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SOME POISSON APPROXIMATIONS USING COMPENSATORS

By TiMotaHYy C. BROWN

Monash University

We give new results on the total variation distance of the distribution of
a point process on the line from that of a Poisson process. Both one dimen-
sional and function space distances are considered. Additionally similar bounds
for marked point processes are given, both for the finite and infinite mark
space cases. The bounds are all given in terms of the compensator of the point
process (with respect to an arbitrary filtration) and are analogues and exten-
sions of discrete time results of Freedman (1974) and Serfling (1975). Some
new techniques for discrete approximation of compensators are used in the
proofs. Examples of the use of the bounds appear elsewhere (Brown and
Pollett, 1982, Brown, 1981), but an application to compound Poisson approx-
imation and thinning of point processes is given here.

1. Introduction, notation and statement of some results. There has been great
interest recently in distributional limit theorems for continuous time stochastic processes
which are related to martingales (for example Rebolledo, 1978, Brown, 1978, 1979, Kabanov,
Liptser and Shiryayev, 1980, Jacod and Memin, 1980). The conditions in these theorems
are usually in terms of the predictable characteristics of the processes (see Jacod, 1979 for
general definitions). A particularly simple case is the one for which rates of convergence
are studied here. Namely, a point process (N, %) is formed from a filtration { #(t)}eo (a
right continuous, increasing set of o-fields) and an unbounded sequence of stopping times

0<Ti<To<:-
with
N(t) = numberof T;<t.

[There are three ways to describe the system; by the stopping times T}, by the process
{N(£)} =0, or by the random measure generated by N. We shall use all three and will not
distinguish between N viewed as a random measure or as a process, provided that context
makes the meaning clear.] The predictable characteristic of (N, &) is its compensator A
which is the unique predictable process making N — A a local martingale. Moreover, for
any nonnegative predictable process Y

o ro) o ).

an equation which justifies many of the calculations here. The compensator depends on
the filtration, but the results here allow the filtration to be larger than that generated by
the process.

In Brown (1978), (1979) it is shown that point processes, whose compensators converge
in distribution to a continuous deterministic function, do themselves converge in distri-
bution to a Poisson process (more general results are in Kabanov, Liptser and Shiryayev,
1980, Brown, 1979 and Jacod and Memin, 1980). On the other hand, there is previous work
on the existence of certain (discrete time) Poisson approximation theorems for sums of
dependent Bernoulli random variables (Freedman, 1974, Serfling, 1975). We may embed
these theorems in our framework by assuming that 7', T%, - .- only take integer values.
Then

N@) =Y4 X,
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where X, X, --- take values only in {0, 1}. If %% C % C % C --- are an increasing
sequence of o-fields, and %(t) = g, then it is easily seen that the compensator A of (N,
&) is given by
A@®) =Y p;
where
=E (Xi | Fi1).

The approximation theorems mentioned above give bounds on the total variation
distance, d, between the distribution of sum of the X; and a Poisson distribution; for any
two probability measures 2 and 2 with the same domain

d(Z, 2) = sup| 2(A) — 2(A) |

where the supremem is taken over all sets A in the common domain. Freedman (1974)
gives the result that for any integer stopping time

(1.2) d(N(7), Poisson (p)) < 28, + (v — p) + ad:
where 81, 8 > 0 and »’ = p are such that
P(‘U.S 2;=1Pi5 y" and 2;=1p? = 82) =1-6;

and a > 1 is a function of 8,. [Here and below we write d(X, 2), for a random element X
and probability 2, to mean the total variation distance between the distribution of X and
2.] Serfling (1975) gives the result that for any fixed integer n,

(1.3) d(N(n), Poisson (n)) < Y21 E|pi — | + Y {E(pi)Y

where p1, - - -, p, are constants adding to p. It is a simple matter to see from (1.2) what the
continuous time analogue should be, since

(1.4) Y1 pi = A7)

and

(1.5) Yie1 P = Yeer AAX(s)

where AA(s) = A(s) — A(s—). While this analogue is not so clear in (1.3), it has the
advantage of reducing to the well-known bound np? when N(n) is Binomial (n, p), whereas
(1.2) in the same case is anp®> > np> Another difference is that (1.2) is in terms of
probabilities, while (1.3) concerns expectations; although the former has theoretical ad-
vantages, it seems that the latter is easier to use in practice (see, for example, Brown and
Silverman, 1979).

In the present paper, we produce bounds for the general continuous time point process
departure from Poissonity. Moreover, in the discrete time case, one bound here improves
that of Freedman (1974), while another is similar to, but different from, that of Serfling
(1975). This latter here is also in terms of the quantities in (1.4) and (1.5), thus providing
a unified theory.

Using the same methods, we can extend the bounds mentioned above in a number of
directions. Firstly, we may cons1der a marked point process (N, #) where we have a
second sequence

Zl’Zz’ b

of random elements on some measurable space, (E, &); here Z; is to be interpreted as a
mark attached to 7. Then, N becomes a random measure on R* X E which is defined, for
t=0and Fin &, by

N({(0,¢] X F) = numberof T;=<t¢ suchthat Z;€F.
KE={1,2 ---,k} wecall (N, #) a k-type point process and N is equivalent to the vector
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(N1, N3, - -+, Ni) where
N;(&) = N((0, t] x {j}).

In this case, the compensator of (N, &) is the vector A = (44, A,, - - -, Ax) of compensators
of (N1, #), (N2, F), ++-, (Nr, ). We can now state the first main result.

THEOREM 1. If (N, %) is a point process with compensator A, p = 0 and 7 is any
stopping time, then )
(a) d(N(7), Poisson (p)) <81+ 8+ 8+ (v —v)
provided v = p. < v’, 81, 82, 83 (=0) are constants such that

Pr=A(t)=v)=1-6;

and
P(FAA%s) = 8;) =1 — 6s.
Further,
(b) d(N(7), Poisson (p)) < E|A(1) — | + E{Js=. AA%(5)}.
(c) If (N, #) is a k-type point process with compensator A = (A1, Az, ++-, As), p =

(1, P2, +++, uz) = 0 and 7 is a stopping time, then
d(N(7), Poisson (p)) = Y%, E|Ai(7) — wi| + E{Se=r AA%(s))

where here, and from now on, Poisson(-) with a vector argument means a vector of
independent Poisson distributions and

A = Zf=1 Ai.

Part (a) may also be extended to the k-type case, as will be apparent from the proof.
The discrete time case of Part (a) improves the bound of (1.2) by removing the constant
a.> 1, allowing §; and 85 to differ and permitting » to be less than u. The comparison
between the discrete time case of Part (b) and the bound of (1.3) is less clear; while the
first term of (b) is, for 7 = n,

E|Yipi—p| =Y Elpi— il
the second term is
E(¥r pi) = Yk {E(p))>.

A second extension, which actually follows from Part (c), concerns functional forms of
the continuous time bounds. For a stochastic process {X(s)}s=0 by X‘ we mean the process
stopped at t = 0, so that

Xis) =X(s N\ ¢t).

Below, we bound the distance of the distribution of a point process stopped at ¢ from that
of a Poisson process. For this purpose, the distribution of a Poisson process on [0, ¢] with
mean measure p will be written Poisson (u‘), while the distribution of a vector of
independent Poisson processes on [0, ¢] will be written as Poisson (p‘) if the marginals
have mean measures p = (1, g2, - - -, tz). We also need the fotal variation, | - |, of a signed
measure. This is the sum of the measures of the whole space in a Jordan decomposition
and so for probabilities 2 and 2

AP 2)="%|P- 2|

If m is a signed measure on (0, ®) and ¢ > 0, then | m |, will denote the total variation of the
measure restricted to (0, £]. Thus, in the theorems below |A — p|, means the random
variable w — |A(-, w) — p|¢, with A(-, w) regarded as a measure on (0, ©).
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COROLLARY 1. Under the conditions of Theorem 1, if u is a measure on (0, ©) and ¢
> 0 is non-random, then

(a) d(N*, Poisson (p!)) < E|A — u|: + E{Xe=c AA%(5)},
and if p = (p1, + - -, &) s a vector of measures on R™, then
(b) d(N*, Poisson (1)) = Y1 E|Ai — pi|¢ + E{Ys=: AA*(9)}.

We remark that often the bounds in both Theorem 1 and Corollary 1 are linear in ¢, so
that Corollary 1 is in one sense a much more informative result; indeed the second terms
in the bounds coincide, and in the case that A is differentiable the first term in Corollary
1 is usually easier to calculate. In this particular case, Corollary 1 has been applied to the
analysis of Markov queueing networks (Brown and Pollett, 1981). Theorem 1 has been
applied to sums of exchangeable (Brown, 1981) random variables. In this case it often
yields smaller bounds that those of (1.3).

There are three main techniques used in the proofs. As in Freedman (1974) and Serfling
(1975), coupling of random variables and processes plays a vital role. A pair of random
elements (X, Y) is a coupling for a pair of distributions 2 and 2, if the marginals of (X, Y)
are 2 and 2. It is easy to see that in this case

(1.6) d(# 2)=PX#Y)

(Freedman, 1974). Secondly, stochastic calculus is used to compute expectations and
probabilities and to construct couplings. The necessary result for the constructions is the
random time change theorem (Papangelou, 1972, Liptser and Shiryayev, 1974, Theorem
18.10); if (N, &) is a point process with continuous compensator A such that A(x) = o,
then N o A is a Poisson process if

A(t) = inf{z:A(2) = t}.

Finally, we use discrete skeletons of continuous time processes. This is done because the
couplings in the proof of Theorem 1 are difficult to construct in continuous time. I suspect
that they can be made using the distributional theory of Knight’s prediction process due
to Aldous (1979); however, a number of relatively deep auxiliary results would be needed
and, by contrast, the discrete approximation theorems are straightforward.

The organisation of this paper follows. In the next section, we show that arbitrarily
good discrete L;-approximations to compensators and their processes may be obtained,
provided that one forms partitions from predictable stopping times, rather than fixed
times. In Section 3, Theorem 1 is proved. In Section 4, we prove Corollary 1 and a number
of other Corollaries. These cover the case where conditional intensities exist, the general-
isation to approximating an arbitrary (right-continuous) increasing process by a Poisson
process, a new convergence result, and approximations by compound Poisson distributions.
Finally, in Section 5, we consider bounds for marked point processes whose mark space is
a suitable topological space.

Since writing the first draft of this work, several connected papers have been drawn to
my attention. Memin (1982) and Kabanov and Liptser (1982) give total variation results
for the distance between two point processes in terms of their intrinsic compensators (i.e.
the compensators of the processes together with their minimal filtrations). Kabanov and
Liptser (1982) also treat the marked case and show that convergence in probability of the
variations of the intrinsic compensators is equivalent to variation convergence of the
distributions of the processes. While their results apply to non-Poisson approximations
and may give a better result in the Poisson case, we note that many applications involve
larger than minimal filtrations. Valkeila (1982) gives a result for approximation by a point
process with independent increments; here the bound involves the Doléans-Dade expo-
nential of the compensators.

2. Discrete approximations to compensators. In Brown (1978) discrete approxi-
mations are used to obtain Poisson convergence results for continuous time processes. A
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problem with this method is that although compensators can always be obtained as limits
of discrete approximations along the dyadic rationals, the topology used is that of weak L,
convergence. Dellacherie and Doléans-Dade (1970) provide a counterexample to the
conjecture that (strong) L, convergence can be used in general. However, provided one is
willing to allow an approximation via a random time set, then this problem disappears
(Proposition 1 below). The problem arises only because of jumps in the compensator, and
it is overcome by inserting the times of large jumps of the compensators as singleton
members of the partition which defines the approximand. Because the resulting partition
has predictability properties, it seems that for many purposes the partition is as good as a
non-random one. Perhaps other martingale-type weak limit results may be derived via this
reduction to the discrete case.

To be precise, we define an (#—) predictable partition Q of [0, «] as a mapping from
Q to the collection of all sequences of intervals of [0, ] (where singletons count as closed
intervals) with the following properties:

(i) if Q(w) = (@1(w), @2(w), - - +), then U @;(w) = [0, ] and the @;(w) are disjoint,
(ii) for each i, there exist (% —)predictable stopping times L and R so that @; is one of
(L, R)’ (L’ R]! [L! R]’ [L’ R) or {L}'

With each predictable partition Q we associate an increasing sequence of o-fields % C
% C .- as follows:
(i) if @ is open on the left, then

Fi-1=F (L),

(ii) if @; is closed on the left, then
Fioi= F(L-).

These o-fields depend on Q, but we will not make this explicit from now on and hope that
it is clear from the context which partition defines a particular sequence of o-fields. Given
a predictable partition Q = (@1, @2, ---) we define the Q-discrete approximation to the
compensator of a supermartingale X at the time point © as

a(@Q) =Yi=1 E(—-X(Q:) | Fi-1)

where X(@;) is X(R—) — X(L), X(R) — X(L), X(R) — X(L-), X(R-) — X(L-), AX(L)
(respectively) in the five possible cases for @; of (ii) above.

The proof of Proposition 1 is just an enlargement of the remark at the end of Murali-
Rao (1969) concerning L, convergence of discrete approximations using dyadic rational
partitions. Perhaps the reason that the Proposition appears to be new is that much
martingale work in continuous time eschews reduction to the discrete. However, some
unattractively heavy work would be necessary to prove Theorem 1 purely in continuous
time. Indeed, the author believes that one of the attractive features of the proof of Theorem
1 is the interplay between discrete and continuous time.

As a final preliminary, we note that it is easily verified that the predictable partitions
of [0, «] form a directed set under pointwise set inclusion.

We state a result for Class D potentials first as it may be of general interest. Clearly, the
same technique may be used for the increasing processes in the canonical decomposition
of semimartingales, but we adhere to the Class D potentials, for ease of exposition. We will
use the Proposition later only in its Corollary.

ProposITION 1. Let X be a potential of class D with compensator A. Then
a(Q) —r, A(o)

along the directed set of predictable partitions Q of [0, «]. Explicitly, given A, u > 0 we
can choose a predictable partition Q, so that for any partition, Q, finer than Qo

21 E|a(Q) — A() | = (Ap)'/? + 2E{A () : A(®) = A}
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Proor. We prove (2.1) and then the convergence follows. For, given 8 > 0, the
integrability of A () implies that A may be chosen large enough to guarantee that the
second term of (2.1) is bounded by /2 and then the choice of p so that

Vi < 8/2V1)
ensures that the bound is smaller than 6.
Let S be the predictable time given by
S=inf{z>0:A(2) = \}.
The process XI[0, S) has compensator A’ = AI[0, S) and clearly the L; norms of both
A(x) — A’(x) and a(®) — a’(Q) are dominated by E {A (=) : A(x) = A}. Thus the second

term of (2.1) is the penalty for assuming that A is bounded by A, an assumption which we

make henceforward.
Let So = To =0 and for i = 1, let

T; = inf{z > Ti-1:AA(2) > p/2}
S; =inf{z > Si—1:A(2) — A(Si—1) > p/2}.
The predictable partition, Qo, is formed from @1, @:, - - - which are defined inductively as
follows. Let @:(w) = ¢ and @:(w) = {0}. For the inductive step, suppose that @;(w) =
{L(w)} and that R(w) = min{S;j(w), Tj(w):j = 1, Sj(w), Tj(w) = L(w)}.
Assuming that L is predictable, then so is R. We let @2;+1(w) = (L(w), R(w))and Qq;+2
= {R(w)}. Since, for each w, only a finite number of S;(w), T1(w), --- are finite, the set

{@1(w), @:(w), - -} is a partition of [0, ].
To see that Qo has the desired properties, let

a; = E(-X(Q:) | #i-1).
Then, if i is odd,
a; = E(A(Q;) | Fiz1)
and, if i is even, since AA(L) is & (L—) measurable for a stopping time L,
a; = A(Q).

Since also A(x) = A, {A(®:) — a;}; is the difference sequence of a uniformly square
integrable martingale and thus

EA(») —a(@)’ =Y E(AQ) — ai)”
By the previous sentence the right side equals
Y20 E(A(Qoi+1) — @2i41)’ < N30 E(A(Q2i+l)2) =< E{\ max;A(Q2i+1)}

and the latter is bounded by Ap, by the construction. The fact that standard deviation
exceeds mean absolute deviation now completes the proof for Q = Q, and the proof for
general Q is similar but notationally more complex.

COROLLARY 2. Given a bounded point process (N, &) with compensator A and given
a stopping time T and a number ¢ > 0, there exists a sequence of Bernoulli random
variables X, X, - - - and a sequence of o-fields %, C %1 C --- to which {X;} is adapted
and such that

(2.2) E|A(r) = Yi=ipi|<e¢
(2.3) E|Y:<r AAXs) = Yiz1 Pl | < e
and

(2.4) PNi=1 Xi# N(1)) <e¢
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where
(2.5) pi=EX;| %-1).

ProoF. Let M = 1 be an upper bound for N and let § < ¢/ {4M?}. Let X(¢) =
E(N(r)| #(t)) — N'(t), so that (X,%) is a potential of class D. Choose p and A so that

(Aw)* + 2E(A(7): A(1) = A) = 8. If Qo is chosen as in the last proof, then for any partition
Q finer than Qo

(2.6) |a(Q — A [1=96
and unless @; is a singleton
a;=E(N(Q)]| Fi-1) <8.

Because N7 is a bounded point process, there is a non-random partition R of [0, «] so that
if R = {Ri, Rs, ---, R,} then each R; is an interval and

@.7) P(UL [N'(R)) >1]) <.

Let Q be a partition which is finer than both Qo and R and which preserves the property
of Qo that its evenly indexed sets are singletons while its odd indexed sets are open
intervals. Because R is non-random, we can also make Q predictable. Since Q is finer than
R, equation (2.7) remains valid with @; replacing R; and « replacing n. Thus, if Y; = N"(Q:)
and

X;=1I[Y;=1]
then (2.4) is satisfied, by (2.7). Further,
1Ziz10i — a@) 1 = E{Ziz1 E(Y:: Yi > 1| %-1)}
=MPUX, Y:>1) < ¢/4M.

Combining this with (2.6), we obtain (2.2).
Furthermore,

| Diz1 p? = Tim1 {E(Y:| #-1)}? |11 = E{Ziz1 (pi — E(Yi| #i-1))(pi + E(Y:| Fi1))}
<2ME(Yi=1 E(Y:: Y > 1| %-1)}
=e¢/2.
But
[ Sint {E(Yi| Fi1))? = Toxe AA%S) 1 = | izt {E(A(Qaiv1| i)} — Taaw=u AA*(S) |11
<8E{Yi=1 E(A(Qi| #i-1))} + SE{Y.<: AA(s)}
< 28E{A()) <e/2.

Combining the last two series of inequalities, we obtain (2.3), and the proof is complete.
The next Proposition is a generalization of Proposition 1 to the vector case.

ProposiTION 2. Let (X1, ---, Xz), &) be a vector of potentials of class D with
compensators (A1, - -+, Ax). Then, given A, p. > 0, we can choose a predictable partition
Qo so that for any partition Q finer than Qo and each j

| (@) — Aj() |l = Ap)? + 2E{A(t) : A(t) = A}
where A = Y51 A,.

ProoF. This is essentially the same as the proof of Proposition 1. The only difference
is that we define

aji = E(X](Ql) I -%—1)
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and, by a similar argument to that of Proposition 1,
(2.8) E(Aj(») — 4;(Q0))* = E{A max;A;(Q+1)}.
But, since
A;(@) =AQ),
the right side of (2.8) is still bounded by Ap.

CoROLLARY 3. Let (N1, -+, N&), &) be a bounded k-type point process with
compensators (A1, ---, Ax). Given a stopping time t and a number ¢ > 0, there exists a
sequence of Bernoulli random vectors Xi = (Xu1, Xo1, « + -, Xu1), X2 = (X12, Xo2, + -+, Xa2),
-++ and a sequence of o-fields %, C % C - - - to which {X;} is adapted and such that for
each j (22), (2.3), (2.4) and (2.5) hold with A;, p;, Xj;, N; replacing A, p;, xi, N
(respectively).

Proor. Thisis essentially the same as that of Corollary 2 after we make the definitions

N=3}1N;, and A=3}.14,
so that (N, &) is a point process with compensator A. Further, let
Yi=Nj(Q), Yi=Y%.Y;, ai=E(Y; %)
and
Xji=1[Y;i = 1|{[Xssj Yoi = 0].

The verification that these definitions work is left to the reader.

3. Proof of Theorem 1. We first show that Theorem 1 holds in the case where all
compensators are assumed continuous. By the argument of page 309 of Brown (1981), we
may also assume that each compensator has infinite limit at infinity. To prove (a) and (b),
let

A@z) = inf{s:A(s) > z}.

By theArandom time change theorem (e.g. Liptser and Shiryayev, 1978, Theorem 18.10), N
= NoA is a unit rate Poisson process. Thus

(3.1) d(N(r), Poisson (1)) < P(N(r) # N(u)).

For (b), we first use the fact that both N(r) and 1\7(;;.) take only non-negative integer
values. Thus, the right side of (3.1) is dominated by

E|N(1-)—N(u)|=E{jZdN+jZ’dN}

where Z(z) and Z’(z) are indicators of the events [[i W<z=rland[r <z = A(u)]
(respectively). Because Z and Z’ are left continuous and adapted, they are predictable.
Hence, we may replace N by A in the right side of the last equation to obtain

d(N(7), Poisson (1)) < E|AcA(n) — A(r) |
which gives (a) since A OA(M) = u.
For (a), we observe that under (a) the right side of (3.1) is dominated by
PINW)-Np) =1 + &

since N(r) almost surely equals N(A (7)) (Brown (1981), page 309). But the last expression
is dominated by (' — ») + 8; by Lemma 7 of Freedman (1974).

For (c), we define A} by replacing A by A; in the definition of A. By Theorem 2’ of
Meyer (1970), (Nl, cee, N‘k) = (NloA\l, cee, NkOAk) now consists of independent unit rate
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Poisson processes. Thus, the required distance is bounded by
P(US-1 Nj(w) # Nj(r)) < Z5-1 P(N;(wy) # Nj(r;))

which gives the desired bound after using the argument of (b).

To obtain the general bounds, we use the approximation techniques of the previous
section. We shall show that the required distances are bounded by the expressions glven
plus fixed multiples of ¢, where ¢ > 0 is arbitrary.

Firstly, we may assume E(N(7)) < « in (a) and (b) and E(N;(r)) < o for all { in (c). In
(b) and (c), the assumptions may be made, because in the contrary case the bounds are
infinite. For (a), we define

o=inf{z:A(z)>v"}
and consider the process N’(#) which takes the value N(¢) if ¢ < ¢ and is N(o—) for ¢ = 0.
If A’ is the compensator of (N’, &), then we have

E(N'(r) = E(A'(1) = E(J

dA) =v' <o,

[0,0)

Moreover, A’ still satisfies the second hypothesis of (a) and
Pr=A'(r)=v')=P(A(1) =)

while
d(N(7), N'(1)) = P(A(7) > v')

and we obtain

d(N(7), Poisson (n)) = P(A(7) > v') + (v’ —») + P(A'(1) <») + 82 + 85

provided (a) is true for N’, and this gives mequality (a) for N.
We find a jump time TM of N (with N = Y%, N; in (c)) such that

P(Ty<r1)<e

By replacing N(7) by N(r A\ Tu) we will change the distance by at most ¢ and the bounds
by at most 2¢; the latter because the compensator of (N(- A Tu), #) is A(- A\ Tu). Since
the process N(- /A Ty) is bounded by M, we may apply Corollaries 2 and 3 to it. To
complete the proof of Theorem 1 it thus suffices to establish:

ProposITION 3. Let {X;} be a sequence of Bernoulli random variables, which is
adapted to an increasing sequence { %} of o-fields. Let
3.2) S=3X;

where here and for the rest of the Proposition the unmarked sums are over i in
{1,2, ---} and let

(3.3) pi= EX;| #i-1).

Then, assuming E(S) < =, (a) and (b) of Theorem 1 hold with S replacing N(7), Zp;
replacing A(r) and Zp?} replacing SAA*(s).

Suppose {X,} = {(Xis, + -+, Xin)} is a sequence of Bernoulli random vectors and {%,} is
an increasing sequence of o-algebras to which {X,} is adapted. Let

= Xy, -+, ZXu)
and

DPii= E(Ath I v%—l)-
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Then, assuming E(S) <, (c) of Theorem 1 holds with S replacing N(7), Zp;: replacing
Aj(r) and (Y %1 p;;)? replacing TAA%(s).

Proor. For a finite sequence of 0-1 random variables, part (a) was proved in Brown
(1982). The proof described a certain construction which enabled use of the bound given
here for point processes with continuous compensator. The same construction is used here,
but, particularly as it has points in common with the constructions in Freedman (1974)
and Serfling (1975), we refer the reader to Brown (1982) for details. Alternatively, the
construction has much in common with the one given in full in Section 5.

After possibly extending the underlying probability space, there exists a sequence {£;}
of 0-1 random variables and a point process (n, %) with the following properties:

(i) (&, &, - --) has the same distribution as (X1, Xz, --+),
(ii) (n, ¢) has a continuous compensator a with.

(iii) a(o) =Zq;
where (g1, gz, - - -) has the same distribution as (p1, p2, ---),
(iv) 9()=o0(q1, &, -+ i, &, gi+1), 1 =0
and
() = 9[t]von(2),z=1);

(v) if A is the conditional probability that ¢; differs from 5 (i) — n(i — 1) given 4(i — 1),
then A is bounded by q?.

Let fbe a continuous, strictly increasing function from [0, 1] onto [0, »]. Define N(¢)
=n(f(t)) and F (t) = %(f(¢)) for t < 1. Because

E(NQ)) = E(Zq:) = E(S) <,

the process (N, %) does not explode on [0, 1]. Hence, it is a point process whose continuous
compensator takes the value 2q; at 1. Now

(3.4) d(ZX;, Poisson (p)) = d(ZX;, N(1)) + d(N(1), Poisson (u)).

To establish part (b), we note that the argument already given for point processes with
continuous compensators proves that the second term on the right of (3.4) is bounded by

E|Zqi—p|=E|Zp: — p|

from property (iii) of the construction. But the first term equals d(2¢;, N(1)) from property
(i) and the latter is dominated by

P(St #37) < E(SP(& # Z| %G — 1)} < E{Sp})

using properties (iv) and (iii) of the construction.
To establish (a), we define the { %(i)} stopping time

o=inf{n:37* q? > §,}.
The argument already given shows that the second term of (3.4) is bounded by (»' — ») +
8:. Now .
PS¢ #32Z;) = Plo< ) + P(Z¢E#2zf)

where ¢/ = YiI[o = i] + Z! = Z;,I[o = i]. By property (iii) and assumption, the first term
of this inequality is bounded by 8;. After noting that [0 = i] € ¥ (i — 1), property (iv) of
the construction gives a bound for the second term as

ECPE#Z|9G—-1))I[o=i]) =E{Zqi[o=i]} <&

by the definition of ¢. The proof of (b) is thus complete.
For part (c), we make a similar construction to that used in parts (a) and (b) with X;
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= Y% _; Xj;. However, we now have
a(o) = Zg;

where g; = Y%_1 g and (qi, gz, - - -) has the same distribution as (p1, pz, - - -). Moreover,
we make

g(i) = 0((11, gl, qz, §2, M) qi+1)-

In addition, for a particular i, let Z, Z, -- - be random variables, which conditional on
(i — 1), are independent and identically distributed according to

P(Zi=j|9G—-1) =qi/q, JE{L -k},
and further make {Z,} ¢ (i — 1)-conditionally independent of £;. We now define
&= YiI[Z:=j]
so that
P¢i=1|9G—-1) =q;

and thus (&1, &, - - -) has the same distribution as (X1, Xz, - - -). Finally, we define a k-type
point process (11, - - -, 1) whose points are those of n and whose marks are assigned by the
following rule: the mth point of (i — 1, i] is given the mark Z,. Setting 4(t) = 4([t]) v
om;(2), z<t,jE {1, ---, k}), the process (1, - -+, M), ¥) is thus a k-type point process
whose continuous compensator (ay, - - -, ax) satisfies

oy (00) = Eq,-i.
We now argue as before to see that the required distance is bounded by
P(Zg; #n;(»), for some j) + d((ni(), - - -, nx()), Poisson (p)).

The first term is dominated by the probability that & is not equal to (i) — n(i — 1), for
some i. For, if the contrary holds, 7(i) — n(i — 1) is one or zero for all i and the same
random variables are used to indicate which, if any, of &; and 7;(f) — 7,;( — 1) are one.
Thus the same argument as in the univariate case gives the second term of the bound and
the first is obtained from the argument given for continuous compensators.

4. Corollaries and extensions of Theorem 1. We first prove Corollary 1. To do
this we need a simple Lemma.

LEMMA 1. Let 2 and 2’ be two probability measures on # = o(F) where . is a
field and suppose that
|2(A) — 2'(A)| <8
for all A in #. Then the same holds for all A in #.

Proor. Fix A in & and ¢ > 0. By the Caratheodory extension theorem, there is a set
A’ in #such that A’ D A and

PA)=2(A) +e
Thus,
PA <P A)=PA)+=P(A)+e+d.

The Lemma now follows from the arbitrariness of € and a symmetrical argument with 2
in place of £’ and vice versa.

From the Lemma, for part (a), we need only show that, for arbitrary 2 and 0 = to < &
<t ... <t wehave d((N(to, t:], - - -, N(te—1, &), -#) bounded by the right-hand side of
(a), where .# is a vector of independent Poisson random variables with means p (%, t],
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oo, W(tr-1, t]. To do this, letj € {1, ---, &k}, t =0 and
N;i(t) = N@EAt) —~ N(@EA t-1),

so that ((Ny, ---, Ni), &) is a k-type point process. Then, Theorem 1 part (c) gives a
bound for the required distance of

E{$i1|A@-1, 41 — p(ti-1, 51|} + E{Te=e AA%(s)}.

By the definition of the variation norm, this is enough. .
The argument for part (b) is very similar but notationally more complicated and is thus

omitted.
Corollary 1 has the following immediate consequence when the processes have condi-

tional intensities.

COROLLARY 4. Under the conditions of Corollary 1 and the additional assumptions
that

t t
A() =J a(s) ds, A;(t) =f a;(s) ds
0 0

t t
ﬂ(t)=f A(s) ds, (t) =f Ai(s) ds
0 0

the bounds of (a) and (b) become

E{f |a(s) —A(s) | ds}
(1]

Zf-lE{f | aj(s) —A;(s) | dS} ,
(1]

and

respectively.

Theorem 1 can produce error bounds in Poisson approximations for general increasing
processes. As in Brown (1981), starting with an increasing process (IV, #) and 0 <e <11,
we define the e-point process (N.,%) of (N, #) by setting N.(t) to be the number of z <
t such that AN(2) € (1 — g, 1 + £]. The e-remainder process (N°¢, %) (which is not N — N,)
has N(t) equal to N(¢) — [ AN(z) dN.(z). Working with the compensator A of (N, %)
(and not that of (N, &), which is often awkward to calculate), it is not difficult to apply
Lemma 1 of Brown (1981) to show that for a stopping time 7 and p = 0

(4.1)  d(N(r), Poisson (u)) < E|A(r) — p| + (1 — &) 'E{ Y.<, AA%(5)}
+ 2eE{A(1)} + E{N*(t)} + P(N(r) # N.(7)).

[a key point in the proof is that

T

E{Y.=. AA%(s)} = E{f AA(s) dN(s)}.]

0

This result is most likely to be of interest if IV only takes integer values, in which case
(taking £ = 0) we have

(4.2) d(N(r), Poisson (p)) < E|A(1) — | + E{Qs=- AA%(s)}
+ 2E(N(7)I[N has a jump of size 2 in (0, 7]]),
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provided E {N(r)} < c. This bound may be readily applied to obtain a Poisson approxi-
mation result for U-statistics with 0 — 1 summands. The bound has a similar form to that
of Brown and Silverman (1979) (where the bound Serfling (1975) was used) but one obtains
smaller universal constants with the above.

It is also quite easy to extend these arguments to approximations for the whole process,
N‘. Thereby, (after truncation as in Brown, 1981) one obtains the Poisson case of the Cox
convergence result of Brown (1981). We may also obtain a curious new convergence result.
Namely, if (N,., %) is a sequence of point processes with continuous compensators A, and,
for all ¢ = 0, A, () = pu(¢), in distribution, for an arbitrary right continuous increasing
function p, then the finite dimensional distributions of N, converge to those of a Poisson
process with mean function yu [Brown, 1981, requires p to be continuous, while in Kabanov,
Liptser and Shiryayev, 1981, the limiting process is not Poisson if p is discontinuous]. The
result is curious because in general it will not be true that N, converges in the Skorohod
J1 topology. An example of this is obtained by considering a sequence of Poisson processes,
whose continuous mean functions converge to a discontinuous function. In this case, each
N, will only have jumps of size 1, while the distributional limit will have a jump of size 2
with positive probability; this phenomenon is not consistent with JJ; convergence.

We can also use Theorem 1 and Corollary 1 to give approximations by compound
Poisson distributions. To describe this, let (N, %) be a k-type point process with compen-
sator A. Fix a k-vector of reals, Z. We can then obtain another stochastic process f(N)
defined by

fN)(@t) =Yhi ZN:i(t), t=0

f(N) jumps by Z; at the time of each type i point of N. If IT is a k-vector of independent
Poisson processes, then f(II)(¢) has a compound Poisson distribution and

fAD () =a 271 &

where I1(¢) = 311, (¢) has a Poisson distribution and is independent of &, &, - - - , which are
also independent and identically distributed. The parameters of the compound Poisson
distribution are defined to be the mean of II(¢), the vector z, and the probabilities p; that

&, takes value z;.
Theorem 1 (c) gives
4.3) d(fN)(), fA) (@) < Tkt E| Ai(t) — | + To= E {AA*(s5))
where y; = E {I1;(¢)}, while Corollary 1 (b) gives
(4.4) d(fN), fAD)*) < L1 E|Ai — pile + Vo=t E{AA%(s)}

where p; is the mean measure of IT;.

As an example of the use of (4.3) we consider a point process which is thinned by a
Markov chain (see Isham, 1980, and Boker and Serfozo, 1982). Specifically, suppose 7 is a
point process and that {X;}:o is an independent stationary Markov chain with states 0 and
1. We let

8=P(X1=1|X0=0)
and
p=P(X1=1|Xo=1).

By meé.ns of a limit theorem, it is shown in Boker and Serfozo (1982) that, if ¢ is small and
en(t) is approximately p (a constant) > 0, then

@) =31 X;

has an approximate compound Poisson distribution with parameters g, (1, 2, 3, ---) and
(1-p),p(1 —p),p*(1 —p), - - ). Below, we find a bound on the error in this approximation.
While the assumptions that the Markov chain is stationary and that it is independent of
the point process are not necessary for the limit theorem to hold, the latter would appear
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to be essential to get an error expressed only in terms of 7 (), e and p. The former is merely
a convenience to keep the bound relatively simple.
We work with a jump process which is connected to 5. Forj = 1, let
N;(t) = 27(2 1 -Xi)XiXie1 o+ Xinj1(1 — Xinj) + Xy -+« X;(1 — X501 [n (¢) > 0]

i=

so that N;(t) counts the number of success runs of length j starting on the trials 1, - - -,
n(t). If

Z(t) = XTJN;(®)
then
Z@E) =7
if for all j = 1 and all ¢such that
@) —j+1=/¢=9()
we have
(1—X,)Xs -+ Xowjoa1(1 — Xe4j) = 0.
Hence

ep(l —¢)
1-p)(l-p+e’

Let Y be a compound Poisson random variable with the parameters mentioned
previously. To estimate d(Z(¢), Y) we use the bound of (4.3) with infinite sums replacing
finite ones. There are two ways to justify the extension; it is possible to generalize Theorem
1 (c) to marked point processes with countably infinite mark space or, more simply, a
truncation argument works because

E(Y5-siNit)} < E{n(®)}p”(J +1)/(1 - p)
and we will assume E {n(¢f)} < . Thus
d(Z(t), Y) = 371 E|Aj(t) — pp’ (1 — p)| + E{Te= AA2(S)§

(45) P'(t) #Z@) = Xj1 (= 1)(—1—1;8—)817" T1-p) =
—p+e

where A; is the compensator of (IN;, &) for some history % We choose
Ft)=0n) v 0(;20, P 10))
so that
Aj(t) = (219 e’ (1 = p)(1 = Xi-1)} + p-p’ (1 = p)XoI (n(2) > 0).
Hence, after some manipulation using the fact that the stationary distribution is
(1=p)/A=p+e),e/(1—p+e)

(46) d(Z(@®t), Y) <E|en(®) —p| + (1 — p + &) e{(2 — p)E(en(?)) + p(1 + p)P(y(¢) > 0)}.
Combining (4.5) and (4.6) we obtain a bound on the distance of the number of retained
points, 7’(¢), from Y of

Elen(t) —p|+ (1 = p + &) 'e{(2 — P)E(en(2)) + p(1 + p)P(n(t) > 0) + p(1 — &)/(1 — p)}.

Usually, the first term will be dominant; for example, if 7(£) is a unit rate renewal process
evaluated at nt and ¢ = n”), then the first term is OWr 1), while the second is O(n ™).
This tends to confirm an intuition that the approximation here is roughly as good as
approximating 7’(¢) by a Poisson (1) random variable, if ¢ = p. For in the latter case it is
easy to see that a bound of

E|en(t) — p|+ eE(en(2)
results from Theorem 1.
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We finally mention another possible extension for which we will not provide details. It
would be possible to relax a little the assumption that points with different marks do not
occur together in a marked point process. For example, in the setup of Proposition 1, one
could consider vectors X; such that Xj; is %_; conditionally independent of X,; for ¢+ j.

5. Marked point processes with general mark space. In this section we give a
bound on the distance of a finite point process on a suitable topological space from a
Poisson process on that space. The finite point process is supposed to arise as the
accumulation of the marks in a marked point process. The bound is in terms of the
processes in a certain decomposition of the compensator of the marked point process. This
decomposition is given in Jacod (1979), Theorem 3.15 and we follow this and Jacod (1975)
for definitions and some notation. An important part of the proof of the bound is Lemma
2, which gives concrete interpretations of the parts of the decomposition. Corollary 8 gives
a bound for the distance of the whole marked point process on (0, ] from a time-
homogeneous marked Poisson process.

Consider a random measure (1, #) on & (R*) X &, where (E, &) is a Lusin space. We
define n¥ to be the increasing process given for Fin &and ¢ > 0

77(¢) = 9((0, ] X F).

The stochastic process {7 (£)}:=0 will take value the measure 9 ((0, ] X -) at time point ¢.
By the construction of the compensator A of a marked point process (N, #) =
(T, Z,, - -+), F) given in Theorem 3.15 of Jacod (1979), we have the decomposition

t
(5.1) AF@t) = f B(s, F) dA%(s)
o

where B(-, F) is predictable, B(s, -) is a probability measure on & and AF is the
compensator of (N¥, #). Intuitively, A” gives the accumulated conditional rate of occur-
rence of points, whereas B gives conditional distributions for the marks. More precisely, by
Theorem 2.6 of Pitman (1981):

LEMMA 2. The conditional distribution for Z; given & (Ti—) is B(T;) on [T; < ].
REMARK 1. By B(T)) on [T: < ] we mean the random measure defined for w €
[T; < ] as
w = B(w, Tiw), -).

To prove our bound, we will need the existence of maximal couplings on general spaces.
I learned this from Kaijser (1981). Let 2 and 2’ be probability measures on some space
(S, &). Then there exists a probability measure 2 on & X &such that

(5.2) d(@,2) = P{(x,y):x # ).
[In fact, Phas the explicit formula
PAXB)=2(ANBNF)+2ANBNE)+ {d® 2} {a X BA X B)}

where E U F is a Hahn decomposition for Z — 2’ and a« — 8 is a Jordan decomposition of
the same measure.] Provided (S, &) is Polish, we may then realise Zas the distribution of
a random element of S X S. This random element can be taken to be a function of a
uniform random variable U and we will label it MC(U; & 2’) (Billingsley, 1968, page 26,
Exercise 6). If MC(U; #, 2’) = (X, Y) then (5.2) takes the form

dZ2)=PX#Y),
so that MC (U; &, ') achieves equality in (1.6). We can now prove:
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THEOREM 2. Suppose (N, &) is a marked point process with compensator A and
that A = AF and B are as described above. Let p. be a finite measure on & Then, if A is
continuous,

Al

(5.3) d(N(2), Poisson (p)) < E|A(¢) —v|+ E{J

0

d'(B(s), ,L')A(ds)}

wherev=p(E),p’ = p/v, A(t) =inf{z:A(2) > t} and d’(B(s), u’) is the stochastic process
(w; S) g d(B(wy S, ’)) #')

REMARK 2. If A is nearly deterministic, A (v) will be close to some constant c. In this
case, a convenient upper bound to the second term would be

E{J' d’'(B(s), ;L’)A(ds)} + E {sups=ao)n.d’(B(s), p")| Alc) — t|}
0

REMARK 3. One is tempted to write d(B(s), ") for d’(B(s), ') in the right side of the
bound. However, by convention, d(B(s), p’) would mean the distance between the
distribution of B(s) (a distribution on measure space) and p” (even though the latter is not
meaningful). It will be important in the proof that d’(B(s), ) is a predictable process; this
follows from the fact that it equals % | B(s) — p’| and the fact that the predictable signed
random measures form a vector space (Jacod, 1979, Corollary 3.13).

PrOOF. As in the proof of Theorem 1, we assume that A(») = . We proceed by
constructing a new version § = (71, {1, T2, {2, +-+) of N and a Poisson process Il =
(o1, v1, G2, ¥2, - - -) on R* X E. The times (o1, 03, - - -) will be chosen to have the same joint
distribution as (A(T1), A(T3), - - -); the fact that these latter give a unit rate Poisson process
on R* is just the random time change theorem (Liptser and Shiryayev, 1978, Theorem
18.10). The marks of IT all have distribution ', so II(») has distribution Poisson ().

The basis of the construction is a set U;, Us, Us, --- of independent and identically
distributed uniform random variables over (0, 1). By enlargement of the underlying
probability space, if necessary, we can assume these independent of & (). Let (g1, 01) be
a function of U; whose distribution is the same as that of (B(T1), A(T1)). Let ({1, v1) =
MC(U; qi, 1), i.e. conditional on Uy, ({1, y1) has the maximally coupled joint law with
marginals g;(U:) and p’ respectively. Hence, since p’ is non-random, o; = ¢:(U1) and v: are
independent. Further, by Lemma 2, (g1, 01, {1) has the same distribution as (B (T1), A(T1),
Z,). Thus, by using conditional distributions, we may produce random variables 71, @2, 02
which are functions of Us, and such that

((11, o1, §'1, T1, q2, 02) =d (B(Tl), A(Tl), Z1, T1, B(TZ), A(Tz))~

Proceeding in the above way to produce ({2, y2), 72, gs, 03, - - - we obtain the processes
7 and II with the required properties. Moreover, (n%, I1) has the same distribution as
(NZ, NEoA), so that the proof of Theorem 1 gives :

P(mE(¢) # 1% (v)) < E| A(t) — »|.
Thus, the probability that 7 (¢) differs from II(») is dominated by the right side of the last
equation plus
P(ti#y; forsome i=1,...,T1%(») and 79%(@) =I1%()).

Let # = o(Uy, + -+, Usis), i =0, 1, ---. Denote IT®(») by S. Then S is an {#}} stopping
time, since

S = inf{i: 0is1 > »}.
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Thus the last probability is bounded by
E(XL I8 # vil) = E{TL P& # vi| -0} = E(T d'(qi, 1))
by construction. The construction also ensured that
(S, 41, g2, +++) =a (N> A(»), B(T1), B(T3), --)

and hence the right side of the previous equation is
Aw) .
E (3L d'(B(Ty), p)} = E{f d’(B(s), M’)N(dS)}

0

which is the second term of the bound since A(») is an F~stopping time.

COROLLARY 5. Using the same notation as Theorem 2, letting m be an arbitrary
measure on (0, ©) and Poisson (m X p’) be the distribution of a Poisson process on (0, t]
X E having mean measure m X p restricted to (0, t] X E, we have
Aw)
d(N*, Poisson (m X p’)) < E|A — vm |, + E{f

0

d’(B(s), n')A(dS)},

where N* is the distribution of N restricted to (0, t] X E.

ProoF. We use the same construction as in the proof of Theorem 2. The sets of the
form I U ... U I, where

Ij=(tj_1,tj]>(F}', E,Eé’, D=t < e <tp=t

are a semiring which generates % ((0, t]) X & Thus, by the argument of Lemma 1.4 of
Kallenberg (1975), we need only bound

Pl(n(I), -+, n(Ix)) # (IU(J1), -+, IL(JR))],

where J; = (s;_1, s;] X F;, and s; = vm(0, ¢;]. This probability is bounded, as in Theorem 2,
by the sum of two terms, the first of which is

PnE(tj—1, t]] % II%(sj—1, s;] for some j)

and thus is bounded by the expression in the statement of the Corollary using the
(univariate) bound of Corollary 1. The second term coincides with that of Theorem 1 and
the proof is complete.

Corollary 5 can even give better bounds than Corollary 1 in the case of a k-type point
process. As a simple example consider a unit rate Poisson process on R*, II =
(T1, Te, --+), and an independent stationary Markov chain {X,} which takes & values
{1,2, ..., k}. Let

N((©, 8] X {j}) = Er= I[Xi =j], j=1,2,---, k.

If A is the compensator of (N, #), where # (t) = o(T1, ---, Ti, X1, +++, X;, for Ty < t),
then

t

A0, €] X {j)) = f Py, ds

0

where (P;)) is the transition matrix of {X,} and Y (s) is the left continuous process X s-).
The bound of Corollary 5 for the distance of N from a k-vector of independent Poisson
processes with rates given by the stationary distribution (pi, ps, - - -, pr) of {X,.} is

t
1
EJ {5 Y=l Py _Pfl} ds,
0
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since A(f) = t. But this expression simplifies to
t/2 Xt X5-1| Pij = ps| pi
whereas the bound of Corollary 1 gives

t
E{Zf‘ﬂ f | Py — pjl ds}
0

which is exactly twice the previous bound.

Theorem 2 and Corollary 5 can be used to give compound Poisson approximations for
jump processes whose jump set is uncountable. Given a marked point process (N, #) with
mark space R and compensator A, we define f(N) by

fN)@) = Yr=e Zi

where the T"’s are the times and the Z’s the marks of the process. If Il is a Poisson process
on (0, ©) X R with mean measure m X p, then the analogue of (4.3) is, assuming A to be
continuous,

Aw)
(5.4) d(fN)(@), fAD)()) < E|A(t) —v|+ E{f d’(B(s), M')A(dS)}

0

where » = m(t)p(R) and other symbols on the right have the same meanings as in Theorem
2. Again assuming A to be continuous, the analogue of (4.4) is that the bound of Corollary
5 is also a bound for the total variation distance between the distributions of f(N)* and

fan.
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