The Annals of Probability
1983, Vol. 11, No. 3, 798-800

WEAK CONVERGENCE TO BROWNIAN EXCURSION

By R. M. BLUMENTHAL

University of Washington

We give a concise proof, using rescaling, random time change and simple
infinitesimal generator computations of the fact that Brownian excursion is
the weak limit as ¢ — 0 of tied down Brownian motion conditioned never to
fall below —e. :

1. Introduction. In [2] Durrett, Iglehart and Miller prove that Brownian excursion
is the weak limit as ¢ — 0 of tied down Brownian motion conditioned never to fall below
—¢. The purpose of this note is to give another proof which yields also a natural “almost
everywhere” conclusion and makes the necessary computations all at the same time, and
avoids considerations of tightness. The method is to transform the relevant processes into
familiar ones defined for all £ = 0 and then use rescaling and a random time change.

2. Definitions and notation. Let C and C, denote the continuous functions, ¢ —
w(t), on [0, ) and [0, u] respectively and let ¢ and %, denote the o-algebras generated by
the coordinate functions. Let {W§(¢); 0 < ¢ < 1} denote the Brownian excursion process.
This is by definition a Markov process starting at 0, with continous paths and transition
and absolute densities given by

1-s\"? y exp(—y2/2(1 — )
1-t) xexp(—x%/2(1 —s))

2y%exp(—y?/2t(1 — 1)) /[2mt*(1 — t)°]/*

ga—&&w<

respectively with 0 <s <t <1, 0 < x, 0 <y, where g is the usual Gaussian kernel g(¢, x, y)
= (27t)"’exp[—(x — y)?/2t]. There are other definitions of W¢ reflecting its interpretation
as a suitably scaled excursion of reflecting Brownian motion between two successive zeroes.
Proper definitions and the equivalence of these are given in [3]. Let {B(#); ¢t = 0} denote
Brownian motion with continuous paths and B(0) = 0 and let { Wy(¢#); 0 < ¢ < 1} denote
tied down Brownian motion. This is by definition a process equivalent to B(f) — tB(1),
which is the same as saying that it is Gaussian, with continuous paths, mean zero and
Cov(Woy(s), Wo(?)) = s(1 — ¢) if s < ¢. Let {@(#); t = 0} be the three-dimensional Bessel
process starting at 0. This is by definition the radial part of three dimensional Brownian
motion. It is a time homogeneous Markov process with continuous paths. Its transition

density is
(y/x){g(t’ x’y) _g(t’ _x’y)}’ t>0’x>0’y>0

with g the Gaussian kernel, and its absolute density is 2y*(27¢®)~2exp(—y2/2t) for y > 0.
It is well known that with probability one, @ (f) > 0 for all ¢ > 0.

The processes Wg and W, induce probability measures P* and P, on %, relative to
which the coordinate processes are equivalent to the originals; and likewise the Bessel
process induces a measure g on 4. Let W C C consist of those functions w with w(0) = 0
and w(t) > 0 for all £ > 0, and let %" be the trace of ¥ on W. By our previous comment,
q(W) =1 so that over the probability space (W, #; q) the coordinate process {w(t); t = 0}
is equivalent to {Q(¢); ¢ = 0}.
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If w € %, define a continuous function ¢w on [0, 1) by ¢w(t) = (1 — w(t/1 — t). Note
¢w is defined only on [0, 1) and hence is not an element of C;; this annoyance requires that
we say a few extra words later on. Of course ¢ is defined also on C, and for w € C,,
¢w € Cy1+u. On C, the mapping ¢ is continuous in that ||w — w’' |, = | ¢w — ¢W’ |luj1+u
where || w||- denotes sup{| w(#)|:0 < ¢ < r}. The inverse to ¢ is the function ¢ 'w(t) =
(¢ + Dw(t/t + 1) for w a continuous function on [0, 1).

Finally, given e strictly positive set A. = {w € C;| w(t) > —¢ for all ¢ € [0, 1]}. Define the
measure P, on € by P.(A) = Py(A N A.)/Po(A;). Then relative to P, the coordinate process
is tied down Brownian motion conditioned never to reach —¢, and so the theorem of [2]
states that as ¢ - 0, P, » P in the sense of weak convergence on Ci. '

3. Main results. We will start with a simple observation.

(3.1) THEOREM. (a) The process {(t + 1)Wy(¢/(t + 1)); 0 = ¢t < x} is equivalent to
Brownian motion. (b) the process {(t + 1) Wg(¢/(t + 1)); 0 < t < =} is equivalent to the
three-dimensional Bessel process.

Proor. The process in (a) is a Gaussian process starting at 0, with 0 mean and
continuous paths; its covariance function is easily computed to be min(s, £), and these
properties characterize Brownian motion. The process in (b) certainly is Markovian with
continuous paths and initial position 0, so we need check only that the absolute densities
and joint densities at pairs of distinct times are those of the Bessel process. This follows
from the change of variable rules and a little algebra starting from the formulas displayed
at the beginning of Section 2.

Set T, = ¢"'(A,). (Obviously the inclusion of the time parameter ¢ = 1 in defining A, is
inconsequential since Po(w(1) = 0) = 1). Clearly T, = {w € C|w(t) > —¢t — ¢ for all
t = 0}. The mapping ¢ * as a direct mapping carries the measure P, to a measure P, on
%. Theorem (3.1)(a) and the description of ¢ "!(A,.) says that relative to P, the coordinate
process y.(t, w) = w(t) is Brownian motion starting at 0 and conditioned to lie always
above the line —¢t — .

Our main theorem is as follows:

(3.2) THEOREM. Qver (W, #; q) there is a family {Y.(t); t = 0} of stochastic processes
with these properties: (a) the paths of Y, are continuous and Y.(0) = 0, (b) for each ¢ the
process Y, is equivalent to Brownian motion starting at 0 and conditioned to exceed
—et — ¢, (c) for every w € W, Y. (t, w) — w(t) as e = 0 uniformly in t restricted to compacts
in [0, ).

REMARK. To carry out the proof, we need a bit of diffusion theory. The discussion in
[1] is more than adequate. We will identify diffusion processes by their starting points and
infinitesimal generators. The boundaries will be inaccessible so no delicate issue of
boundary conditions arises.

Proor. The path ¢t — Y.(#) will be obtained from the path ¢ — w(¢) by a deterministic
scale change and a random (that is, dependent on w) timé change. Also a shift in initial
position is needed. Coming to the formalities, for ¢ > 0 make the following definitions: (a)
the scale change y.(x) = (1/2¢)log(1l + 2ex) for x = 0; obviously y.(x) — x uniformly on
compacts as ¢ — 0. (b) ¢’ defined to be the solution of y.(e’) = ¢; thus ¢’ — 0 as ¢ — 0. (c)
the shifting parameter o.(w) = inf{¢| w(t) = ¢’} for w € W; then for each w, o.-(w) — 0 as
e — 0. (d) the shifted path w,. € W defined by w.-(t) = w(t + o.(w)); then uniformly in ¢
bounded w,-(£) = w(t) as ¢ — 0. (e) the random time change 7.(-, w) = A;'(-, w) where
A(t, w) = [§ g(w(s)) ds and g.(x) = (1 + 2ex) 2 for x = 0; of course 7. is the inverse of the
classical additive functional A,, and clearly 7.(f, w) — ¢ uniformly in ¢ bounded as ¢ — 0.
(f) we put these things together by setting z.(¢, w) = Y.(w(7.(¢, w))), Z.(¢, w) = z.(t, w.-) and
finally Y.(t, w) = Z.(t, w) — et — &.
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Now the coordinate process is the Bessel process, so it has generator A:f(x) =
(1/2)f"(x) + (1/x)f’(x) and starts at 0. The process z. is obtained by a random time change
7. followed by a mapping by .. The result of the time change is to replace the generator
by Axf (x) = (1/8.(x))A:1f (x), and the result of the ensuing scale change is to replace the
generator A; by Asf(x) = Az(f° ¥.)(¥:'x). The actual computation requires only a little
calculus, and the result is A3f(x) = (1/2)f”(x) + (e coth ex)f’(x). So z. is a diffusion with
Aj; as generator, and it starts at 0. The process Z, is a diffusion with the same generator but
the path is shifted so that its initial position is e. From the properties of y. and 7. it is
obvious that for each w € W, Z.(t, w) — w(t) uniformly in ¢ bounded, as ¢ — 0.

Now shifting attention for a moment, consider the process {B(t) + et + ¢, ¢ = 0} where
B is Brownian motion starting at 0. This process has generator B:f(x) = (1/2)f”(x) +
ef’(x) and ¢ as starting point. Its scale function s(x), that is a non-constant solution of B;s
=0, is 7% and so s1(x) = (s(0) — s(x))/s(0) = 1 — e >* is the probability that this process
starting at x > 0 never reaches 0. Then the diffusion process whose generator is Bz f =
s1'Bi(fs:) isindeed B (t) + ¢t + ¢ conditioned never to reach 0. Carrying out the calculation,
we find Bz f (x) = Asf(x). This identifies Z. as B(t) + €t + ¢ starting at ¢ and conditioned
never to reach 0. Consequently, Y, satisfies requirement (b) of the theorem. Requirement
(c) is obvious from the corresponding convergence of Z.(¢) so the proof is complete.

Now it requires only a few observations to obtain the weak convergence result of [2].
Specifically, over the probability space (W, #; q) the distribution of ¢w is P* and that of
¢ Y. is P.. Furthermore, if u < 1 then ¢Y.(¢) —» w(¢) uniformly on 0 < ¢ < u as ¢ — 0.
Consequently, if #,:C; — C, is the restriction mapping, mw(tf) = w(t), 0 < ¢t < u, then
Theorem (3.2) implies that as e — 0

(3.3) ff° Ty dPeleo 7. dPy

for every bounded continuous f on C,. This is a little less than weak convergence, which
requires that (3.3) hold when f > 7, is replaced by an arbitrary bounded continuous function
on C;. However, the validity of (3.3) for just one strictly positive z implies that the family
{P,; e >0} when restricted to C, is tight and hence implies that given any r > 0, P.({w | ]| ws||
> r}) — 0, uniformly in ¢, in § — 0. This is because w — || w||s is a continuous function on
Cs and P* and P, attribute all their mass to {w|w(0) = 0}. The measures P, are invariant
under the transformation w(¢) — w(l — ¢) and so uniformly in ¢ P.({w| max,i—s| w(t)|
>r}) — 0 as § —» 0. With this in mind, the reader will have no difficulty showing that (3.3)
holds when f° =, is replaced by an arbitrary bounded continuous function on Ci. So the
proof of weak convergence is complete.
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