on D([0, ), R*) x D([0, »), R) to a process X = (A, Y, B, L, 7) whose
Jjoint law ( P) depends only on the pair (ci, c3).

Assume X is defirned on the canonical space of paths

(Q, % P) = (D([0, ©), R*) x D([0, ), R), Borel sets, P).
Let
Z = Ny0({B(u), A(u)|u = s} U { P-null sets}),
F'r = Ne=0({A(u), Y(u)|u < s} U {P-null sets}).

(a) B is an %-Brownian motion.(B(t) — B(s) is independent of %) and & = & for all
t=0.
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(b) (A, Y) is a homogeneous strong Markov process with respect to { #.}, starting at
(0, 0), with transition probability

P((A(), Y(8)) € Bi X B:|(A(0), Y(0)) = (a,y))
=1Ig(a+t)P(y+ B(t) € By, T(a,y) > ¢)

t—T(a,yN*
+ E(J In(w)(t = T(a,y) — uo 'y
)

9! f l Ip,(zu'"?)Yo(z)m(dz) du(T (A T'(1 — }\0))_1>;

where
T(a,y) = inf{s|y + B(s) € [ci(s + @)%, cx(s + a)*/*]}.

(c) 7 is a stable subordinator of index Ao(c1, ¢2) scaled so that
E(e ™) = exp{—u™*}(u = 0).

(d) L is the continuous inverse of T and is also the local time (in the sense of Maisonneuve
[25]) of the regular regenerative set,

M= {t|(A(t), Y(¢)) = (0,0)} = {r(¢)|t= 0}.
(e) For a.a. wand al{ t=0,
Y(¢) =B(t) — B(g™(1)(#)) and A(t)=t-—g (1)(?)
(22) B(r(t7) + u) — B(r(t7)) € (au'?, cou'®) for O<u<t(t)—7(t7)
B(r(t)) — B(r(t7)) € {ci(r(t) — 7(£7))%, c2(r (8) — 7(¢7))").

Proof. The tightness of {(A,, Y., S*, L,, 7,)} in D([0, »), R*) X D([0, ), R) is
established in the appendix using a nonstandard characterization of tightness in D ([0, ),
R*) (see Proposition A.3). Note that tightness in D([0, ), R*) does not follow from the
tightness of each component.

Choose a subsequence {n;} such that (A,,, Y., S™, L., 7,) = (A, Y, B, L, 7) (the
latter being defined as the limit on {n:}) on D ([0, ), R*) X D([0, ), R). By changing the
underlying probability space, we may assume (A4,,, Y, ,S"™, L, , 1,,) > (A, Y, B, L, 7) a.s.
on D([0, ), R*) X D([0, =], R) (see Skorohod [30, page 10] and Dudley [10, Theorem
3]). Let #¢ = a(S™)(s)|s < ¢t) and define % and Z, as described earlier (but on the
probability space chosen above). By definition we have for all ¢ = 0,

@) Yalt) =S™(@) — S™ (g () (1);  An(t) =t—g () ();  Lu, = ilrm,)
(@) S™(t) = S"(g(ra,)(8)) € [ (An, (8)), 5 (An, (£))]
i) ™ (g" () () — S (g7 () (1) & [F1)(&" (1, (8) = & () (),
FE(g" (1) (8) — 87 (7a,) (£))].

Since 7 is a.s. a continuity point of { and g* we may let 2 — o in the above (recall that
limj—.o f{™(u) = c;u"? uniformly on compacts excluding zero) to see that for a.a. , (i), (ii)
and (iii) hold in the limit for all ¢ which are continuity points of (4, Y, g (1), g*(r)) and
satisfy A (¢) > 0:

®’ Y(¢)=B(t) - B(g™(1)(8)); A@®)=t—g @)(t); L=i)
(i)’ B(t) — B(g™(1)(¢)) € [ai(A(t)'”, &:(A(8)*]
(iii)’ B(g™(1)(t)) — B(g™(1)(2)) & (ci(g"(r)(t) — g (r)(£))"%,

ca(g*(r)(8) — g™ (1) (8)"?).
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By right-continuity (i), (i)’ and (iii)’ hold for all £ = 0 a.s. Note that (e) follows for our
limit point (A, Y, B, L, 7) except that we have established (22) only for the closed intervals
[eiu'?, o).

Our strategy now is to show that (4, Y) is a Markov process with the transition
probabilities of (b) above. We then will show that B, L and r are measurable functions of
(A, Y) so that the multivariate distribution of the limit (A, Y, B, L, 1) is uniquely
determined.

Let ¢: R— R and y: [0, ) — R be bounded continuous functions such that Y vanishes
on [0; ] for some ¢ > 0. If G, (¢) = E (¢( Y., (0)Y¥(A,,(t))), then

Gi(t) = () E ($(S™ () I(Tini* > t))
+ E(I(Tink" < t) E($( Yo, ()W (A, (8)) | F%,01))

Gi(t) =Y () E (¢(VtS"™ (1)) I(Tinz' > t)) +f G (t — u) P(Tini' € du).
o

The above renewal equation has the unique solution (see Feller [13, page 185, Theorem

1)

(23) Gu(t) = J' L(t — s) R, (ds),
0

where
Le(u) = Y(u) E (¢(&"*S"“(1))| Ty > nyu) b, P(Ty > nyu)
R:([0,t]) = E(XZo I(Tini' < t) b)) = E (L, (2)).
Note that
E(Li(t)’) = 2 ¥Y0=i=; P(Ti < nt, T, < nt) b;*
=2 YYo=i=; P(T. = nt) P(T; — T; < nt) by
=220 P(T, < nt)b;")?
= 2320 P(T: < nt)'b;")?
=2(P(Ty > nt)b,) 2 — 2t7T'(1 — A\o)® as n— .

In particular for each ¢ = 0, {L.(t)|n € N } is a uniformly integrable family. Since L., (¢)
—w L(¢), Theorem 5.4 of Billingsley [3] implies,

(24) lims—Rx([0, £]) = E(L(t)) = tE(L(1)) = R([0, ¢]).

Using the fact that for a slowly varying function =, lim w7 (nsu)m(n:) ™" = 1 uniformly for
u in compacts excluding zero, (see Feller [13, page 277, Lemma 2]), one obtains

(25) limy._, o SUp, <u=n | bn, P(T1 > npu) — u™I(1 — M) =0, VNEN.

It follows easily from Theorem 5 that

(26)  limj.wsup.<u=n| E(¢(u’S“(1))| T > uny) — J ¢(u'’y) Qu(dy)| = 0,
€1

where Q. is as in Theorem 5. The fact that the convergence is uniform in u over [¢, N] is
easy to check. Therefore (25), (26), and the fact that ¢ = 0 on [0, €] imply

27 limy—.wsupo<u<n| Ie(u) — I(u)| =0,

where
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I(u) = y(u) j ¢ (') Qu(dy)u™T(1 = No) ™.

Let G(¢) = [ I(t — s) R(ds) and choose sequences k; 1 « and ¢ — ¢. Then

¢

jl I, ( — s) Ry (ds) —J’ I(t — s) By (ds)
0

0

|Ge () — G(t)| =

t

J' I(t—s)Rk](ds) —J I(t — s)R(ds)
0

0

+

— 0 as j— o by (24) and (27).
We have proved
(28) limy,wsupo=<.=n| Gr(t) — G(t)| = 0, VN > 0.
If s < ¢, then for a.a. w
E(¢(Y,, ()Y (A, (£)| F) ()
=Y(t — 5+ An,(s, ) E(I(g" (1a,)(5) > ) (Y, (5) + 8™ (8) — S™ (s))| %) (w)
+ E(E(¢(Yn, ()Y (An, ()| Fgrr, 1) (8" (72,) (5) < 8)| F) (@)
=Y(t — s + An, (s, w)) Hy(An, (5, w), Ya,(s, w))
+ E(G(t = g"(12,) () 1(g" (12,)(5) = )| F¥) (@),

where
Hy(a,y) = E(@(y + S™ (¢t — s)) I(Ti(a,y) > t — s))
and
Ti(a,y) = inf{u|y + S™(u) € [f (™ (u + a), f{ (u + a)]}.
Since

P(g%(m,)(8) = u| F%)(w) = P(s + Tr(An,(s, @), Yn,(s,w)) < u) as,
it follows from the above that
E(¢(Yn, ()¥(A, ()| F2) (@) = Y(t = 5 + Ay, (5, 0)) Hi (A, (5, 0), Y, (5,0))
) + FilAn, (5, ), Yo (s, ),

where
Fi(a,y) = E(Gr(t — s — Ti(a, ) [(Ti(a, y) = t — 5)).

Let0<s; < ... <s,=<sand let a be bounded and continuous on R2™. By (i)’ and the fact
;:?at Tis a stable subordinator, s, ¢, sy, - - -, S, are a.s. continuity points of (A, Y'). Therefore,
ar = a(An,(s1), Yu,(s1), + -+, An,(8m), Y, (5m))

a=a(A(s), Y(s), -+, A(sn), Y(sn)),
then
E (Y)Y (A(£))a) = limpe E (¢ (Y, ()Y (An, (£)) o)
(30) =limu o E((Y (¢ — s + Ay, (8)) Hr(Ar,(s), Yn,(s))

+ Fi(An,(8), Yo, () ), by (29).
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Theorem 5.5 of Billingsley [3] shows that if (ax, y:) = (a, y)(a >0,y € R), then
(8™, T(ar, %)) >u (B, T(a,y)) on C([0,©),R) X R
where T'(a, y) is as in the theorem, and therefore
limy—.. Hy (ar, yr) = E(¢(y + B(¢t — 8))I(T(a, y) >t — s)) = H(a,y).
Also if (ax, yr) = (a, y)(a > 0), then (28) shows that
limy—.oFy (ar, y2) = E(G(t — s — T(a, y) [(T(a,y)< t — 5)) = F (a, ).

Apply the dominated convergence theorem in (30) to get

E@(Y@)Y(A@)a) = E(W (¢t —s + A(s) H(A(s), Y(s)) + F(A(s), Y(s)))a).
Therefore for a.a. w

E(@(Y())Y(A@)](A(w), Y(u)), u= s)(w)
=yY(t—s+A(s5, W) E(@(Y(s,w) + B(t —s)) I[(T(A(s,w), Y(s,w)) >t —s))

+ E(J Iu=(t—s—T(A(s,w), Y(s, w)))*) f & (U'%y) Qu (dy)y (w)u ™
0 c

X Ao(t — s — T(A(s, w), Y(s,w)) — u' duT(1 — o) E(L(1)).

By taking bounded pointwise limits, the above holds for all bounded measurable ¢ and y.
Setting ¢ = ¢ =1 gives E (L(1)) =T'(1 + Ao) " Therefore (A4, Y) is a homogeneous Markov
process with the transition probabilities described in the theorem. (4 (0), Y(0)) = 0 a.s. is
immediate from (i)’. It is easy to check that the above semigroup maps bounded continuous
functions into bounded continuous functions and hence (A(t), Y(¢)) is a strong Markov
process with respect to {#;} (see Blumenthal and Getoor [4, page 41]). It follows from (i)’
and the fact that 7 is a subordinator that (0, 0) is regular for itself, for the process (4, Y).
Therefore,

M= {t|(A@®), Y()) = (0,0)} = {7(¢)| ¢ = 0}

(see (1)’) is a regular regenerative random set in the sense of Maisonneuve [25, Definition
X.1] and therefore has a continuous local time, C,. The Lévy measure of 7 is v(dx) =
F(l _ AO)Aalx—(l+)\u) dx. If

N.(t) = card{s < t|7(s7) — 7(s) = €},
then

lim,,o+A§T(1 — Xo) "e™N.(¢)
(31)
= lim,,o+card{s = L(¢)|7(s) — 7(s™) = &} X ([, ©)) ' = L(¢) as.

The last follows easily from the law of large numbers. Since N.(¢) is the number of
excursions away from zero completed by A by time ¢, Theorem X.4 of Maisonneuve [25]
implies that C = L = f (A) for some measurable f: D ([0, ), R) — D ([0, »), R) depending
only on (c;, ¢z). We have chosen our multiplication constant in the definition of C to get
equality here. ‘

We now show that B is a measurable function of (4, Y). As S"™)(¢) — S™)(s) is
independent of #* and (A,, S )y 5 (A, B) as., it follows easily that B(¢) — B(s) is
independent of %, and hence B is an {%}-Brownian motion. For ¢ > 0 define stopping
times with respect to {& N #;} as follows:

To(e) = Usle) =0
Tiv1(e) = inf{t = Ui(e) | A(t) = €}
Ui+1(8) = inf{t = Ti1(e) | A(£) = 0}.
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Let V. = Uz1]]1T:(¢), U.(e)]], an Z-predictable set, and define

MM=JM@@M.
0

If m denotes Lebesgue measure, then
E (sup,=/(B(s) — M.(5))*) = cE(m({s = t|(s,0) € V.}))
=cE(t— Y1 I(Tile) = )(Uie) N ¢t — (Tile) — )
+&(N.(¢) + 1))
< cE(m([0, ] = Uzeriwr=dr(s7), 7(5))))
+ ce + cE (e N.(t)).

As eN,(¢) < t, (31) implies that lim,_ o E (¢ N.(¢)) = 0. Also since the range of 7 is a.s.
Lebesgue null, the right-hand side of the above inequality converges to zero. Therefore we
may choose a sequence, {&,}, decreasing to zero and depending only on Ao(c;, c2), such that

(32) lim,_,oSups<n|B(s) — M,,(s)| =0 as.
Note that if Ti(e,) < s, then
& (N ((Uilen) N 8)7) = g7 (1)(Tilen)) = Ti(en) — &
and therefore (i)’ implies that
Y((Ui(en) A 5)7) = Y(Ti(en)) = B(U.(en) N 8) — B(Ti(en)).
It follows that
(33) M. (s) = TE1 I(Tilen) = 8)(Y(Uilen) N\ 57) = Y(Tilen))) = hn(A, Y)(s)

for some measurable A,:D ([0, ), R?) — D([0, »), R) By (32) there is a measurable map
h:D([0, ©), R% — D([0, ), R), depending only on (ci, cz), such that B = h(A4, Y) as.
Moreover (32) and (33) show that % C #;. Also, (i)’ implies Y (¢) = B(t) — B(t — A(t)) so
that #; C %. The law of the limit point

(A, Y,B,L,7) = (A, Y,h(4, Y), f(A), i(f(A)))

(on D([0, ), R*) X D([0, ), R)) depends only on the law of (A, Y) and hence only on
(c1, ¢2). This proves the weak convergence result. The remaining statements of the theorem,
except for (22), have already been proved for the limit process, (4, Y, B, L, 7). It is clear,
for example, that if (a) holds on some probability space then it holds on the canonical
space of paths described in the theorem. For (22), apply the law of the iterated logarithm,
at ¢t = 0, to the Brownian motions

B(t+ S(r)) — B(S(r)), rrational,
where S(r) is the %-stopping time defined by
S(r) =inf(t=r|B(t) — B(t — A(¢t)) € {ca(A@t)"% a(A())*}},
to see that (ii)’ may be strengthened to
(ii)” For a.a. w, B(¢) — B(g™(7)(t)) € (c1(A(t))"? c2(A(¢))/?) whenever A(¢) > 0.

(22) is now immediate. This completes the proof, O

The strong Markov process (4, Y) is not a Hunt process as it has predictable jumps.
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4. A Lévy decomposition for Y. We wish to establish some further properties of
the process (A4, Y, B, L, 1) constructed in the previous section. Consider first the case
¢; =0, c; = ¢, Recall that Y, is constructed by running S until it becomes negative at
which time we reset Y, to zero, and then repeat this procedure. This definition and a short
computation leads to

Y. (2) = S™(¢) — infu<, S (s).
Using Theorem 13, we may let n — o to get
(34) Y(¢t) = B(t) — inf,<,B(s).

A well-known result of Lévy identifies —inf,<,B(s) as the local time of the zero set of Y,
which in this setting equals the zero set of (A, Y). Therefore we also have

(35) aL(t) = inf,<,B(s)

for some a > 0. We wish to extend these results to the more general square root boundaries
corresponding to ¢; < 0, ¢c; = «, Clearly the situation here differs in that Y has discontinuous
paths if ¢; < 0.

NotaTION. Let J(¢) = ¥, I(r(s) = t)(r(s) — 7(s7))"2
Since 7 is a subordinator of index Ao(c1, ¢2), J () is finite for all ¢ if and only if Ao(cy, €2)
< %,

LEMMA 14. If Ao(cy, ¢2) < 4, then

ARV +J(t) =% j A()™V2 dv.

0

ProoF. The definitions of A and o/ imply

t 7(s)
A@)+J(t) = %j (v—g ()8~ dv+1/227<s>seJ’ =16 dv
(7)(¢t) T

(s7)

t
= 1/2f A@) 2 dv.
o ]

If ¢, = 0 in the following theorem, c;J(¢) and ¢; [§ Ai(s)"/? ds are understood to be zero,
even though A¢(0, ©) =

THEOREM 15. Ifc, = o and —o < ¢; <0, there is a constant «(c;) > 0 such that for
a.a. wandallt=0,

a(cr) L(t) = — infu<,(B(s) — (01/2)f Au)™"2 du)
o

t
= % lim,_,, f I(Y(u) — cA@W)2 € [0,¢e]) due™
0

=c;J(t) — B(g ™ (7)(¢))

and
Y(t)=B(t) — ad(t) - infsS,(B(s) - cl/zf A(s)"? ds)
0

= B(t) — c1J(t) + ale)) L(¢).



250 PRISCILLA GREENWOOD AND EDWIN PERKINS

The proof is a straightforward application of the following result of El Karoui and
Chaleyat-Maurel [12, Theorem 1.1.2 and Proposition 1.2.1]. All processes have sample
paths in D ([0, ), R) and are adapted with respect to a filtration {%} satisfying the “usual
hypotheses”, i.e., {#} is right-continuous and % contains all the null sets.

THEOREM 16. Let M, be a continuous local martingale and let V, be a continuous
process whose sample paths are of bounded variation on bounded intervals. Suppose
that Z and K are continuous processes satisfying, for a.a. w,

i) Z=M+V)+K
(i) Z=0
(ili) K is non-decreasing, Ko = 0 and

J I(Z(s) > 0) dK(s) = 0.
0

Then

(a) Kt =~_ infsst(Ms + Vs)
(b) Let L; be the local time at zero of the semimartingale, Z,
t

I; = lim,o+ J' I(Z, € [0,¢]) d[M, M],e™*

0

(see Yor [38, Corollary 2]). Then

t
K'=_J I(Z,=0)dV,+ % L;.
A O

PROOF OF THEOREM 15. We apply the above result with M = B, V(t) =
—c1/2 [6 A(s)™ 2 ds, Z(t) = Y(t) — ci(A(t))Y? and K(¢) = c1J(t) — B(g (7)(¢)). Our
filtration is {#} = {£}}, introduced in Theorem 13. It must be shown that for a.a. w and
allt=0,

(36)  Y(t) — ci(A®))* = (B(t) — (c1/2) f A(s)™2 ds) + (e () — B(g™ (r)(2)))
0

(37) Y(#) — c(A@)?=0

c1J(t) — B(g(r)(t)) 1is continuous, non-decreasing and satisfies
(38) J I(Y(8) — c1(A(2))* > 0) d(c:J(¢) — B(g™(r)(¢))) = 0.
0

Note that the continuity of Y — ¢;4'/? follows from (36) and (38). (36) follows from Lemma
14 and Theorem 13(e), and (37) also is a consequence of Theorem 13(e) (see (ii)’ in the
proof of Theorem 13). The last part of Theorem 13(e) implies that

(39) B(g (7)(t)) — B(g (7)(t7)) = ei(J(2) = J(¢7))

and therefore ciJ(¢) — B(g (r)(t)) is continuous. By Theorem 13 and the result of
Skorohod and Dudley used there, we may assume (7., S™) — .. (1, B) in D([0, ), R)>.
Therefore (g7 (1), S”) .. (g7(7), B) in D([0, »), R)? since g™ is continuous at T a.s.
From this, and the continuity of B, it is easy to see that S™o g7 (r,) —.. B°g (1) on
D([0, o), R). In particular, Bog~ (1) is non-increasing since this is obviously true of
S™eg~(1,), and therefore c;J(¢) — B(g (r)(t)) is non-decreasing, as it is the continuous
(non-decreasing) part of —Be g~ (1) by (39). Fix w so that the conclusions of Theorem 13(e)
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hold and suppose that Beg™(7)(t + &) < Beg™(r)(t) for each ¢ > 0. Then clearly
g7 (1)(t + &) > g (1)(t) for each ¢ > 0 which implies g7(7)(¢) = ¢ and hence (4, Y)(¢) =
(0, 0). In particular it follows that for a.a. w,

(40) {tlcrtd(t+e) —Beog (r)(t+e) >c1J(t) — Beog (1)(¢)
for alle > 0} C {¢|(A4, Y)(¢) = (0, 0)}.

This completes the proof of (38).
Theorem 16(a) now implies

(41) K(t) = eid(t) — B(g (1)(¢)) = — infsst<B(3)_ (a /2)f Au)™? du).
0

Theorem 13(e) shows that
{s| Y(s) — c1i(A(s))/* =0} C {r(s)|s =0} as.

and therefore, as the latter is a Lebesgue null set,
(42) f I(Y(s) — c1(A(s))? = 0)A(s)"?ds =0 as.
o

Theorem 16(b) and (42) give us,
t

(43) K(t) =% L; =% lim_o* J I(Y(w)— ciA()2 € [0, e]) due™

0

This shows that K(¢) is a continuous additive functional of the strong Markov process
(A, Y) which by (40) and (41) increases only on the zero set of (4, Y). Uniqueness of the
local time, L, (see Theorem X.2 of Maisonneuve [25]) implies that K (¢) = a(c:) L(¢) for
some a(c1) >0, a(c1) = 0 being excluded by (41). Combine this with (41) and (43) to get the
first set of equalities of the theorem. Finally, these equations may be used in (36) to
complete the proof. 0

ReEMARKS. 1) In the case ¢; = 0, our scaling of L gives a(0) = 27/* and Theorem 15
gives us
t
27V4L(t) = —infe<.B(s) = % lim,_ ¢+ f I(Y(u) €10,¢]) due™?,

0
where
Y(t) = B(t) — inf.~,B(s)

(i.e., the familiar results of Lévy, described earlier).
2) Theorem 15 shows that for ¢; = oo,

B(t)=Y(t)+cad(t)—ala)L(t) =h(A,Y)
for some measurable A: D([0, ©), R?) — D([0, »), R). The existence of such an # was

established in general, in the proof of Theorem 13.

5. On the small oscillations of a Brownian path. In this section we prove results
on the existence of O( \/l_z) oscillations in a Brownian path. Recall that —Ao(c;, ¢z) denotes
the largest eigenvalue of the Sturm-Liouville equation

%(d?/dx® — xd/dx)y =My on (c,c), Y(a)=0 if |e|<o

(see Proposition 2).
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THEOREM 17. If ¢1 <0 < ¢y, then
P(3t=0,A >0 such that B(t + h) — B(t) € [e.h"?, c;h**] for all h€E [0,A])
_ 0 if }\0(01, Cz) >1
- 1 if }\0(01, 02) <1.
Proor. If Ao(cy, c2) < 1, the theorem is an immediate consequence of Theorem 13.
Indeed choose ¢ such that 7(¢) > 7(¢7) and note that
B(r(t™) + h) — B(r(¢t7)) € (c A%, c;h'?) for h€E (0,7(¢) —(£7))

(by Theorem 13(e)).
Assume \o(cy, ¢2) > 1. (Therefore | ¢1| and | ¢;| are finite by Proposition 2.) Fix A > 0. It

suffices to show that for a.a. w there is no ¢ < 1 such that
(44) B(t+ h) — B(t) € [eth'?, c2h?] for hE[0,A]
Let

A(i, n) = {w|(44) holds for some ¢ € [(i —1)/n,i/n]}.
Since P(A(i, n)) = P(A(1, n)), it suffices to show
(45) lim, ,.nP(A(1, n)) = 0.

If w € A(1, n) and ¢(w) € [0, n7'] is a point at which (44) holds, then for n~" =< A and
s € [t(w), t(w) + Al

ci(s — )2 < B(s) — B(t) < ca(s — t)/*
B(t)—B(n™") +as?*<B(s) —B(n")=< B(t) - B(n') + gs"*
(46) —con 2+ 182 <B(s) - B(n™Y) = —ein"V2 + 28,

the last because B(n™!) — B(t) € [c;n™ "%, czn™"/%]. By the continuity of Ao (Proposition 2)
we may choose m € N such that if ¢7 = ¢, — c;m ™% and ¢§ = ¢; — c;m ™%, then Ao(cT, ¢%')
> 1. If s € [m/n, A], then using (46) we have

ersV? < —com™V2(m/n)? + e1s* < B(s) — B(n™")
< —eim ™ (m/n)V? + cps? < cp's'A
Therefore
P(A(1, n)) < P(B(s)—B(n™) € [cT's"? cFs?] forall s€ [m/n,A])
= E(P(B(s)—B(m/n) + (B(m/n) — B(n™")) € [c]'s"?, c5's"?]
for all s & [m/n,A]|B(u), u<m/n))
P(A(1, n)) < sup, P(y + B(u) € [cT(u + m/n)""%, c§(u + m/n)"?]
forall u=<A-—m/n).

Note that if U denotes an Ornstein-Uhlenbeck process, p(cT, c%') is the first time U exits
from [cT, c¢%], y € R and ¢, 8 > 0, then for some k£ > 0,

P(y + B(u) € [c(u + &)/% cf(u + &)?] for u=3§)
=P(ye ™2 + B(u) € [eM(u+ 1)"2 cf(u+ 1)V*] for u=38:") by scaling

(47

= Pys_uz(p(c'{’, 05") > 10g(88_1 + ].))

<k exp{—Ao(c?, cF)log(8c' + 1)} by (6)
= R(1+ de~h)ened),



LOCAL TIME ON SQUARE ROOT BOUNDARIES 263 .

where £ is independent of (y, ¢, §).
Substituting this upper bound into (47) leads to

nP(A(l, n)) < nk(l +(A _ m/n)(n/m))—)\u(c‘i”,cé") = k(A /m)-—)\n(c".",cf}’)n1—)\11(0’1”,055')
—0 as n— oo,

the last, since Ao(cT’; ¢2') > 1. This gives (45) and hence completes the proof. O

Theorem 1(a) is immediate from the above result, the strict monotonicity of Ao(—c, c),
and the fact that Ao(—1, 1) = 1 (see Proposition 2). _
In the course of the above proof we have established the following.

LEMMA 18. If—o < ¢} =0 =< ci <, there is u constant k = k(ci, c3) such that
P(B(s) — B(n™') € [cis"? ¢3sY?] forall s€ [m/n,A))

=< k(Am™'p)Mched) Vm,n,A>0. 0O

REMARKS. Let
R(ci, ¢2) = {t| B(t + h) — B(t) € [a:h'?, ;h'?] forall k€ [0,A], forsome A >0},

and assume Ao(ci, c2) < 1. We claim that R(ci, ¢;) is a.s. dense in [0, ). The proof of
Theorem 17 shows that P(R (cy, ¢c2) N [0, €] # ¢ for each ¢ > 0) = 1. The claim follows by
applying this result to the countable collection of Brownian motions By, (t) = B(r + t) —
B(r) for r a rational.

The proof of Theorem 17 could have been given immediately after the proof of Theorem
5. In this case (B, ) would be a limit point of the tight sequence {(S'™, 7,)} and one would
only need (22) for each such limit point, a fact which is fairly easy to prove (see the proof
of Theorem 13). ‘

Our proof showing that P(R(c1, ¢2) = ¢) = 1 if Ao(cy, c2) > 1 is a refinement of the
argument in Dvoretsky [11]. The harder problem is to find times in R(ci, ¢;) and this
follows from what little we know about the joint law of (B, 7).

The situation in the critical case, Ao(c1, ¢2) = 1, remains unresolved. It would also be of
interest to see if the results of Section 2 could be extended to the case c; > ¢; > 0 as this
would lead to an interesting analogue of Theorem 17.

We next consider the existence of times of O(4'?) oscillations in the zero set of a
Brownian motion, B. Knight [20] showed that for 2 > % and for a.a. w there are times ¢
" such that

(48) B(t) =0 and llm Suph_,0+|B(t+ h)l(zh lOg log h_l)_l/z <Pk
Kahane [19] later showed that (48) could be strengthened to
B(t)=0 and lim SUPh_.o+|B(i +h)|A < o,

A more precise result is the following:
THEOREM 19. Ifc; =0 =< ¢y, then
P(3t=0,A> 0 such that B(t) = 0 and B(t + h) € [a h'"?, ;h'*] for all hE [0,A])

- 0 if }\0(01, 02) > 1/2
1 lf }\0(01, (,‘2) < 1/2'

The proof illustrates the fact, noted in the above remarks, that only a small portion of
Theorem 13 is needed to establish Theorem 17. The argument is similar to the proof of
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Theorem 17, but we assume
P(X,=1)=P(Xi=-1) =%,
and instead of
T =min{n|S, & [cin'?, c;n"?]},
we work with
V =min{n > T|S, = 0}.

The main step is to prove that if Ao(ci, ¢2) < %, P(V > n) has the same asymptotic
behaviour as P(T > n) as n — «. Roughly speaking, this is true because the sample path
takes about as long to return to zero from a boundary poiint as it took to reach that point.

LEMMA 20. If Ao(cy, ¢2) < Y%, and alcy, c2) is as in Proposition 12, then
lim,—e P(V > n) P(T > n)™

o

=1+ (2/'rr)1/2f e 2z Moee)((1 — a(ey, ¢2)) (e} + 2%)olare
0

+ alcy, c2)(c? + 22)erd) dz,
In particular, V is in the domain of attraction of a stable law of index Ao(c1, c2).

Proor.

P(V>n)=P(T>n)+J J P(y+S,#0,Yk=n—1t)P(T, Sr) € dt X dy)
(49) 0 Joo

=P(T>n) +f f P(Si-c €[ |y], ¥y PUT, Sr) € dt X dy),
0 —o0

the last by the reflection principle. Use (49) and the fact that | S, — Si—1| = 1 to see that
P(V>n)P(T>n)"

=1+ f P(S,c€[at'? =1, — it + 1)) P(TE dt, St < 0) P(T > n)™"
0

+ f PS8 E[-cot'? = 1L, et + 1)) P(T € dt, Sr>0) P(T > n)™!
(50) 0

1
=1+ j P(S"=91) e IP") P(T/n € dt, St < 0) P(T > n)™"
0

+ fl P(S"1=(1) € I®) P(T/n € dt, Sr > 0) P(T > n)™},
0
where
IP' =[-a(t) = (n(1 = )7 au(t) + (n(1 = 1)),
a(t) =|c|t21 —t)"2 (i=1,2).
The Berry-Esseen theorem (Feller [13, page 542]) shows that
| PS"(1) € I}") — P(| B(D)| = ail?))|
=| P(S"2(1) € I¥) — P(B(1) € I')| + | P(B(1) € I?") — P(] B(1)| = ai(t)) |

= min(2, c¢(n(1 — £))7/*)(c > 0).
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Therefore if ¢ € (0, 1),

1

(51)  lim supp—e J' | P(S"=9(1) € IM) — P(| B(1)| < ai(?))| P(T/n € dt)P(T > n)™*

0
< lim supr_.c(ne) 2P(T > n)™' + 2P(n(1 —¢) = T< n)P(T > n)!
= 2((1 — )™ — 1), by Theorem 5(b).

Letting ¢ approach 0 in the above, we see that (51) equals zero. Substitute this result into
(50) to obtain (let Bi(2) = 2*(c? + 2%)7)

lim sup,—P(V > n)P(T > n)™"

1
=<1+ lim sup,,_,w(J P(| B(1)] = au(®))P(T/n € dt, St < 0)P(T > n)!
(

1
+ f P(| B(1)| = a2())P(T/n € dt, Sr > 0)P(T > n)_1>
o

o

=1+ lim sup,,_,w((2/w)1/2 J e *2P(T > npi(2), Sr < 0) dzP(T > n)™*

0

©

+ (2/77)”2f

0

e *"?P(T > npy(2), Sr > 0) dzP(T > n)'1> (Fubini Theorem)

- lim supp—P(V>n)P(T>n)"' < 1 + lim sup,,_,m<(2/'7r)1/2

(52) J’ e™?P(Sr < 0| T > npi(2))P(T > npi(2))P(T > n)"" dz
0

o

+ (2/7r)1/zf

0

e *?P(Sr> 0| T > npBy(2))P(T > nB:(2)) P(T > n)™* dz).

By Proposition 12 and Theorem 5(b), if z > 0, then
(63) 1lim,.oP(S7< 0| T > nBi(2))P(T > nBi(2))P(T > n)™" = (1 — a(ci, c))Bi(z) Mo
(54) lim,oP(Sr>0| T > nBa(2))P(T > nPe(2))P(T > n)™" = alc, 2) Bz () Poteved)

If P(T > x) = w(x)x 2% where 7 is slowly varying at o (Theorem 5(b)), then by
Feller [13, page 282],

w(x) = a(x)exp(J’ e(t)t! dt),
1

where lim,_,.a(x) = ¢ € (0, »), lim,_¢+£() = 0. Choose &€ > 0 such that 2(Ao(c;, c2) + &) <
1,and N > 0 such that | e(f)] < e and | a(x)a(y)™" — 1| < 1 whenever ¢, x, y > N. Note that

lim supn_e J I(nBi(2) = N)e*?P(T > nBi(2))P(T > n)~' dz

=< lim supa_nc(n = N)"2P(T > n)™ =0,
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the last, by Theorem 5(b). By combining this result with (52), one gets

©

lim sup,_«P(V>n)P(T > n)"' =1 + (2/7)"’lim sup,,_,«,(J’ I(nBi(z) > N)

0

.e™’P(Sp < 0| T > nBi(2) P(T > npi(2)P(T > n)™ dz
(55)

+ J’ I(nBx(2z) > N)e*7?P(Sr >0 | T > nB:(2))P(T > nfBe(2))P(T > n)! dz).
0

Note that
I(nBi(z) > N)P(T > n:i(2))P(T > n)™"

n

= ’Bi(z)—Ao(cl,cz)a(nﬁi(z))a(n)—lexp{ — j

e(t)t™! dt}I(nBi(z) > N)
npi(z)

= Bil2) 2 exp(e log(Bi(2) ™)} = 2(Bi(2)) o™
=c(z>1) + 272»*[(2 < 1)) (for some ¢ > 0).
The choice of ¢ makes the above expression integrable with respect to e *”* dz. We

therefore may use the dominated convergence theorem, (53) and (54) to evaluate the right
side of (55) and obtain

©

lim supnP(V>n)P(T>n)"'<=1+ (2/w)1/2f e (1 = alci, c3)) B (z) Mol

0

+ aleyy c2) Ba(2) D) dz,

By making minor changes in the above arguments, one sees that lim inf,.P(V > n)
P(T > n)™' is bounded below by the same expression, and we have evaluated
lim,,»P(V > n)P(T > n)~, as required. The last statement of the lemma is immediate
from Theorem 5(b). O

ProoF oF THEOREM 19. Suppose first that Ao(c;, ¢2) < %. Define & sequence of
stopping times {V,.} by setting V, = 0 and

Vier = Vi+ Vobly,
where S,(0v(w)) = Sn+vw(w). If b, = P(V> n)~, then it follows from the previous lemma
that
Th(®) = Viggn ' —>w 7'(t) on D(R),
where 7/(¢) is a stable subordinator of index Ao(ci, cz). The sequence of measures induced
on D([0, ), R)? by {(S™, rh)|n € N} is therefore tight and by applying the result of

Skorohod [30, page 10] and Dudley [10] we may assume, by changing the probability
space, if necessary, that there is a subsequence such that

(8™, 75,) = (B, ) as.on D([0, ), R)’,

where B is a Brownian motion and 7’ is as above.
Suppose that for some N € N,

(56) P(3A >0, t=< N such that B(#)= 0 and B(¢ + h) € [ah"?, c:h*Nh<A)=p > 0.

Expression (56) for the Brownian motion ¢7'/2B (et) is
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P@EA >0, t < eN such that B(¢) = 0 and B(t + A) € [c:h"?, c:h* VA< A) = p > 0.
P(Ve> 0,3t < ¢ and A > 0 such that B(¢#) = 0 and B(t + &) € [cihY? c:h?IVAR < A)
=p>0.

The zero-one law implies that the above probability must be one, as required. It suffices,
therefore, to prove (56). Note first that

S™(rn.(#) =0 Vt=0 as.
Letting £ — oo gives
B(r'(t)) =0 Vt=0 as.
It follows that
67 B(g (r)(®) =B (r")(#)) =0 Vt=0 as.

Now argue as follows: Since the range of 7’ is a subset of the zero set of B, if (56) fails and
there are boundary crossings after all the 0’s of B then 7’ has range the zero set of B and
hence has index '%. But 7’ has index Ao < %. The detalils:

Suppose (56) is false. Then by (57)

N={w|3A>0,t> 0such that B(g~(+')(t) + k) € [e:h? c:h"* VR < A}

is a null set. Fix w € N such that (S™, 7/,) — (B, 7') in D([0, »), R)?, 7’(-, w) is a continuity
point of g~ (see the remarks preceding Theorem 13), and g7 (7’)(-) is continuous at each
rational r = 0, by omitting a null set. Fix a rational r = 0. There is a sequence A,(r, w) | 0
such that

B(g (1)) (r) + k) € [aih/?, cshi?].
Therefore, since lim, g~ (17,)(r) = g7(')(r), there is a k,(r, w) such that & = k, implies
S (g™ (1) (r) + hn) € [ethi/?, cah)/?]
and hence
ST (u) # 0 Yu € [g7(17,) (1) + hn, g7 (77,)(r))

(by the definition of 7). As S ) _ B uniformly on compacts and B has no local extrema
in {¢| B(t, w) = 0}, by omitting another null set, we see that, by letting # — « and n —
oo, in that order,

(58) Bu)#0 VYueE (g7 (r')(r), g*(r")(r)) V rational r = 0.

(57) and (58) together show that the jumps of 7’ coincide exactly with the excursions of B
away from zero. Therefore (see Ité6 and McKean [17, page 43])

lim,,-¢"2card{s | 7'(s) < ¢, Ar’(s) > ¢}
(59) = lim.,o'¢"/? X (no. of excursions of B exceeding ¢ in length and
completed by time ¢t)
= cL,

where L; is local time of B at zero and ¢ > 0. On the other hand, the law of large numbers
implies that

(60) lim,gr¢*ocard{s | 7'(s) < ¢, A7'(s) > €} = ¢'7'7\(¢),

for some ¢’ > 0, where 7'" is the continuous functional inverse of 7’. Since Ao < %, (59) and
(60) give us a contradiction. Therefore (56) must be true and the proof is complete for the
case Ao(cy, ¢2) < %.
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Suppose now that Ao(ci, c2) > %. It suffices to fix A > 0 and show that for a.a. w there
is no ¢ < 1 such that

(61) B(@)=0 and B(t+ h) € [ah'? h*] for h€E[0,A]
Let
A’(i, n) = {w |(61) holds for some ¢t € [(i — 1)/n, i/n]}.
Choose m € N such that if ¢ = ¢; — com ™% and ¢§* = ¢ — cim ™%, then Ao(cT, c5') > %.
Argue just as in the proof of Theorem 17 to see that
A’(i,n) C {w | B(t) = 0for some t € [(i — 1)/n,i/n] and
© B(s) — B(in™) € [eT'(s — (i = 1)/n)"/%, cF(s — (i — 1)/n)"*]
forall se[(i+m—1)/n, (- 1)/n+A]}.
Therefore there is a constant ¢ > 0, depending only on (cT’, ¢7’), such that
P(3t = 1 such that (61) holds)
= Y1 P(AG, n))
= P(B(s) — B(n™) € [¢]'sV?, cps'?] forall s€ [m/n,A]) -
X Y, P(B(t) =0 forsome ¢t€[(i—1)/n,i/n])

= c(A /m)—An(ci",cé")n—Aa(ci",c’z") 2?=1 ;2
(by Lemma 18 and Lévy [22, Chapter VI, Theorem 44.1])
= 2c(A/m)—}\0(07',0'2")”(1/2)—)\0(03",0'2")

— 0asn— o,

the last since Ao(cT, ¢5) > %. This completes the proof. O

REMARKS. It follows easily from the proof of Lemma 20 that
lim,_o+lim sup,—-P(T'<en | U>n) =0.

By using this result and being just a little more careful in the previous proof one can show
that for a.a. w, if 7/(t7) < 7’(¢) then there is a A(¢, w) > 0 such that

B('(t7) =0 and B(r'(t7) + u) € (ciuw'? cou?) for 0<u <At w).

Here (B, 7’) is any limit point of {(S", 7,)|n € N}. Again, the jumps of 7’ select an
“excursion” of B with the required properties.

The situation in the critical case Ao(c1, c2) = % remains unresolved, except of course
when (c1, ¢2) = (=, 0) or (0, ) (in which case there do exist excursions away from zero!)

Finally we are ready to complete the proof of Theorem 1.

Proor oF THEOREM 1(b). In view of the previous result and the strict monotonicity
of Ao(—c¢, c), it suffices to show that if ¢, > 0 satisfies
(62) Tie1 (€3/2)*((2n — DnY) 7' =1,

then Ao(—co, co) = %. For this we argue as in the proof of Theorem 1 in Breiman [6]. It
follows from (6) that —Ao(—c, c) is the largest real pole of

$(A) = Eole™~2),

From Breiman [6] (but note that his Ornstein-Uhlenbeck process has generator
d?/dy? — yd/dy) we have, for Re(\) = 0,
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©

¢(A)1 =212 T(A) ! f e "2t lcosh(ct) dt

0

=2Hr()\)-1< J' e MR gt + J' e AT (ct)™/(2n)! dt)
0

0

(63)
=1+ 2"2T(A) 7 Timt e®(2n)) 7272 T (n + A)

=1+3¥71 2N R +A -1 X (n+A—2) X -+ XA,

The above expression may be used to analytically continue ¢(A)™* to Re(A) < 0. Set A =
—% and note that

(=% '=0e o1 e®(@2n—3)2n —5) ... ()(2n)) =1
e Y (c¥/2M(@2n-1n) =1 c=c.

For any fixed c, (63) shows that ¢ (A)™' = 0 has at most one solution A € (—1, 0). Therefore
if such a A exists, it must be —Ao(—c, ¢), the largest zero of ¢(A)™". In particular,
—Ao(—co, o) = — %, as required. The estimate ¢, = 1.3069 is given by Shepp [28] (as the
series in (62) converges rapidly, ¢ is easy to estimate). O

APPENDIX

In this appendix we use some nonstandard techniques to establish the tightness of the
sequence of processes considered in Theorem 13. The nonstandard viewpoint simplifies
compactness problems in

D([0, »), R*) = {d : [0, ©) — R* | d right-continuous with left limits},

equipped with the Skorohod oJ; topology. A good introduction to nonstandard probability
theory may be found in Loeb [24], while more general introductions to nonstandard
analysis are Davis [9] and Stroyan and Luxemburg [34].

We work in an w;-saturated enlargement of a superstructure containing R. If x € *R*,
ox denotes the standard part of x, when it exists.

DEFINITIONS. A function F € *D([0, «), R*) is SDJ if the following conditions hold:

(i) °F() is finite whenever ot is finite.

(ii) °F(¢) = °F(0) whenever o = 0.

(iii) For each ¢ € [0, x) there is a ¢ = ¢ such that
°F(u)="F() forallu € {u|u=¢ u=¢}, and
‘F(u)="F(@t ) forallu € {u|u<t ou=*t.

If instead of (iii) we assume that "F(t;) = “F(t,) whenever of; = oty < o, then F'is SC (S-
continuous).
If F € *D([0, ), R*) is SDJ, define a function st(F) : [0, ©) — R* by
st(F)(t) = lim.,.~" F(u).
(It is understood that ou > ¢ in the limit). 0O

It is trivial to check that st(F') is well-defined for F SDJ.

The nonstandard interpretation of the /; topology is contained in the following result
which may be found in Hoover and Perkins [15, Theorem 2.6] or Stroyan and Bayod
[33].

ProposITION Al.  Fis SDJ if and only if F is nearstandard in *D ([0, ), R*) and in
this case st(F) is the standard part of F in D([0, ©), R*). O
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The following proposition is an immediate consequence of the above and the nonstand-
ard characterization of weak convergence and tightness of a sequence of measures (see
Anderson and Rashid [2] or Loeb [23]) on a Polish space.

PropPoSITION A2. Let X, be a sequence of stochastic processes with sample paths in
D([0, ), R*), defined on a common probability space (X, %, Q). Let (2, % P) =
(*X, L(*9), L(*Q)) be the Loeb space generated by (X, %, Q). Then the sequence {X.,} is
tight in law in D ([0, ), R*) if and only if for each infinite nin *N, P(X, is SDJ) = 1. The
laws of {X,} converge to a law Q on D([0, »), R”) if, in addition, for each infinite n in
*N,

P(st(X,) € -) = Q(-). O
The following result was used in the proof of Theorem 13.

PROPOSITION A3. {(An, Y. S™, L., m)|n € N} is tight in D([0, »), R*) X
D([0, =), R).

ProoF. Since we have already seen that 7, —, 7 in D ([0, »), R), it suffices to show
that {(A,, Y., 8®, L,)} is tight in D ([0, ), R*). Fix n € *N — N and let (2, % P) denote
the Loeb space used in Proposition A2 (clearly we may assume the sequence of processes
are defined on a common probability space). Since S™ —,, B, it follows (Proposition A2)
that S™ is SDJ a.s. The continuity of B implies that in fact S must be SC a.s. Note that
g7 (r,) is SDJ by definition. Therefore

Y, =8 —~8™og~(r,) and A,(t) =t— g (r,)(?)

are both SDJ. If w is fixed so that S™(., w) is SC, then °Y,(t) # °Y,(¢”) (ot < o) implies
°A,(¢) # °A,(¢7). That is, the macroscopic jumps of Y, coincide precisely with macroscopic
jumps of A,. Therefore, (A,, Y,) is SDJ. Recall that L, is the right-continuous inverse of
7, and st(r,) is a.s. strictly increasing to o (since st(r,) is a stable subordinator by
Proposition A2.) It follows that L, is SC. The facts that (L,, S™) is SC (a.s.) and (A4,, Y,)
is SDJ (a.s.) together imply that (4,, Y,, S®, L,) is SDJ (a.s.) and hence the tightness of
{(An, Y, 8™, L,)} follows from Proposition A2. 0O

Added in proof. After submitting this manuscript, we learnt of work of Burgess
Davis (“On Brownian slow points”, to appear in Z. Wahrsh. verw. Gebiete) that was done
independently and at about the same time. Davis gives a different and more direct proof
of Theorem 1(a) and also proves a version of this result with ¢; = 1 and ¢; = . This
answers a question raised in the remarks following Lemma 18.
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