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SOME RESULTS ON LIL BEHAVIOR

By J. KueLBs® AND J. ZINN?

University of Minnesota and Texas A & M University

We examine the relationship between the central limit theorem with
Gaussian limit, and law of the iterated logarithm type behavior in the Banach
space setting. Our results solve some problems posed by Kesten (1972) and
generalize some results of Klass (1976, 1977).

1. Introduction. It is well known that the law of the iterated logarithm (LIL) is more
or less just a refinement of the central limit theorem (CLT) with Gaussian limit, and here
we present some recent results in this regard. Our main theorems are of three basic types.
One type relates LIL behavior with CLT behavior for sums of independent identically
distributed vector valued random variables, and solves some of the problems posed in
Kesten (1972). These results assert the existence of normalizing sequences which produce
detailed LIL behavior under a minimal CLT type assumption, but say nothing about the
regularity of the normalizing sequence and are contained in Theorem 1. Theorem 2
involves a limited converse result in this setting. Another type of result generalizes some
work of Klass (1976-1977), and here we investigate stability results with some attention
focused on the behavior of the normalizing sequence (see Theorem 3 and Corollaries 1-5).
Finally, we present some results which are more or less a combination of these types, and
which are related to the methods in a recent paper of Pruitt (1981). These are contained
in Theorems 4 and 5 and Corollaries 6 and 7.

In Kesten (1972) the regularity, as well as the existence, of a sequence which produces
LIL behavior is investigated via methods which involve considerable analysis. The one
thing which our approach emphasizes is that to do the existence problem, even in a general
vector valued setting, simple probability inequalities are really all that is necessary.
Furthermore, our methods allow us to answer some of the clustering phenomenon questions
posed by Kesten (1972) in this setting, but to go beyond the “existence of a normalizing
séquence” and to establish regularity properties on the sequence definitely requires more
analysis. Much remains to be done in this regard, and the paper by Pruitt (1981) is an
excellent source to these, as well as the related problems involving one-sided LIL behavior.

To make things more precise we now turn to some notation and a discussion of CLT
and LIL behavior. We will see that CLT and LIL are related at various levels and a
fundamental result is Theorem A below.

Throughout, B is a real separable Banach space with topological dual B* and norm
|l - |l We assume X, X, Xo, - - - are independent identically distributed B-valued random
variables, and as usual S, = X; + .+ + X, for n = 1. We use Lx to denote the function
max(1, log. x) and we write Lox to denote L(Lx). The law of X is denoted by .# (X), and X
satisfies the classical central limit theorem in B if the sequence {£(S./¥n)} converges
weakly to, say . (Z). Of course, Z must be a mean zero B-valued Gaussian random variable
and X must have covariance structure identical to that of Z. We will use the notation

(1.1) L8/ V1) = s L(Z)

to denote the weak convergence of S.An to Z.
If X does not satisfy the classical central limit theorem, there are several other ways in
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which the partial sum process {S,}, suitably normalized, might approximate a Gaussian
law weakly. One possibility is to consider normalizations other than vn, and another is to
pass to subsequences of the partial sums {S,}. That is, we say X is in the domain of
attraction (domain of partial attraction) of a Gaussian random variable Z if there exists a
sequence d, /' «, {8,} C B (a subsequence of integers n; / and sequences d,, / ®, {5,,}
C B) such that

.se(s"d_ 8") S y(Z)(.z’(ﬁ‘*Ti_ﬁi) e z<z>>.

n p

If X is in the domain of attraction (of partial attraction) of a Gaussian random variable Z
we write X € DA(Z)(X € DPA(Z)), and, of course, we always are assuming Z is a mean
zero random variable which is not identically zero.

As a result, when saying X has CLT behavior, what we have in mind is that X satisfies
the classical CLT, X € DA(Z), or X € DPA(Z) where Z is Gaussian.

Next we turn to the LIL. The classical normalizing constants in the LIL are

(1.2) a, = V2nLsn,

and in the infinite dimensional setting there are two forms of the classical LIL which are
of interest. They are the so-called bounded LIL (we write X € BLIL) and the compact LIL
(we write X € CLIL). That is, X € BLIL if

(13) lim sup, || Sa/an|| <o w.p. 1,
and X € CLIL if there exists a non-random compact set D C B such that
(1.4) d(s';(:’) , D) -0 wp.1,

and

(1.5) D= c({sc:“’)}) w.p. 1

where

d(x, A) = infyea | x - ¥,

and C({S.(w)/a.}) denotes all limit points of the random sequence {S.(w)/a.}. The set D
in the compact LIL is called the “limit-set”.

If B is finite dimensional, then it is known that the conditions X € BLIL, X € CLIL, X
satisfies the classical central limit theorem, and the moment conditions EX = 0, E || X|?
< o are all equivalent. Hence the classical CLT is equivalent to the classical LIL in finite
dimensional spaces, but if B is infinite dimensional much more variety is available. For
further details involving various implications between the classical CLT and the classical
forms of the LIL, we suggest Kuelbs (1980) as a reference. Now, however, we turn to a
generalization of the LIL and study its relationship to the generalized notions available in
the central limit theorem.

Let X be a B-valued random variable. We say X has LIL behavior with respect to the
centering sequence {8,} C B if there exists a normalizing sequence y, / o such that

S, — 6

Yn

(1.6) 0 < lim sup, <o wp.l

Of course, LIL behavior is much more general than that required in the classical LIL, and
several remarks are in order.

First of all, if X is symmetric we are naturally interested in X having LIL behavior with
respect to the centerings 8, = 0, n = 1. Secondly, we must control the magnitude of the
sequence J,. That is, if lim sup;, || S»||/|| 6-|| = 0 and y. is of order || 8. ||, then the limiting
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behavior in (1.6) is not that of {S,} but is determined solely by {8.} and {y.}. Hence LIL
behavior with respect to centering sequences {8,} which do not dominate { S} is the item
of interest. If X takes values in R’, then a fundamental result relating LIL behavior and
CLT behavior appears in Kesten (1972) and implies the following.

THEOREM A. Let X ‘be real-valued. Then, X has LIL behavior with respect to the
centering sequence 8, = med(S,), where med(S,) is any choice for median S,, iff X is in
the DPA(Z) where Z is a mean zero Gaussian random variable with variance one. That
is, there exists a sequence v, / % such that
S, — med(S,)

Yn
iff X € DPA(Z) where Z is N(0, 1). Further, for every fixed ¢ > 0{y»} can be chosen so
that

(1.8) nVEey, A o,

1.7) 0 < lim sup, <o, wp.l

The fact that LIL behavior with respect to the centerings 8, = med(S,), n = 1, implies
X is in DPA(Z) where Z = N(0, 1), appears in some work of Heyde (1969) and Rogozin
(1968). The converse result and (1.8) are due to Kesten (1972) for centerings slightly more
general than medians, and the recent results of Pruitt (1981) and Klass (1976-1977)
mentioned previously furthers the investigation of such matters. Before we turn to
statements of the results we prove here, we mention the following unsolved problem posed
in Kesten (1972).

ProBLEM (Kesten, 1972). Find the accumulation points of

(19 {Sn - med(Sn)}’
Yn

and of the polygonal functions {n,} where
Sk - med( Sk)

(1.10) () = Tn
linearly interpolated elsewhere for0 < ¢ < 1.

t=k/n,k=0,..-,n

If the polygonal functions {7,} defined in (1.10) have a nondegenerate limit set of
functions we say X has functional LIL behavior.

We will solve Kesten’s problem for a general separable Banach space B and for certain
sequences {y»} when the centerings {med(S,}} are replaced by truncated means. Actually,
Kesten posed the problem for centerings slightly more general than medians, but in the
Banach space setting it is more natural to work with truncated means. We consider this a
positive aspect of our work as our centerings are much more transparent than medians
anyway since they are directly computable from the law of X. Furthermore, once our result
is proved, we will have LIL behavior for the symmetrization of X, and hence by Kesten’s
Lemma 1 (1972, page 721), whenever X is real valued, we will have LIL behavior with
respect to his centerings as well.

2. Statements of the main results. Our first result contains Kesten’s half of
Theorem A (without (1.8)), and also indicates one solution for the problem of Kesten
indicated at the end of section one. However, to state this result we must provide some
indication of the set of accumulation points obtained in the solution of this problem.

The motivation for this “limit set” begins with the fundamental paper of Strassen
(1964), and it is described in Kuelbs (1976). That is, if Z is a mean zero B-valued Gaussian
random variable and K denotes the unit ball of the Hilbert space Hyz) described in
Lemma 2.1 of Kuelbs (1976), then K is compact in B, and is the limit set we use in
connection with the accumulation points of the sequence (1.9) when the centerings med(S,)
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are replaced by suitable truncated means. For the accumulation points of the polygonal
functions in (1.10) (again with medians replaced by suitable truncated means) let p =
Z£(Z) and consider the u-Wiener measure W induced by p on Cg. Here Cg denotes the B-
valued continuous functions on [0, 1] with the sup-norm. Then W is a mean zero Gaussian
measure on Cp and we use X to denote the unit ball of the Hilbert space Hw C Cs as
constructed in Lemma 2.1 of Kuelbs (1976). Further, > is compact in Cg and is the
desired limit set for the polygonal functions of (1.10). For details regarding p-Wiener
measure and ) the reader can also consult Kuelbs and Le Page (1973).

If (M, d) is a metric space and A C M we define the distance from x € M to A by
d(x, A) = inf,ead(x, y). If {x,} is a sequence of points in M, then C({x.}) denotes the
cluster set of {x,}. That is, C({x,}) = {x:lim inf, d(x, x,) = 0}. We will use the notation
{x.} >> A if both lim, d(x., A) = 0 and C({x.}) = A.

THEOREM 1. Let X be B-valued and in DPA(Z) where Z is a mean-zero Gaussian
variable. Let K and X be as described above. Then, there exists a subsequence of integers
{n:} and normalizing constants d; / « such that if

(2.1) 0. =nEXI(|X||= dr)) n€ (p—1, m]
and
(2.2) Yo= 2Lk dy nE (Nk-1, ma),
then
@3) g(M) e 2(2),

dy
and

(2.4) P({SLY_ﬁ} > K) =1

Furthermore, the polygonal functions {n,} defined in (1.10), with the medians replaced
by suitable modifications of the truncated means {8,} (see (3.5) for details), are such that

(2.5) P({nn} > A) = 1.

The converse situation in Theorem 1 is to show that LIL behavior implies some sort of
central limit behavior. However, in this regard very little is known and there are examples
of random variables X taking values in infinite dimensional Banach spaces such that X
satisfies the CLIL (with classical normalizing constants) yet X does not satisfy the classical
CLT. What we can show, however, is that the analytic condition

wP(X|>u) _

(2.6) lim inf, ..
Il dPx ()

lxli=u

does hold whenever X is symmetric and has LIL behavior in a type 2 Banach space. Recall
that a Banach space B is said to be of type 2 (cotype 2) if for all n and all X, ---, X,
independent mean zero B-valued random variables there is some constant 4,0 < A < oo,
such that

ElXi+ -+ X< @) AYI- E| X

Furthermore, it is well known that the condition (2.6) is necessary and sufficient for X to
be in the DPA of a Gaussian law when X is real-valued, but it is clearly only part of the
story in more than one dimension. Some Hilbert space valued random variables producing
rather unexpected behavior are presented in the final section of the paper indicating some
of the subtleties in a converse type result. For now we state:
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THEOREM 2. Let X by symmetric and B-valued where B is a type 2 Banach space,
and assume X has LIL behavior with respect to the centerings 8, = 0. Then X satisfies the
analytic condition (2.6). Furthermore, if (2.6) fails, then for y. /

n

Yn

2.7 lim sup, =0 or o

according as ¥, P(|| X, || > yr) < o or = .

REMARK. If B is a Hilbert space, X is B-valued and symmetric, and X has LIL
behavior with respect to the centerings 8, = 0, then we can prove more than the analytic
condition (2.6). However, it is not necessarily true, as it is when B is the real line, that such
an X is in the DPA of a Gaussian law (see the examples of Section 7). What can be proved
(see the end of Section 4) is that under these circumstances there exist {dx} ./ © and {n:}
/" o such that

(2.8) { S,/ dr}
is stochastically bound in H, and
(2.9) lim; E || 3% XI(| X < dw)lf/d% = 1.

The conditions (2.8) and (2.9) can be interpreted as a weak form of central limit behavior
and, as the examples of Section 7 demonstrate, perhaps one can hope for little more in the
way of a converse in the infinite dimensional setting.

The results of the second type mentioned in the introduction of the paper involve
stability of the normalized partial sums with some attention to the behavior of the
normalizing sequence, but without regard to clustering.

To motivate the normalizations in these results we recall that if X is real-valued then
the conditions EX = 0 and EX® < , X satisfies the classical BLIL, and E | S, | =vn areall
equivalent. Here we write a, = b, to mean there exists constants A, B such that 0 < A <
an/b, < B < o for all n. Hence for real valued X we have X satisfying the classical BLIL
iff EX = 0, EX? < », and then with probability one

’ . | Sx|

(2.10) lim sup, LB | Sun]

where S; = Sj,; and [¢] denotes the greatest integer in ¢.
This formulation of the LIL suggests normalizations which exist whenever E || X || < o0,

but of course it requires estimating E || S, |. This is a difficult problem in an arbitrary

Banach space, but for many purposes the K(-) function introduced by M. Klass (1976-

1977) is of great use even though it does not always measure E || S, || in arbitrary spaces.
Given a B-valued random variable X such that 0 < E || X|| < o, we define the strictly

increasing absolutely continuous function G (y) for y > 0 by

Y
@11) 60 =/ [ BUxITAX1> )
0
Letting K(-) denote the inverse of G we see that K(y) satisfies
. K() -
212) K0 =y [ BUXU0XI> w) du
0

Thus from (2.11) and (2.12), K(y) is a strictly increasing absolutely continuous function
such that

(2.13) K()/y N0
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and
(2.14) K*(y)/y / E||X|P (possibly infinite).
Further, since

r

@15) E(XPI(X| =) = —rE(XJI(X] > r) + f E(XI(IX] > u) du.

0
we have by setting r = K(y) and combining (2.12) and (2.15) that
(2.16) K*(y) = yE(| XFI(| X || = K(5)) + YKE (| XI(| X || > K (3))).

The equation (2.16) uniquely determines K(y) among the positive continuous strictly
increasing functions, and is used in an important way in the proof of Theorem 3. K, of
course, is a function of X, and in arguments involving more than one K-function we will
use Kx to denote the K-function determined by the random variable X.

For a mean zero real-valued X with 0 < E | X | < o, Klass (1976-1980) has shown that

(2.17) WE|S,| < K(n) < 3E|S.|, (n=1).

Hence the normalization constants in (2.10) are equivalent to L:nK(n/L:n) and Klass’s
results (1976-1977) extend the LIL to mean zero random variables without variance. The
connection between K (n) and E || S, || in Banach spaces is given by the following lemma.

LeEmMa 1. If X is a mean zero B-valued random variable with 0 < E | X || < o, then
(2.18) Bis type 2iff E|| S| < Ai1K(n), (n=1)
for some constant A, < oo,
(2.19) Bis cotype 2iff E||S.|| = A:K(n), (n=1)
for some constant A, > 0, and B is isomorphic to Hilbert space iff
(2.20) CiK(n)<E|S.||=C.K(n), (n=1)

for constants 0 < C; < C, < oo,

In connection with Theorem 3 and its corollaries we set

(2.21) a, = LenK(n/L:n), (n=1),
and for 8 > 1, let
(2.22) ne = ni(B) = [B*]

where [¢] denotes the greatest integer in ¢. For all ¢ = 0 we define S; = Sy, with Sp = 0.

THEOREM 3. Let X denote a B-valued random variable with mean zero and 0 <
E || X|| < . Let {y»} denote a nondecreasing sequence with

(2.23) Yn = VR h(n) = a,

where h(n) satisfies

(2.24) inf,inf M>c>0
. r k=r h(n;-) = .

Then, for all B > 1 such that (2.24) holds, we have
1Snll = E 1l Sen
Yn

(2.25) lim sup, <o wp.l
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prouvided
(2.26) P(|| X.|| > Mynio.) =0

for some M < w. Further, if E| X > < o the regularity condition in (2.24) is unnecessary
for (2.26) to imply (2.25).

REMARKS. (1) The condition (2.24) holds with ¢ = 1 if A is non-decreasing.

(2) The subtraction of E || Sgx || from || S, || rather than only E || S.|| to obtain (2.25) is
perhaps unnecessary, but we cannot prove such a result. Furthermore, there are examples
(one is given in Kuelbs-Zinn, 1981) of vector valued random variables and normalization
sequences {y,} satisfying the conditions of Theorem 3 yet
(2.27) lim, ﬂ-:—j—n—" =00, w.p.l
Hence it is clear that in the vector valued case we must center somewhere, and what we
show is that E || Sg, || always works. Corollary 2 will say more in this regard, and since B is
separable, the strong law of large numbers easily applies to yield (2.25) whenever EX = x
% 0 as well. That is, if E(X) = x # 0, then E || S.|| = n| x|, so for 8 > 1 we have

P(||Su]| = E||Spn | > ba1.0) = P(|Sn || > 8 + [nB]| x| i0.)
= P(| Sl > (nB — D x[|i.0.)
= 0 for all positive sequences {b,}.

(3) Since the normalizations {y.} in Theorem 3 satisfy (2.23) where {a} is as in (2.21),
it follows from (2.14) that vy, = O(vnLyn) is possible only if E || X || < . Hence Theorem
3 applies to the classical BLIL iff E || X || < , and Corollary 3 gives the complete picture
in this situation. However, it is well known that E | X|* < o is not necessary for the
classical BLIL even in Hilbert space, and Corollary 4 and the remark following it contains
some additional information on this.

_ (4) From the definition of a, in (2.21) and that K(n) /~/;L 2 it easily follows that
an//n is non-decreasing and hence a,, satisfies the regularity condition (2.24).
Some corollaries of Theorem 3 are the following.

COROLLARY 1. Let X and {v.} be as in Theorem 3. Then

IIS= I

n

(2.28) lim sup. <o wp.l
iff
a) P(]| Xz || > Myx i.0) = O for some M < », and (2.29)
b) {S./v»} is bounded in probability.

COROLLARY 2. Let B be a type 2 Banach space and assume X and {y.} are as in
Theorem 3. Then

(2.30) lim supnl‘—s—"J <o wp.l
Yn

iff

(2.31) P(| X || > My, i0) =0

for some M < oo,

COROLLARY 3. Let X be mean zero and assume E|| X|* < . If {y.} is any non-
decreasing sequence such that for some positive constant p

(2.32) vnLn < py, (n=1),
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then

(2.33) lim sup, < oo w.p. 1iff {§f} is bounded in probability.
Yn

n
n

Further, if {y.} is any non-decreasing sequence such that

Yn

(2.34) lim, = oo,
nL:n
then
. n e S
(2.35) lim,, Y_ =0 w.p. 1iff ;— —>prob 0.

ReMARKs. (1) If EX = 0 and E | X|? < o, then Corollary 3 immediately implies X
satisfies the BLIL iff {S./vnL:n} is bounded in probability. This was first proved in

Kuelbs (1977).
(2) Assuming EX = 0 and 0 < E|| X|* < o, Corollary 3 also implies that if {y.} =

{VL:n E||S.||} or {yn} = {L:nE||Sy/L,|} then
(2.36) lim sup, || Se/yn|| < w.p. 1

To verify (2.36) we first note that in both cases {y.} is nondecreasing and a trivial
application of Chebyshev’s inequality implies {S./y.} is bounded in probability. For
example,

PISull= A LonE | Soypp|) s ——2 Sl _ o(l)
AL:nE||S,/Len | A
where the first inequality is Chebyshev’s, and the second follows since for all sufficiently
large n the triangle inequality implies E || S, || < 2L2nE || Sn/L,» || (recall S; = Sj). Hence to
verify (2.36) in these cases we need only show (2.32) applies and this is easy. That is, since
EX =0, 0 < E|| X|? < w, there exists f € B* such that || f||lz+ = 1 and Ef(X) = 0,0 <
Ef*X) < . Therefore

E|S.|= E|f(S.)| = Vn

by applying (2.20) with K = Kyx), and then recalling (2.14) which implies Kyx,(n) = Jn.
Hence (2.32) holds for each sequence {y.} as claimed.

(3) Again, assuming EX = 0 and 0 < E| X|? < o, the condition lim inf.(E| S, |/
vVnLzn) > 0 implies that for all sequences {d.} /'  we have lim sup, (| Sz ||/d.E || S-||) =
0 w.p. 1. To see this, set y, = d.E||S.|. Then {S,./yr} —prob 0 and (2.34) holds, so (2.35)
yields the claim. Of course, if X takes values in a type 2 space, then by applying (2.18) and
(2.14) we see the three conditions EX = 0, 0 < E || X|* < », and lim inf(E || S.||/vnLzn)
> 0 are incompatible. However, in some non-type 2 spaces there are examples satisfying
these three conditions, and hence the above conclusions are non-trivial.

Thus Corollary 3 gives us a fairly complete picture when EX = 0 and E | X || < o, and
we now turn to some situations when E || X ||? is possibly infinite.

COROLLARY 4. Let EX =0 and assume E (| X||%g (| X||)/Lz|| X ||) < « where g:[0, )
— (0, ) is such that

(2.37) &(t)/Lst is non-increasing on [0, ),
(2.38) tg(t)/Lqt is eventually non-decreasing as t — o,
and

L

(2.39) x= 2X for all sufficiently large x.
g(x)
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If
(4a) = {m Lon }
g(n)
then
(2.40) lim sup, % < oo w.p. 1iff {ﬂ } is bounded in probability.

Furthermore, if

@2.41) limp 22 = 4 o,
g(n)
then
(2.42) lim sup, 'i =0 w.p. 1iff {—f—'ﬁ } —>prob 0.
Yn 'n

REMARKS. (1) If g : [0, ) — (0, ) satisfies (2.37) and (2.38), then for some constant
¢, 0 < ¢ < o, cg(t) satisfies (2.39) as well, and applying the corollary to cg(t) yields the
result for g.

(2) If g(t) = Lt we have E || X ||2 <  and (2.40) reduces to the BLIL being equivalent
to {Sn/vnL:n} bounded in probability. If g (t) = 1, then we have E (|| X ||*/Lz|| X||) < o
and (2.40) becomes

Sx . . . -
(2.43) lim sup,,7"__-L—"— < oo w.p. 1iff {S,./ \/r—len} is bounded in probability,
niaxn
and (2.42) becomes
(2.44) lim, ISl _ Owp.1 lffi —>prob 0.

\/;LG ’ \/;LG

There are, of course, numerous other interesting cases, but we mention the above because
of their relationship to the classical LIL. For example, if B is a type 2 space and X is mean
zero with E (|| X ||?/Ls|| X ||) < o, then we automatically have

S,
vnLa:n
(see Goodman, Kuelbs, Zinn (1981), Proposition 7.2). Further, the condition

E (| X||>/L2|| X|}) <  is known to be necessary for the classical BLIL, so Corollary 4 can
be viewed as a result demonstrating that it is near being sufficient in type 2 spaces as well.

‘—)prob 0

COROLLARY 5. Let B denote a co-type 2 Banach space and assume EX = 0, 0 <
E||X|| < . Then

Il Sxl

2.45 lim sup, ~——————-<® w.p.l
@45) P LonE | S P
iff .

(2.46) P(|| X,|| > MLsnE || Sp/1,0]| i.0.) = 0

for some M < oo,

REMARK. Corollary 5 is a generalization of part of Klass (1976), but we do not obtain
a bound for (2.45) as Klass does.

Now we turn to the results which are somewhat of a combination of the types found in
Theorem 1 and Theorem 3. Loosely speaking, to obtain these results we assume a rate of



SOME RESULTS ON LIL BEHAVIOR 515

growth on S, along a subsequence and we assume a “regularity” of the tails of X associated
with this growth rate; then we combine these to obtain a suitable normalizing sequence.
For example, we have the following theorem and a corollary which deals with the situation
when X is in the DPA(Z).

THEOREM 4. Assume that q is a Borel measurable semi-norm which induces a
separable topology on B, and that ry, / « and d; /' «© are such that

S,, — rE(XI(q(X) < di)) 1
(2.47) suka(q( i 2 5 ) > 1) =T
and
(2.48) Yr(LE)reP(q(X) > dy) < oo.

Then, putting n, = [Lk]r, = pire,

Yo=7v(n) =prdr if mp-1<n=nm, and

(249) /\(n) =dp if npi<n< ng,
we have
(2.50) lim sup,q (S" — nE(XI(gX) =An)) ) =< 416e*> w.p.l
y(n)
Further, if there exists a q-continuous linear functional h on B such that
S, —rnEXI(qX)=<d
2.51) .?(h( . — TeE( d(q( ) k))))_)g(g)
k

where g is mean zero Gaussian random variable with non-zero variance and np.1/n; =
40, then

S, — nEXI(q(X) = A(n)))
y(n)

(2.52) lim sup,,q( ) >0 w.p.l

As a corollary to Theorem 4 we have the following result which is somewhat like the
conclusion (2.4) in Theorem 1. It differs from (2.4) in that we cannot identify the limit set
precisely, but it does allow us to relate the regularity of the tails of X to the normalizing
sequence which eventually provides LIL behavior.

COROLLARY 6. Let X € DPA(Z) where Z is a mean zero Gaussian variable. Then,
there exists d, / o, integers r, / o, and a compact convex symmetric set D C B such
that )

(2.53) Ye(LE)rvP(X € dy D% <
for all § >0,

(2.54) re+1/re = 40,

and

(2.55) $<Srk - nEXI(| X|| = dr))

dx

Further, for any ry, /' © and dr. /' ® satisfying the above three conditions, and y(n) and
A(n) as in (2.49), we have with probability one that

{Sn - nEXI(|X|| = A(n))) }
y(n)

) —roe AZ).

is relatively compact with cluster set not equal to {0}.
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Now the regularity of the normalizing sequences {y»} as constructed in Theorem 4 and
Corollary 6 depends on several quantities as given in (2.47) and (2.48). The following
question then arises. If (2.47) holds for r, = k, what is an appropriate modification for
(2.48)? Using the arguments of the proof of Theorem 4.1 of Goodman, Kuelbs, Zinn (1981)

we have that if

(2.56) {i } is stochastically bounded,
Vn
then
(2.57) S.P(|X||> VnLsn) < o (i.e. E{ Ixj” } < oo)
Lo|| X ||

is necessary and sufficient for
(2.58) lim sup,| Sx||/vrL:n < o w.p.1.

Now (2.57) is easily seen to be equivalent to
(2.59) Y (LE)2*P (|| X|| > v2F (Lk)) < o,

and when X is symmetric (2.56) implies we can take r, = 2% dp = V2% in (2.47), so (2.57)
is then equivalent to

(2.60) Yu(LE)rP(| X > di(LE)) <

which is a weaker condition than (2.48) when g (x) = || x|

We now turn to Theorem 5 which shows that an analogous weakening of (2.48) is
sufficient in wide generality. Corollary 7 deals with the case that X € DA(Z) and perhaps
is more transparent to the first time reader.

We use the notation a(t) = ¢/L.t, and hence a'(t) ~ tL.t as t — . As possible choices
for d(t) in Theorem 5 the reader can try d(t) = t?, %2 < p < 1. To better understand the
conditions of Theorem 5 we suggest first considering the proof of Corollary 7.

" THEOREM 5. Assume there exists an increasing continuous function d:R* — R*
with inverse g, a countable set A and constants, 0 < ¢, /< © such that for all t = 4 g’

exists on A° and
(i) O<g@)/t=g'(t)=cgl®)/t,

(i) gla(2)) 2
Ws ¢/((Lst)"Lat),

(i) d*(t)
¢

(2.61)

increases, and

(iv) for a Borel measurable semi-norm q which induces a separable topology
on B, there exists to < « such that for all n sufficiently large

S, — nE(XI(g(X) = d(n))) 1
P(q( 20 )zto)s A

Then, the following are equivalent:

s . S, — nE(XI(q(X) < o 'da(n)))
(i) lim supnq< - Tda(n) )
(2.62) = 26 t,[32¢% + 96(2 + v2)] w.p.1,

_ -1
@ lim supnq(sn nE(Xi(ggﬁf)a da(n))))<°° wpl,
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and

(2.63) E(a7'ga(q(X))) <.
As a corollary to Theorem 5 we have:

COROLLARY 7. Let X € DA(Z) where Z is Gaussian and B-valued. Then there exzsts
a strictly increasing function d: R* — R™ such that

dn) = d(n)

where {J (n):n =1} is such that

_g(s" - nE(X{(lIXlI =d(n))) ) o 22),
d(n)
and with probability one
S, — nEX
(2.64) {Tﬁ&% }
is relatively compact with cluster set which is non-empty and not {0} iff
(2.65) E(a'd (| X)) < .

REMARK. Recall that if X € DA(Z) where Z is Gaussian, then it is well known that
E| X|” < o for 0 =< p < 2. Hence E(X) is well defined.

A lemma which is of some independent interest is the following: we use it to reduce
some of our proofs to the symmetric case. Throughout the lemma and its proof we assume
S, =X{+ ... + X,(n=1) where {X;} is an independent copy of the sequence {X;}, and
{y=} is a sequence of positive numbers.

LEMMA 2. Let q(-) denote a Borel measurable semi-norm on B which induces a
_ separable topology on B. Assume X is a random variable such that P(q(X — x0)= 0) <
1 for all x, € B, and consider the following hypotheses:.

-Sh

(a) lim sup.q =M<o wp.l

n

(b) {S" = Sn } is g-relatively compact and for some convex, symmetric g-compact set
D wZ have
(52 )o)-
Here, of course g-relatively compact dnd C,({x.}) are defined with regard to the
topology induced by the semi-norm q.
(@) lim supyg( 225"

") =M>0 wp.l
We then have the following conclusions:
(i) (a) implies y, — o asn — o,
(i) (c) implies that for all {c.} C B

&—%) M

n

lim suppse q( =—>0 wp.l
Tn 2

(iii) (a) implies there exists {c,} C B such that

. (Sn -c
lim,_..q
Yn

") =M w.p.l
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(iv) (b) implies there exists {c.} C B such that {S”—Y_-E'—’} is q-relatively

o252 o)

lim supp—»q(X,)/y» =<2M w.p.1

compact w.p.1 and

(v) (a) implies

We now assume y, /.
(vi) If (a) holds and P(q(
large and all A >0

P(q(P_S”) = >\> 5.}\ [24 ¢ + 12p] + nP(q(X) > pya)

Sn—8Sh

Yn

)2 to) < -2-12, then for all n sufficiently

Yn
(2.67) where
*S, = Y71 [Xj — EX1(q (X)) = pv»))]
and
p > lim sup.q(X.)/¥n.
(vii) (b) implies
q(T-1 [X; — EX;I(g (X)) < pyn)]/¥n) = 0
in probability for all p > lim sup.q (X»)/vn..
(viii) If (a) holds, 6 > 0 and
PQ((Sn— dn)/vn) = As) =1—8 forall n=no,
then
lim sup,q(S» — dn)/y» <2M + As w.p.L
(ix) If (b) holds, 8 > 0, and for alln >0

P((S,—dn)/ynEAsDY)<1—-8 forall n=no(y),
where D" = {y:q(x — y) < n for some x € D}, then (S, — d.)/v» is q-
relatively compact w.p.1 with g-cluster set contained in
(2 + Aj)D.
(x) (a) implies -
lim sup,q(S. — nEXI(g(X) < py»)))/v» < 26M + 12p

for all p > lim sup,q(X,.)/x-
(xi) (b) implies that

{s,, - nEXI(¢(X) < pv)) }
Yn
is g-relatively compact w.p.1 with g-cluster set contained in 2D.

3. Proof of Theorem 1. Our first task is to choose the sequence {n;}. Since X €
DPA(Z) there is a subsequence {n’}, shifts {c, }, and normalizing constants d,. / « such

that
(3.1) z(s"’ - ) S L2).
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Further, we know from Araujo, de Acosta, and Giné (1978), Corollary 2.12, that
(32) [Cn’ - n'E(XI(||X|| = dn'))]/dn’ —>n'>w 0.

Hence for any subsequence {n;} of {rn’} if we let di = d,, (for ease of notation) and define
for n € (ng-1, nz]

(3.3) 8, = nEXI(| X|| = b)),
(34) vu = dxV2LE,
S = jon/n t=j/n,j=0,...,n

(3.5) M (t) = Yn
linearly interpolated elsewhere for 0<t¢ =<1,

then by (3.1) we have (2.3) holding and by the invariance principle in Kuelbs (1973) we
also have

(3.6) L(V2LEk M, (+)) =1 L(W)

where W is the Wiener measure induced by #(Z) on the Banach space Cz.

Actually, to apply the invariance principle given in Theorem 1 of Kuelbs (1973) two
points must be clarified. First, the three conditions on the triangular array required in the
statement of that theorem are redundant, and one only needs the first two conditions as
the third then follows (this was kindly pointed out to the author by Harold Dehling and
is quite easy to verify). Secondly, the theorem as stated is for polygonal processes defined
by triangular arrays such that the nth row has n independent identically distributed
random vatiables and hence it does nét apply directly to the polygonal processes
{m s, ). However, this is an easy problem to handle since the polygonal process
v2Lk 7, (t) can be thought of as that process built from the nsth row with the n, iid.
elements in the row being

{&:_ E(XI;||X||S dk)):j= ... ,nk}
k

and for n # ny one fills the nth row of the triangular array with # independent copies of
Z/Vn. Then the result of Kuelbs (1973) applies to this “filled in setup” and the subsequence
{&( VeLr k1, (+))} converges to £ (W) as claimed.

If U and V are random vectors we let (U, V) denote the Prokhorov distance between
£(U) and £(V). Further, if {n:} is any strictly increasing subsequence of integers we let
fin, denote the polygonal process defined by

0 t=j/ng, 0<j<np

Sj_Snk 1L jsnk/nk tgj/nk,nk—l <j--<-nk
Yy, .

B.7) 1w, (8) =

linearly interpolated elsewhere for 0=<¢ =< 1.

Then the processes {4,} are mdependent and we now choose our subsequence {n.} of
{n"} such that

(3.8) max;<j=n-, "3’" —rae0 wpl,

and if

(3.9) B = max{p(V2Lk %), W), p(V2LE 55), W)},
then

(3.10) zk Bk < 00,
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Then, by Theorem 4.3 of Kuelbs (1976) we have

(3.11) P({1n, (-)} » ) =1

and since (3.8) holds (3.11) implies

(3.12) P({nn,(+)} » ) = 1.
Thus (2.5) holds if we can prove

(3.13) limg || s — H#lc; =0 w.p.1L.

Here, of course, || 1. — X" ||c, = infzex|| 1. — & || c,. Further, by Lemma 4-c and the argument
used in the proof of Corollary 2 of the paper of Kuelbs and LePage (1973) we have

(3.14) K={f1):fex},

and hence (2.5) implies (2.4). Thus the proof is complete once (3.13) is established.

To prove (3.13) we recall the maps I1y: B — Hz) given in Lemma 2.1 of Kuelbs (1976),
and then we proceed in two steps. First, we fix ¢ > 0 and prove that there exists an N such
that if I is the identity map on B, then

(3.15) lim,|| (I = IIN)Na(+) e, <& w.p.l.

Of course, if f € Cp by IInf we mean the function such that (ITnf)(¢) = IIn(f(¢)). After
establishing (3.15) we show

(3.16) lim sup, || IIxn, — X c, <€¢ w.p.l,

and since (3.15) and (3.16) yield (3.13) the proof will be complete.
To verify (3.15) set

3.17) B, = {" - HN)"'IS)"CB >¢ for some n € (ng-1, n.]}
where N is such that
(3.18) Y P(| (I —TIN)Z| > (¢/4) V2LE) < .

The existence of an N such that (3.18) holds is proved on the bottom of page 758 and the
top of page 759 of Kuelbs (1976). Fixing N such that (3.18) holds we next prove that for all
sufficiently large &

P(B:) = P(supp,_,<n=n,Sup1<j=n|| (I — IIN)(S; — jbn,/n) | > € drvV2LE)

(3.19) = P(supj=n| (I — I'IN)<S,- -J 8y ) | >« d.v2LE)
ne
< 2P(| (I = TIn)(Sn, — 8x,) | >§ diV2LE).
To verify that (3.19) holds note that the first two equalities are a matter of the

definitions of the quantities involved, so we must only verify the inequality in (3.19). To do
this we observe that if T4, ..., T are successive sums of independent B-valued random

variables such that
supi<;=nP(| Tn — Tj| > €/2) = c < 1,

then by the same proof as used when B is the real line we have
1
Psupi<j<n|| Tj| = A + ¢) < T PUTHI = A +¢/2).

Hence the inequality in (3.19) holds if we show for all sufficiently large % that

nd,
(3.20) SuP1nsm P Sop = 8n, = Sn + =4 > (e/2)1m,) < 1/2.
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To verify (3.20) we define
U= XI(|Xj|l=d) (I=n=mn)
and set
Vo=8S.—U, (1=<n=<ng).
Then E(U,, — U,) = 8., — nd,,/nx and

7

(3.21) S 4E | Uy, = Up = E(Us, — Up)| fevn,
+ (nx — n)P(| X|| > ds).
= 4E" Un,. - E(Un,,)"/fYn,, + nkP(“X" > ‘#)'

[
S,,,,—th——S,,+nn—:

> (e/2)y,,,,> = P(| Uy, — Up — E(Us,, — Up)|| > (€/4)vn,)

+ P(| Vo, = Vall > €/4)7s,)

Since (2.3) holds we have by Araujo, de Acosta, Giné (1978), Corollary 2.12, that

(3.22) limene P(|| X|| > di) = 0,

and

(3.23) y(ﬂ'lﬂ) — L2).
/3

Since U,, is a sum of independent random variables truncated at dx and (3.23) holds we
have by standard arguments (see, for example, Kuelbs (1977) pages 787-788 for details or
Lemma 6.1a below) that
" U”h - EU"hlI

a < o,

Hence for sufficiently large & (3.21), (3.22), and (3.24) imply (3.20) and thus (3.19) holds.
Now let §:Cg[0, 1] — B be defined by 6(f) = f(1) and note that

(3.24) sup:E

(Sn - 8n )
(I - TIn)(Ons,) = (I — TIy) —2—=2-.
* dxV2LE
Further, since (I — I1x)(0) is linear and continuous it has a finite norm, call it M, such that
(3.25) (I = TIn)O(f — &)l = M| f — &llcs-

Hence by (3.19), (3.25), and the definition of the Prokhorov metric, (3.9) implies for all
sufficiently large % that

P(By) = 2P(||(I — TIn)(Sn, — 8x,)|| > (¢/2)-di V2LE)
=< 2P((I - TIx)(8(V2Lk n.))) € Fr) where Fy = {x:|| x| = (¢/2)-v2Lk)}
= 2P(V2LEk ., € y"(F:)) wherey = (I —Tly) « @
(3.26) <2P(WE (" (Fi)) %" + 28, where E® = {y:inf.cxd(x, y) <8}
=< 2P(Y(W) € F¥’+) + 2B,
= 2P((I — TIn)(Z) € FM%) + 28,
=<2P((I - TIn)(Z) € F¥*) + 2B
= 2P(|(I - TIn)(Z) || = ¢/4 V2LE) + 2.
Hence by (3.10) and (3.18) we have } . P(B:) < », and hence (3.15) holds.
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To prove (3.16) recall that N is fixed, and that from Lemma 4 of Kuelbs and LePage
(1973) we have IIyo¢'C A, Then as a result of (3.12) and the continuity of Iy we have

3.27) | TInDn, — TINA|c, — O w.p.1,
and hence (3.16) will follow (since IIy.#'C ¥) once we establish that
(3.28) SUPn,_ <n=n]| N — TINH )| ¢y < || TINGn, — TINSE || -
To verify (3.28) set m, = E (XI(|| X || < d)) and define the maps I',: Cz[0, 1] — C5[0, 1]

as
f(.]/n) t=j/n,j=0’1’°”’n
T=f)(E) =
linear interpolated elsewhere on [0, 1].
Then for any n € (n-1, nx] we have
(3.29) || IInn. — N ¢, = infrex|| IInnn — TInk||c, = infrex|| TIvnn — TINT W2 g,

where the first equality (3.29) is a matter of definition and the second results from the fact
that IIy, is a polygonal process. That is, by applying Lemma 4 of Kuelbs and LePage
(1973) we see that 2 € X 'implies IINI',A € ; and hence since I1% = ITy we have

(3.30) infrex || IInnn — vk || ¢, < infrex|| TINnn — IINT R | g,
On the other hand,
| TInnn — vk | cy = suposesi|| TInna (2) — TInA(t) ||
(3.31) = supisj=n|| IInnn (j/n) — vk (j/h) ||
= | TIxnn — IINT R A s
so combining (3.30) and (3.31) we have (3.29). Letting n = n; in (3.29) and recalling J¢is
compact in Cz[0, 1] there exists go € X 'such that for all n € (nz-1, n:]
[ TInNn, — TN || ey = || TINT, — TINT n,80] ¢,

S — jmy.

= SUP1<j=n| Hw(m

S; —jmk .
(3.32) = supisj<nl I1 (—’———) — Inho(j/n)
UP1 <) " N dkm N J "

) —IIngo(j/me) ||

= " HNTIn - HNFnhOHCB

where Ao(t) = go(tn/n:), 0 < t < 1. Applying Lemma 4 of Kuelbs and Le Page (1973) again,
it is easy to see that go € > implies IIxyho € ¥, and hence (3.32) implies

“ HN"'In,, - HNJ{" Cp = SUPn,_,<n=n “ IInnn — HNFnh0|| Cp
(3.33) = Supnk_1<nsnkinfhex" l-IN"'In —IInh "CB
since IIvho € A implies TInI',ho € #. Now the last expression in (3.33) equals
SUDPn, ,<n=n|| [Inmn — TInS ¢, SO (3.33) implies (3.28) and Theorem 1 is proved.

REMARK. It was pointed out in the proof of Theorem 1 that (2.5) implies (2.4), but it
might be useful to indicate a direct proof of (2.4) as well.
What needs to be done to prove (2.4) is to choose a subsequence {n:} with the

properties
(3.34) Sn,_ /G =40 wW.p.1,
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and, if

(3.35) a= max{p (ﬁ'z_‘%, z) P (S"* - t z)}
then

(3.36) Tho < 0.

Then, setting )

(3.37) Yr= (S, — Sn,_, — 0n)/dr (k=1),

we have by Theorem 4.3 of Kuelbs (1976) that

(3.38) P(Yu/V2LE > K) = 1.

Hence by applying (3.34) we have

(3.39) P((Sn, = 8,,)/V2Lk dy > K) = 1.

Hence (2.4) holds if we can prove

(3.40) lim,|| (S» — 82)/v» — K||=0 w.p.l.
To establish (3.40) fix ¢ > 0. Then for 2 = 1 we define

C, = {S" =8 & K* for some n € (ne_1, nk]} ,
Yn

and hence (3.40) holds if

(3.41) YrP(Cr) < oo,
To verify (3.41) we argue as in (3.19) to show that for % sufficiently large we have
P(C,) = 2P(S"” Ony & K‘/Z)
Tny,

Now by our choice of {ax} in (3.35)

Sn, — 6
P(—"—;——ie K‘/Z) < P(Z & K/*V2LEk) + o
™k

for all sufficiently large %, and since ¥ rax < © we have (3.41) if
(3.42) Y+P(Z & K*/*V2Lk) < .

That (3.42) holds follows from the proof of Corollary 3.2 of Kuelbs (1976), and hence the
proof of (2.4) is complete.

4. Proof of Theorem 2. If (2.6) fails there exists ¢ > 0 such that for all « > 0
4.1) VP(| X||>w = cJ’ [l x||I? dPx(x),
. llxll=u
and hence forp> 1, u>0
42) WP X|>u) —P(| X| >puw)] = f | x| dPx(x) < p*u®P(|| X|| > pw)/c.
u<||x||=pu

Thusforp>1,u>0
4.3) P(|X||>pu) =P(| X| =u) =1+ p%/)P(| X| > pu),
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and hence for 0 < ¢ < M we have

M2
(4.4) P(|X|| > My,) = P(| X|| = eyn) < (1 + —)P(||X|| > Mvy,).
Thus if (2.6) fails (4.4) implies that
(4.5) Yo P(| Xu || > eyn) <

for some & > 0 iff it converges for all ¢ > 0.
Hence Y. P(|| X || > y») = o implies Y P(|| X» || > My,) = for all M > 0, and thus with
probability one

= On-— . Xn
(4.6) lim Supnw = lim sup. y > M.
Yn 'n
Thus
lim sup, —— " z " w.p.1,
Yn 2

and since M was arbitrary we have

lim sup, w.p.l.

1S _
Yn

On the other hand, if ¥, P(|| X, || > ey») < o for all ¢ > 0, we set

_]X if | X =1
Y"‘{o if

| Xell > ve
and let
Tn= Y1 Yo
Then
| Sk Pl Yo = X || > 0) = 3x P(| Xa | > yo) < 0
SO
4.7 . lim sup,.l-s-n;—Tn" =0 wp 1l

Now (4.1) implies
2
E|| Yal = EUI X2 Xa | < 1)) < Z P X | = )

and hence ¥, P(|| Xi || = yz) <  implies we have
E| Y| _
vk

Now B type 2 and (4.8) implies Y (Yx/ yk) converges with probability one. Since y, /' ®
Kronecker’s lemma implies

4.8) re———

(4.9) lim,, w =0 w.up.l
Combining (4.7) and (4.9) we have
(4.10) lim, w =0 wp. 1l

Hence (2.7) holds.
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Furthermore, if (2.6) fails the above proves that LIL behavior with respect to the
centerings 3§, = 0 is impossible. That is, if

[

(4.11) 0 < lim sup, <o wp.l,
Yn
then
. X
(4.12) lim sup, u <w wp.l
Yn

and hence there is an M < o« such that
(4.13) 2 P(| X || > Myn) < 0.

Thus by the above truncation argument we have (4.10) which contradicts (4.11). Hence
LIL behavior with respect to the centerings 8, = 0, implies (2.6) holds as claimed. Thus
Theorem 2 is proved.

PROOF OF THE REMARK FOLLOWING THEOREM 2. If B is a Hilbert space and X has
LIL behavior with respect to the centerings 8, = 0, then the above implies (2.6). Hence
choose d. / o such that

diP(| X| > di)

(4.14) limy, U@y
where U(f) = [j1= | x |* dPx(x). Now lim, .. U(¢)/t* = 0 so choose n; / o« such that
(4.15) limgn, %‘é") =1
Thus
("S"” I >}\) = mP(| X| > di) +P(|| 2”” I )
(4.16)

=mP(| X|| > di) + E|| Ty, | /N di

where T, = Y1 X;I(|| X; || < di). Now B a Hilbert space and X symmetric implies

Sy,
4.17) (" ol x) < meP(1X || > di) + gz B XIT X1 < ),
and hence (4.14) and (4.15) imply that
5 . 171
(4.18) tim supeP( 150 5 1) < 1im sup, 279 | o(q,) +5 =%
dy di }\

where ¢(d;) — 0 as & — o, Hence (2.8) holds, and since B is a Hilbert space and X
symmetric we have

E|T,|? Ul
BVl mm Xy X1 < diy/f = U,y
by (4.15). Thus (2.9) holds and the remark is proved.

5. The proof of Lemma 1, Theorem 3, and its corollaries. First we will prove
Lemma 1. The notation is that established in (2.11)-(2.16) and (2.21)-(2.24).

5.1. Proof of Lemma 1. If B is type 2, there is a constant A, 1 < A < o, such that
E|X+ -+ X% |*<AYL E| X|*
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whenever Xj, - - -, X, are independent with EX; =0 (1 < j < n). Thusif X, X;, X, -- - are
iid. with EX = 0 we will first show that

(5.1) E | S, || = %AVK(n).

To establish (5.1) fix & > 0 and set S,(b) = Y1 X, I(|| X; || = b), Un(b) = Y71 X I(|| X5 ||
> b). Then S, = S,(b) + U,(b), and ES, = 0 implies ES,(b) = —EU,(b) = —nEXI(|| X ||
> b)). Hence .

E|Sa|l = E|Sx(d) + Un(®) || ‘

< E|Su(d) — ESn(d) | + | ES.(B) || + E|| Un(d) |
(5.2) =< (E||Sa(b) — ESa(b) |)* + 2nE(|| X || I(|| X || > b))

= {AnE|| XI(| X || = b) — EXI(| X| < b)) |*}"

+ 2nE(| X|| IC)| X|| > b))

< 242 (nE(| X |2I(| X || < B)}* + 2nE(| X || I(| X || > b)).
Setting b = K(n) in (5.2) we have from (2.16) that
(5.3) E| S, || = AV MK (m)]72 + 2(1 — M) K(n)
where A, K2(n) = nE(|| X |2I(]| X || = K(n))) and 0 < A, < 1. Therefore, since 1 < A we have

E|S.|| = AV K(n)[{4A\.}2 + 2(1 — A\a)] = A2 K(n)[2(1 — A\n + AY?)] = %AY’K(n)

by maximizing the function g(A) = 1 — A + A%, 0 < A < 1. Hence if B is type 2 we have
(5.4) E|S.] = AK(n)

where A, = %A'? < oo,

Now assume (5.4) holds whenever X, X;, Xz, - .- are iid. with EX = 0. To show B is
type 2 we also assume E || X ||? < ®. Then, from (2.14) we have K*(n) < nE || X||?, and
since we are assuming E || S, | = AK(n) we see that

(5.5) E||S.| =Avn (E| X||*)"2

Since the inequality (5.5) applies to all mean zero B valued X, standard approximation and
tightness arguments easily imply that B has the property that, for each B-valued random
variable X with EX = 0, E || X ||?> < », we have X satisfying the classical CLT. Hence by
Hoffman-Jgrgensen and Pisier (1976) we have B of type 2.

To establish (2.19) first assume B is of cotype 2. Then, with {¢;} independent Rade-
macher random variables, we have

E|S.|| = AE[($3-1 | X;11*)/*]1 ~ since B is cotype 2
(5.6) = A’ExE. | Y% | X | &1 by Khintchine’s inequality
= A" Kx)(n)

where the constants A’, A”, A" are positive, the first inequality follows since B is cotype
2, the second inequality results from Khintchine’s inequality, and the final inequality
follows from Klass’s Theorem 1.1 (Klass, 1976). Now Kx = K xj., s0 (5.6) implies E || S, ||
= A;K(n) for some constant A, >0 whenever B is cotype 2.

Hence (2.19) will hold if we show

(5.7) E|S.|| = A:K(n) (n=1)

for some constant A, > 0, implies B is cotype 2. To show B is cotype 2 assume X satisfies
the classical CLT. Then we have a mean zero Gaussian random variable Z such that

S

=E|Z| < .
7 IZ|

(5.8) lim,E
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Combining (5.7) and (5.8) we see that

. Kin) _E|Z|
lim sup,, S——<»

up, 7 i
and hence E || X || < « by (2.14). Hence X satisfying the classical CLT implies E || X ||* <
oo, and as a result of Jain (1977) we have B of cotype 2. Thus (2.19) holds, and to verify
that (2.20) is equivalent to B being isomorphic with Hilbert space we simply apply (2.18),
(2.19), and Kwapien’s result (1972).

5.2. Proof of Theorem 3. The proof of Theorem 3 will proceed via several lemmas.
The first is:

LeEMMA 5.1. If Theorem 3 holds whenever (2.26) holds with M = 1, then it holds in
general.

Proor. If M =< 1, then (2.26) holding for M implies it also holds for M = 1. As a result
of our assumption, (2.25) then holds whenever M < 1. Hence we assume (2.26) holds for

some M > 1. Thus we have
X
P(" I >y, i.o.) =0.

M

Hence by our assumption we have (2.25) holding when {X;} is replaced by {X;/M}
provided

(5.9 Y» = LonK(n/Lyn)
implies
(5.10) ¥n = LoanKx/m(n/Lzn).

To see that (5.9) implies (5.10) it suffices to observe that the function G as defined in
(2.11) satisfies

(5.11) Gxm(y) = Gx(My),

and hence the inverse functions K are easily seen to satisfy
1
(5.12) Kx/m(y) = 7 Kx(y).

Hence (5.9) and (5.12) with M > 1 imply (5.10) and the lemma is proved.

Our goal now is to establish (2.25) provided (2.26) holds with M = 1, and (2.23) and
(2.24) are also satisfied. ‘

Now for A’ >0

P(|| Szl — E|| Spnll > A'yni.0.)
= lim, 0 P(Upsr, { || Su || > A'yn + E || Sgn | })
=< lit, o Yp=r P({MaXny<nznps, | Sn || = A'yn, + E || Spns || })-

(56.13)

To estimate
P({maxn,<nsm | Snll > A'yn, + E || Spni[13)
we define for 1 < j < ng+; the truncated random variables (depending on %)
ui =X I(]| Xj || = K(ne/Lzne)), vj =X I(K(ne/Leni) < || Xj|| < va,)
wj = X;l(yn, < | X5,
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and set
U, =31, Va=YkU, Wa=Ylw.
Then S, = U, + V,, + W,, and hence ’
(5.14) P({maxn<nzniss | Snll > A'¥n, + E || Spun |1}) = Lip + Lop, + I3

where
L = P({maXn,<nsnps | Un || = Avn, + E || S || })

(5.15) L = P( {maxn,,<nsnk+1 " Va " = A'Yn,,})
I, = P( {maxn,,<nsm.+1 " W, " = AYn,,})

and A = A’/3.
In view of (5.13), (5.14), and (5.15) we can establish (2.25), completing the proof of the
theorem, provided there exists A < o such that

(5.16) Bmy e Yper Lip =0
forj=1,2,3.
Since 8> 1 and n; = [ 8*] we have for all % sufficiently large, say % = ko, that 8* > 3 and

(1) nes1<2Bn, (B = ko)

6.17) (ii) there exist finite constants b and ¢ such that

l<b<"ce (k= h).
ng

As a result of (5.17-ii) elementary computations imply

be
b-1

(5.18) sy < (ne — mi) (k= ko).

" LEMMA 5.2. If A >0, then lim, o Yp=r L5 = 0.
ProoF. Since
P(maxn,<nsnp [| Wa |l > Avn,) < nea P>(| X || > v2,),

Y» /7 %, and (5.18) holds for & = ko, we have for r = k, that
be
Yier Inp < Yazr Bt P(| X || > n,) = -1 Yo=r (M — np-1) P(|| X || > vn,)

be
b-1

Since (2.26) holds with M = 1 we have ¥, P(|| X| > y») < , and hence the lemma is
proved. :

=

Znzney P(| X > vn).

LEmMA 5.3. If A > 4B and the regularity condition (2.24) holds, then lim .o Yi=r I
=0. :

Proor. Using (2.16) and (5.17) we have for all £ = k, and n such that n, < n < ng+1
that
E| Vo| = nenE(| X|| I(K(ne/Lane) < || X))

(5.19) = 28mE(| X | I(K(ni/Lari) < || X))
= 2BL2n1¢K(nk/L2nk) = 237"&‘
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Thus for k& = ko
L, = P(maxn<nznp || Vo — EVa || + maxa,cnznpn | EV2 || = Ayn,)
< P(maxn,<nsnins | Vo — EVo || = (A — 2B)vn,)
(5.20) = P(maxncnzmins || Vo — EVa|| = E|| V., — EVa,., |
=(A=2B8)yn,— E|| Va,,, — EVa,. )
= P(maxn<nsnpss | Vo = EVa|| = E || Vo, = EViy, || Z (A = 48)yn,).

Now {|| V. — EV,,||:nx < n < ng+} is a submartingale and hence so is {¢(|| V. — EV,. || —
8):ny < n < ng..} for any constant § where ¢(¢) = ¢* for ¢ = 0 and zero otherwise. Hence
by the maximal inequality for submartingales we have for k£ = &k, and A > 48 that

Ly =E[$(| Vs, = EVp,, || = E| Va,, — EV,, . D)/ (A — 48)yn,

Ppt1 "
-E " V"k+1 "k+1 " IA/(A 43)47'!,,

Now by applying the generalization of Rosenthal’s inequality indicated in A. de Acosta
(1981) to {v; — Evj:1 < j < nz+1} we have for all A > 48 a constant C» independent of % for
k = ko such that

kel Npyy "

Lr= {(Z"" LE | ol *)? + Zh E o)1)
(5.22)

= ;ﬁ (e E() X 21X € AR)))? + men E(|| X || *I(X € Ar)))

k
where Ay = {x:K(nx/Lzni) < || x || =< vn,} . Then for k£ = ko the Cauchy-Schwartz inequality
implies
2x = [nen E(|| X || 21X € Ap)) P
(5.23) =niqE(| X || IX € AR))E(| X ||)I(X € Ar))
=28iE(| X | IX € ALE(| X | P I(X € A))

since n} = (B* — 1)> = B%*/2 = (n4+1)?/2B2 whenever 8* = 3. Now by using the definition
of the function K(-) we see that

mE(|| X || IX € Ar)) = K(ne/L:ni)Long = an, < ¥n,,
so we have for 2 = k, that
(5.24) 2 < 28, E( ||‘X I’ I(X € Ar))vyn,-
Since E(|| X || “I(X € A#)) < v», E(|| X | ’I(X € Aw)) it follows from (5.23) and (5.24) that
Ly < 4C\B*mE(| X ||)IX € Ar)) /v3,.

Now let (k) = inf{j:y, = K(ng/L2n:)}. Since va = a,, We see Yo = an =
Lyn;K(n;/Len;) = K(np/Lang) if j = k, so 8(k) < k. Hence for §(r) = ko we have

Yhar Iop < 4CA B zkz,(—y'i’fF E(| X|*IX € Ab))

(5.25) =4C,B? thr . 2 Tk E(| X I, < | X)) < ya))

n,
< 4CAB® Y3mstr E(| X | T (yny < 1 X || < vn)) T T: :
Lo
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Now since v, = Vnh(n) where h(n) satisfies (2.24) we see that

R me (n)® _ ne ()" (h(n,~))3
s Gm)y (yn )3 s (Ym)® ('Yn/)s Liei 3, n; (nx)*? \ A(n)
1 n o vz 1 B’ 1/2
(5.26) = p (Ynj)s = (n_k) =3 (Yn )3 Dh=j ( 1)
2n, 2V m

D (B4 = 2

= ) 1) )

since B7/(B% — 1) = B/*/(1 — B7*) = 4B/ *if 4(1 — B7*) = 1. Now for k = 6(r) = ko we have
B* = 3 and hence for such &, 4(1 — B7*) = 1. Thus for 6(r) = ko we have

N
Do s = o 7 (1 X0 1, <1 X121

_ 8CAB*VB
3(‘/—
SCABQ/2 -
= B DB Yi=otr (i1 + 1 = nj2) Plyn_, < | X|| <yz)
since n; = B/ = (B*/(B — 1)) B/%(B — 1) = (B*/(B—1))(n;-1 + 1 — n,—). Hence (5.27)
implies

Ekzr Iz,k =

(5:27) Zj-o(r) 1P (yn_, < | X|| = vn,)

SCABQ/2
AVB-1D(B-1)

[XF-00 (-1 — 1) Plyn, < | X || <) + P(| X || > vn,,,)]

(5.28)
SCABQ/Z
A(VB-1)(B-1)

[Trznsr-: PN XN > va) + P(| X|| > vn,, . )]— 0 a8 r—

=

since 6(r) — o as r — o and (2.26) holds with M = 1. Hence Lemma 5.3 is proved.
A suitable replacement for Lemma 5.3 when E || X ||* < « and the regularity assumption
(2.24) is not necessarily satisfied is the following.

LEMMA 5.4. Using the notation of Lemma 5.3 and assuming EX=0,0<E | X|*<
oo, we have for all A > 2P that

(5.29) limyse Yo Tk = 0.

ProoF. From (5.20) and the fact that {|| V. — EVy,|:ne<n s.nk“} is a submartingale
we have

Ls=E| Vo, = EVay, |/ (A = 280,
(5:30) < 2 E(| X (| X || > K(a/Lani)))/ (A = 28) Y.
Since ngs1 < ¥ = (B%/(B - 1)). B (B—1) = (BY/(B—1)(nx+ 1 — ne—1) and E | X ||?
< o implies K(n) = Vn, there are constants I" and € > 0 such that

=)

531 Lon = T(ns — nk-oE(uxu I( 1X] >e
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Hence for all sufficiently large r

Zkgr Iz,k =T 2}21 (ng — nk_l)E< " X" I( II X" >¢ T ))/Vn,,LGk
(5.32) N Lzny

=T Tozns E(uxu I(nxn >\/%’T;)) / VnLsn.

The conclusion (5.29) will follow from (5.23) since

(5.33) - E( 11X I( 1X] > ey /L—”’:)) / VnLon < w.

To verify (5.33) note that

P E(u X| I<n X| > e%)) / VnL:n
o - E(u X S I(u x| > \/Z"—;) / m)

and for a sufficiently large constant IV we have for all n that

n , 2
I(uxu Ze\/m) <In<T'| X|’L | X).

Hence there is a constant I'” such that

/Y rpxp Ly x) L "
635 Sert(1X1) 2o\ ) VAL = g o< X) + ,

and since E || X||? < », combining (5.35) and (5.34) we obtain (5.33), so the lemma is
proved.
To complete the proof of Theorem 3 it suffices to prove:

LEmMMA 5.5. For all A sufficiently large we have

lim, e Yp=r Iip = 0.
Proor. First we observe that for e > 0 and all & sufficiently large
Ly = P(maxn,<nsmpnl| Unll = Ayn, + E || Spnill)
=< P(maxn<n=nprf| Un — EUL || + maxn,<cnsnpr| EUn || = Ayn, + E || Spne||)
=< P(maXp<nznpo|| Un — EUL|| — E|| Uy,,, — EU,, || = Avn, + E|| S ||
(5.36) — E|U,,,, — EU,,,, | - maxu<nznpl EUn ).
= P(maxn<nsnpl| Un = EUL || = E|| Up,,, = EUp, || Z (A — 88 — €)vn,)
= Plexp{y(maxncnzmp| Un = EUn|| = E|| Up,., = EUn,., )}
= exp{y(A — 88 — &)yn,}).

The last inequality in (5.36) results from the fact that EU, = —E(V, + W,), Bn; = g**'
— B = ng+1 — B, and the estimate in (5.19) implies for all % sufficiently large that

E||Spnill = E || Uny,, = EUn,,|| — maxn,cnsnpall EUn ||
= E" Unk+1 + anu-l + W"’k-o-l " _BE "X" -E " Unk+1 " - IIEUnIz+1 " - 2ﬁy"k
> — 88vn, — BEIX| = — (B8 + e}y
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Since {|| Ur, — EU, || : ne < n < nz+1} is a submartingale and e’ is increasing and convex
for y > 0 we have by the maximal inequality for submartingales that for % sufficiently large

(6.37) L= exp{~y(A — 88 — &)yn,) E(exp(y(| Un,,, — EUn,, || — E|| Un,,, — EUs,,,I)).
Now recall from the definition of u; that
|wi — Euj|| = 2K (na/Leng) (1 <j < ng+1)
= Cn,ln,

where

eny = 2/(VLors VA — 8B —¢), = VLo K(Lnk ) N/ T

2N

Let ¢,, = VLyn, VA — 88 — ¢/2 and set y = &,,/27,,. Then &,.c,, < 1, and hence by (2.4) in
Kuelbs (1977) we have

32 E|ui — Eu;
(5.38) Iy < exp{—en(A — 88 — s)Ynk/2nnk}exp{—4£ 3 "fn—f"}
ny,

Since y» = a, = LonK (n/L;n) we have

I ; < exp{— (A — 8B — €)Lan/4}

%)) - B(xr(1x = x( 2 )))H

32751 E sz(nxn = K( 7
2

(5.39) exp

4L2nkK2< )(A 8B - e)

L:n
Now the function K (-) satisfies (2.16) and hence
KXx) = E(| XIPI(| X || = K(%))),

o ({2 o)) o)

Now for & = ko (5.17) implies
Nps1 < 28n,

SO

and hence for all sufficiently large % (5.39) implies
I < exp{[— (A — 88 — ¢)/4 + 3B8/2]Lans}.
Choosing A such that
(A—8B8—¢/4—-3B/2>1

we have Y I1,x, < », and hence Lemma 5.5 is proved.
As was pointed out in (5.16), the proof of Theorem 3 is now complete.

5.3 Proof of the Corollaries to Theorem 3. To prove Corollary 1 we first observe that
(2.28) and Kolmogorov’s zero-one law easily imply (2.29a) and (2.29b). Hence it suffices to
show the converse, and this easily follows from Theorem 3 and (2.25), if we can show (2.29)
implies
oup, E15el _

Yn

(5.40)
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To verify (5.40) choose an integer ¢ such that 8 < 2% Then EX = 0 implies
E|Sp: |l = E|| Syl = 2°E || Sa |

and hence (5.40) holds if (2.29) implies

E|S.
(5.41) sup. —"——" < o0,
Tn .
To verify (5.41) we first assume M = 1 in (2.29a) and that X, and hence the sequence

{X;}, is symmetric. )
If nx < n < i1 we define u;, v;, wi(1 <j < np+1) and U,, V,, W, as prior to (5.14).
Then, for n, < n < ng+1

E|S:|= E| Ul + E|| Va + Wa|,
and for all £ = k, the argument yielding (5.19) implies
Supnk<nsnkﬂE " Vn + Wn " = 2BY"I¢'

Since EX = 0 we have E || S, || increasing in n and hence {y.} / implies

E|S.| _ E|S| E| Sn,. |l
SUp, ——— = SUPLSUPn,<n=np+1 = supz
(5.42) Y Y Yo

E| Up,,

e

=28 + sup:

Since E (1;) = 0 and there exists an integer ¢such that n+, < 2%, we have E|| U, |
=2E||¥ 1 ui|l, and hence (5.41) follows from (5.42) if

E 'Hé .
(5.43) supy ZIZA il o,
Y"k

Now the u;, 1 <j < ns, are independent and symmetric with
maXis;sm || ||/ Yn, = 1/L2ns,
and we also have the well known inequality
P(Z7t1 4| > tyn,) < 2P(|| Sy, | > tyn,)-

Hence (2.29-b), along with a standard argument involving (3.3) of Hoffman-Jgrgensen
(1974) (see also Lemma 6.1-a below), easily implies (5.43).

Hence (2.29) implies (5.41), and also (5.40), provided M = 1 in (2.29a) and X is assumed
symmetric. For the general case, let {X}} be an independent copy of {X,} and set Y, =
(X, — X7)/2M (n = 1) where 0 < M < o is such that (2.29a) holds for {X,}. Then

P(| Ya| > ynio.) =0
and
{371 Yj/yn} is bounded in probability.
Hence the previous case implies
SUp.E || X1 Y/ vnll < oo,
and since E|S,|| = E|X}1 (X; — X))|| = 2ME||X}=1 Y;||, this implies (5.41). Hence

Corollary 1 is proved.

ProoF oF COROLLARY 2. To prove Corollary 2, we simply apply Lemma 1 and
Corollary 1. That is, in type 2 spaces, Lemma 1 provides a constant A < o such that
E||S.|| = AK (n), and hence, recalling that S, = S, we have for all n = no and all A >0
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that

p(m > A) = ElS.| <2L.nE ||S.ll /Ayn

n A n
(5.44) ¥ i Lon

< 2AL:nK(n/Lsn) /Ay, = % .

Letting A — o we see (5.44) implies {S,/y»} is bounded in probability. Since (2.31') is
assumed, Corollary 1 applies and the proof is complete. .

PROOF OF COROLLARY 3. To prove Corollary 3 we first point out that if E || X |[> = 0 the
corollary is obvious. If 0 < E||X|® < «, then the Borel-Cantelli lemma easily implies
P(|| X.|| > vn i.0.) = 0, (2.14) implies K (n) ~vn, and hence

o, = LGK(L) = vnLzn.
LG

Thus Theorem 3 immediately implies

i sup, 1.5 = El1Sm

Qn

<o wp.l

for any B8 > 1. Since {y.} satisfies (2.32) and a, =vnL.n we thus have with probability one
that
tim sup, 1.5 = El1 S
Yn
Using the argument in the proof of Corollary 1 it easily follows that
lim sup, || S [/1» <  (=0)

if {Sn/v»} is bounded in probability (resp. Sa/y» —>pror 0 and (2.34) holds). Thus Corollary
3 is proved.

< oo (resp. < 0 if (2.34) holds).

PRrOOF OF COROLLARY 4. To prove Corollary 4 we first observe that if ¢ is sufficiently
large the inequality

(5.45) t’%g(t)/Lot < x

implies

sz
1/2
(5.46) t=x"" ,g(x)'

To see (5.46) follows from (5.45) for large ¢ we use the fact that (2.38) implies ¢ (¢) =
t%g(t)/Lqt is eventually non-decreasing, and observe that

[L.x Lyx [Lox ,sz)
2 [Z27) = 2 |20 2 222
(5.47) tlz(x z (x)) x 2 g<x z (x)) / Lz(x \Nz@ =x

since (2.39) implies x = x'/% VL,x/g(x) for large x and Lst/g(t) is assumed to be non-
decreasing on [0, «). )
Since (5.45) implies (5.46) for large ¢, we have

(5.48) S P(IXIPg(I XID/Le | X || = n) < 0
implying that

Lsn
1/2
(5.49) 2n P("XII =n"? y ’g_(n)) <
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Now E (| X|Pg(|| X||)/Lz|| X||) < « implies (5.48), so (5.49) holds.

Now we apply Corollary 1. That is, (5.49) implies {v.} satisfies (2.26) for all M, 0 < M
< oo, and since {y,} and {y,,/\/z } are both non-decreasing we have {v.} satisfying (2.24) as
well. Thus we can apply Corollary 1 if we show {pv.} satisfies (2.23) for some positive
constant p.

In this regard we see that (2.16), (2.37), and (2.38) imply

L:K(n) nK((n)L:K (n)
g(K(n)) K(n)g(K(n))

where I = E(| X|"g(| X|)/L: | X)) < oo.
Now (5.50) implies

(5.51) K?*(n)g(K(n))/LK(n) < 2In,
and hence for large n (recall K(n) / =) (5.45) implying (5.46) gives us that

/L2(2In)
1/2,1/2
(5.52) K(n) = @2I)/*n —-———g @)

Hence

1/2
n n
Qp = LzﬂK(—L—z';) = 0 Lzﬂ(—L—z-r—L‘)

(5.50) K’n)=n

since 2In/L;n < n for large n and Lqt/g(t) is non-decreasing.
Hence there exists a constant p < o such that {py,} satisfies (2.23). By Corollary 1 we
now have

n

PYn

(5.53) lim sup,

< oo w.p. 1 iff {ﬁn—} is bounded in probability,
PYn

and thus (2.40) holds.
If (2.41) holds and {S,./y»} —>preb 0 we choose () v 0 such that if §, = §(n), then
(@) Vouyn /1 0

(b) Sn ~>prob 0

(5.54) V8 ¥n
(¢) V8, yn = a, for all n sufficiently large.
D E( XU X)/ L | X -8 (1 X)) < oo.

Obtaining the function 8 () is easy once we show
(5.55) an = 0(Ya).

That is, one can choose strictly positive functions (), e2(2), es(t), £4(t) satisfying (a), (b),
(c), (d), of (5.54), respectively, and then & (£) = max,<,=4¢;(¢) will suffice.
Now (5.55) will follow from (2.37), (2.38), and (2.41) since (2.16) then implies that

2
nL.K (n) [ E<nxu g(1X1) (g(K(n» g(nxm) X< K (n)))
2K (n) LIX[ \LK®/ LIX|

K*n) =

L8 X]) (K(n)g(K (n) / ,.g(IIXID) )]
(5.56) + 51 S (KT [y g li ) x> ko)
= o(nL:K(n)/g(K(n)))

by the dominated convergence theorem. Seeing that the dominated convergence theorem
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implies the little-oh condition in (5.56) is easy, since (2.37), (2.38) and (2.41) imply that the

random variables
g(K(n)) /g(|Xl)
I(||X||=K
{LzK(n) LGxu}un I < K(w)

and
{(K(n)g(K(n))/L:K(n)/K(X)g(| X|)/L | XIDI(| X || = K (n))}

are eventually bounded by one and converge pointwise to zero as n — oo,
Now that (5.54) holds we choose a function &(¢) | 0 such that &(¢) = 6(¢) and g(¢)/(L2t-
e(t)) | 0 at £ — o, The existence of ¢(¢) follows from the following easily proved lemma

applied to h(z) = g(t)/Lst.

LemMMA. Let h(t), 8(t) be strictly positive functions on [0, ©) such that h(t) | 0 and
8(¢) | 0ast— . Let p(t) = infocu<ch(u)/8(u). Then
e(t) = h(t)/p(?)

is such that (t) | 0, e(t) = 6(t), and h(t)/e(t) | 0 as t — .

Given ¢(t) as above by applying (2.40) with g(¢) replaced by g(¢)/e(t) we have that

(5.57) 1im sups || Sn/ Ven-ya[|= 0 w.p. 1,
and hence
Sy,
lim,||—||=0 w.up.1.
Yn

Hence (2.42) holds, and the proof of Corollary 4 is complete.

PRrOOF OF COROLLARY 5. To prove Corollary 5 we apply Corollary 1 to the sequence
{yn} = {(pL2nE | Sp/L,n||} for some positive constant p < co.

First of all the sequence {L:nE| S./L.|} is non-decreasing, and for some constant
c>0

(5.58) LonE||Sn/znll = cE|Sall-

Now (5.58) implies {S./L:nE || Sy /L, |} is bounded in probability, and hence from (2.46)
we see {yn} satisfies (2.26). Further, since B is of cotype 2, and EX = 0,0 < E || X || < o, we
have from (2.19) that there is a p < ® such that

. n
pLGE " Sn/L2,, " = L.nK (m) .

Thus there is a p < o such that {y,} satisfies both (2.23) and (2.26), and hence Corollary
1 applies if we show (y,) satisfies (2.24).

To verify (2.24) we note that since B is of cotype 2 we have a constant A, independent
of the law of X and n, such that EX = 0 implies

E||Su]l = AE[(S )= | X192 = AE(}:;'-l "‘fi") = AVRE| X].
n

Hence we have for all mean zero random variables X
(5.59) inf, E M = AE|X]|,
Vn

and the function A (n) of (2.23) and (2.4) is
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h(n) = __Y"_ =pL:nE " S,,/LG"/‘/;-
Vn

Thus we have (2.24) since (5.59) applied to the mean zero random variableS,, ,; ., implies
there is a 6 > 0 such that

) _ oo LBl S )/ Ve
h(n,) " Lan,E||S,, 1,0 I/ Vs

ﬂk n,
bt/ AB IS [[ LG,,] / [ L?”r]] (L)
>

= LGrE " Sn,/LG, "

infr insz r

=6>0.
Thus Corollary 1 implies (2.45) and Corollary 5 holds.

6. The Proof of Theorems 4 and 5, their corollaries, and Lemma 2. We first

provide some notation and necessary lemmas.
If ¢ is a Borel measurable semi-norm on B and Z is a B-valued random variable we let

2(2) = (E(q(2))")"?, 1=p<w
q=(Z) = ess — sup q(Z)
ge:(Z) = inf{a:E{exp{q(Z)/a}} < e},
and
J(Z, a) =inf{t > 0:P(q(Z) = t) < a}.
Further, if { Y;} are independent B-valued random variables we let
S,=Y71Y, and M, = maxi<;<.q(Y)).
The first two lemmas below are essentially given in Pisier (1975). We give a proof of the

first and refer the reader to Pisier (1975) for the proof of the second.

LEMMA 6.1. Let {Y;} be independent, symmetric B-valued random variables and q
a Borel measurable semi-norm on B. Then for each r > 0

(a) E(q"(S,)) = 2-3’[4J§(S,.,§%;) + E(MZ):I,

and
(b) ge(Sn) = 2[ J4(Sn, (2€)7%) + sup1=j=ng=(Y;)].
Proor. We prove (b) since (a) follows easily from the methods and the result (3.3) in
Hoffman-Jgrgenson (1974) which states that '
6.1) P(q(S,) =2t +s)=<[2P(q(S,) = tF + P(M, = s).

To prove (b) we assume without loss of generality that sup;<,g«(Y;) < . Then, setting
t > Jo(Ss, (2€)%), s > supj<nq=(Y;), and iterating (6.1) we obtain

P(q(S,) = 27(¢ + 8)) < P(q(S,) = 2"t + ¥./=4 2’s)
(6.2) =22 P(q(S,) = £)]¥

= 22""71((2¢) )7,
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Hence,

o

E (exp(q(S,)/2(t + 5))) = f

0

1 u
3+ 9) eXP{2(t ¥ s)}P (¢(S,) = u) du

1 27 (t+s) )
< I:exp(é) - 1] + Y, J; exp{rtl_:—s—)} / 2t + 5)-P(q(S,) = 27 X(t + 5)) du

r=1(¢t+s)
= [exp(%) - 1] + 31 277[(2e) 7] exp{27 ) s €=,
which concludes the proof.

LeEMMA 6.2. For {Y;} independent, mean zero B-valued random variables we have

gn(Sn) = N supj=ng.-(Y;).

PROOF OF THEOREM 4. We first assume X is symmetric and supx P(g(S,,/dp) = 1) =
1/8¢%. Then for nx—; < i < n;, we let

Y. =X:I(qX) = dx)
and let
Vo=Yt1Y:, Th=V.— Valnz=m).
Now put px = [LE]. Then for p. = 2,
P(maxn,_<n=nq (V) = 24ps di)
< E[q"(Va,))/(Apk di)™* (by the submartingale inequality)

1 . Pr
) [zp—d % Q7 Tf?‘-»r)]

= [pssupj=pge (T{",),)/Apr di]™  (by Lemma 6.2)

(6.3)

< [supj<p2{Jo(T7*

-

by (2€)7°) + SUPG iz ing (YD} /A di]™
by Lemma 6.1 (b).
Now ¢(Y;) < di if i < ns and since X is symmetric the truncated variables satisfy
P(g(T’ ) = di) < 2P(q(S,,) = d) = (2).

(J=1ry

Hence J,(T7* (2¢)72) = d), and hence the last term in (6.3) is dominated by

(=Drg?
[4 dr/A dp]?* = exp{—pilog(A/4)} = exp{—Y4(log A/4)Lk},
which is summable if A > 4e® Hence, if A > 4e?, by the very definition of v,
Yi P(maxn, <n=m@(Va)/vn = 24) < o,

Therefore,
lim sup.q(V,)/y. < 8¢ w.p. 1,
and by (2.48)
lim supnq(%) =8¢’ wp. 1L

Now in the general case, (2.47) and the previous argument implies that the symmetri-
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zations, S, — S, are such that

lim sup,.q(S" — Sa

Yn

) =16e? w.p. 1.

Further, (2.48) implies
lim S“Pn‘I(Xn)/yn =0 Ww.p. 1.

Applying Lemma 2-x, for all p > 0, we have
Hm Supnq(S.. — nEXI(q(X) = py»)

» ) = 26(16e% + 120 w.p. 1.
Further, for nx-1 <n=n:
q(nE(XI(q(X) =pyn)) _nEXI@QX) = d))

Yn Yn

) = mepYnP(@(X) > dp) /yn— 0

by (2.48), so we have
n — nE(XI(qX)=A
lim supnq(S nE (XI(q(X) = A(n)))
Yn
For the second part of the proof of Theorem 4 we first observe that if X is not symmetric
then the symmetrization of X, namely X — X’, satisfies (2.51), and hence by Lemma 2-(ii)
it suffices to assume X is symmetric.
Let n = h(X). Then 7 is also symmetric and (2.52) will hold for X if
h(S;)
Yr
To verify this we show 7 satisfies the condition (4.11) of Lemma 4.2 of Pruitt (1981).
Now by scalar multiplication we can also assume E(g? = 1. Further, we have that
Pruitt’s B, is our v, and thus his ;. = (pr/Lk) d, and, of course, n; = p,r.. Hence, in view
of (2.48), it suffices to show that

) = 416e®> w.p. 1.

lim sup, >0 wp. L

f(uz) ~ ni'log k (which is ~ l)

'
where f(t) = E (9> A t}) /3, (t > 0).
Now Corollary 2.12 of Araujo, de Acosta, and Giné (1978) implies

h'mkrkE<‘dl 2L(|n| = ed,,)) =E(g)=1
'k

independently of ¢ > 0. Since u; < d;, and u; ~ d; as k — o we have
1
E<n21(|1;| S—2-dk)) = E@*I(|n| = w) = EQI(|n]| = dv)).

Thus the above implies
. E@’I(|n| < w))
hmk"k‘“—‘——u'z_—= 1
k

and Pruitt’s result applies. Hence the theorem is proved.

PRroOF oF COROLLARY 6. First we note that X € DPA(Z) implies (see Corollary 2.12
of Araujo, de Acosta, and Giné (1978)) that there exists r. ./ © and d; / « such that

S, — nEXI(| X|| < di)
d

converges weakly to Z. Therefore, there exists a compact, convex, symmetric set D C B

W, =
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such that
sup,P (W, & D) < (4e)7?,
and the Corollary 2.12 mentioned above also implies
limyr, P(X & dpD%) =0
for all § > 0. Hence, by using a diagonal argument we can also assume

Tk+1
— =40
Tk

and for all § >0

Y (LE)ry P(X € d.D%) < oo,
Now for each 8§ > 0 define the norm q = g; on B by

g (x) = inf{¢ > 0:x/t € D%}.

Then q is equivalent to || - || (so ¢(x) < « for all x € B) and putting p; = [Lk], nx = prrs,

A(n) = d(k) and y(n) = pid; for ny—1 < n < n;, we have by Theorem 4 that

S, — nEXI(| X|| = A(n)))
y(n)

(6.4) 0<lim sup,,q( ) = 416e? w.p.l.

Hence,

{s,, — EXI(| X|| < A(n))) }
y(n)

is relatively compact with probability one with limit set contained in 416e®D. That the
limit set is not {0} follows immediately from the fact that the limit in (6.4) is positive with
probability one. Thus Corollary 6 is proved.

Before we prove Theorem 5 we need some additional lemmas.

LEMMA 6.3. Let X be symmetric and assume d is an increasing function taking
(0, ) into (0, ) with an inverse such that d*(2u) < 2d~(u). Further, if

n 1
sup,,z,.oP<q(%) = 1) =<a <§,

then
2a
SUDn=n P (g (X) = 2dp) < 70—,
and
A wPg(X) = u) = —2
1-2a

for all u = 2d (no).

Proor. If n = no we have
1 -1 - P(g(X) = 2d,)]" = P(maxer=rq(Xz) = 2d,) = PMax,=xq(S:) = d)
= 2P(q(S,) = d»)

by Lévy’s inequality. The inequalities 1 — ¢ <e“and 1 — e™* = ¢/(1 + ¢) and interpolation
between 2d (n) and 2d(n + 1) complete the proof.
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LEMMA 6.4. Suppose that y(t) 7 % and for all sufficiently large t
coy(t) = y(2t) = ay(¢)

for some 1 < ¢; < ¢; < ». Let ny = 2* and I, = (nx—1, nx]. For a sequence of independent
symmetric random variables put

A(k) = Tjen E(@*(X)I(Q(X)) < 8y(ms))) /v* ()

where 0 < 8 < © and q is a Borel measurable semi-norm on B. If
(@) YF-1Yjer P(@(X)) = 8y(ny)) < oo, ‘
(b) Y %=1A"(k) < o for some 0 < r < «, and
(c) for all k sufficiently large
P(q(T jern, XiI(g(X)) = AV4(R)y(mi))) = moy(me)) < Ve,

then

G (otry + A} wp.l
Cy — 1

lim sup,q(S,)/y(n) =
where 0 < A < o satisfies [A/8] = 2r.

Proor. We first note that by the proof of Theorem 3.4.1 of Stout (1974)
lim sups—=q(Yjen Xj)/y(m) = M w.p.1
implies
c;czM

lim sup.q(S,)/y(n) = o1

w.p.1.
We now indicate how the proof of Theorem 1 of Kuelbs and Zinn (1979) can be modified
to accommodate this more general result. Fix 0 < § < o and define
X;=X1(q(X)) = A(k)"*y(n)), JEL
Ui = q¢(Tjen Xj)
Uk = q(Tjen X 1(q(X)) > 8y(ms)))
Ut = q(Tjen KT (R)y(m) < g(X)) < Sy(m))).

b = Y(n)AR),  cx = A(k)®
e = (1 + py(u)/be = (1 + nTAT4(R)

where I' = lim sup; E(U}%)/y(n:) and 7 > 0.
Since A(k) — 0 as 2 — « we now use Lemma 6.1a to show I' < 247, and using the
proof of Theorem 1 of Kuelbs and Zinn (1979) we easily establish

lim sup, Ui =T wp.l,
y(r)
imy Ui =0 wp.l
y(re) ’ -
and
. Ui
lim supx e =A wp.l

Combining the above with M = A + T, the lemma is now proved.
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LemMA 6.5. Letd, g, a, and a™* be as in Theorem 5, and let y = a~'da. Then we have

the following holding:
(i) there is a constant ¢, > 1 such that

tL:t = a7 (t) < c1tLst

and
a”l(t) ~ t Lat.
g(t)

d t

(6.5) (i) g(t) is continuous an Afort=4

(iii) t/d(t) / and d(2t) = 2d(¢t) for t = g(¢).
(iv) lim sup.—12) <1.

2v(¢)

(v) for t = max(£ g(¢)) we have positive constants c; and cs such that
cot? = d(t) < cst,

and hence La(da(t)) ~ Lat, so y(t) ~ Lqt d(t/Lst).
(vi) there exists a constant A < « such that for s < t sufficiently large

t <A s
&7~ " [v)7?
¥
d(t)

(vii) lim inf, .. =1

Proor. (i) is obvious since a(t) = t/L.t. Further, since d is continuous, its inverse g is
also continuous. Thus by (2.61-i) and Theorem 264 of Kestelman (1937) we have for all b
> a > ¢ that

g®) gl ["d(g®) , ["[tw-—gw® ,
T_T_J;Ft(—t_)dt_J; [“—tﬁ—“]dtz"'

Hence g(t)/t increases for ¢ = 4 and g(d(t))/d(t) = t/d(t) also increases for ¢t = g(¢). As
aresult, t/d(t) < 2t/d(2t), or d(2t) < 2d(t) for t = g(¢), so (ii) and (iii) of Lemma 6.5 hold.
To establish (iv) we observe that

 otdat@t) - a2 ) = a2 ) =
v(2t) = a7 da(2t) = a d(Lth)Sa d(th)Sa (2d(t/Lyt))

~ 2d(¢/L2t) L2 (2d(t/Lat)) ~ 2d(t/L2t) Ly (d(¢/L2t)) ~ 207 da(t) = 2y (¢).
Now (2.61-iii) and (iii) easily yield (v) so we now turn to (vi).
Let s < ¢ be taken sufficiently large. Then (i) implies
t < t _ a(t)Lqt
[«"da®)’ ™ [da(t)L2(da(t)]’  [da(t)P[L:da(t)F
- a(s) Lyt
~ [d(als)]? [Leda(®)]?

by (2.61-iii)

- c.;a(s) .
~ [d(a(s))] Les
< csa(s) Lys
= [d(a(s))]? [L2 (d(a(s))]T
- CeS
" [a7'da(s)]?

Hence (vi) holds and by using (i), (v), and (iii) we have that

for some ¢4 < © by using (v)

for some ¢5 < by using (V)

by (i) for some ¢s < 0.
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d(t)
L,t

a 'da(t) = d(a(t)) L, (da(t)) = Ly (da(t)) ~ d(t) as t — oo.

Thus (vii) is verified and Lemma 6.5 is proved.

LEMMA 6.6. Letd, g, a, and a™* be as in Theorem 5, and let y = o 'da. Then
(6.6) E(a7'ga(q(X))) < « iff E(a"'ga(g(pX))) <

for some (and hence all) p > 0. Further (6.6) holds iff for some
(and hence all) p >0

(6.7) Yr=1 Yjen P(@(X;) > py(ny)) < oo,
where ny, = 2%, I = (np—1, np] for k= 1.

Proor. Since y~! = a~'ga /, (6.6) holds because Lemma 6.5-vi implies there exist uo
> 0 and A > 0 such that

Vpo=1, Yuz=uo,, vy '(ou)=>MNo?y'(u).
Now (6.6) is true if and only if there exists p > 0 such that
Yi=1Yjen P(@(X)) > py(j)) < ce.
Hence (6.6) is equivalent to (6.7) since
y() = v(j) = % y(m)

whenever j € I; and k = ko by Lemma 6.5-iv. Thus the lemma is proved.

PrOOF OF THEOREM 5. Let n, = 2% I, = (np-1, ne], pr = [LE], r» = [ne/p:],

and y(t) = a 'da(t).
If (2.62-ii) holds and if {X}:j = 1} is an independent copy of {Xj:j = 1}, then

(6.8) lim sup.q ((S, — S7)/y(n)) =M <o wp.l

Hence (2.63) holds by part one of Lemma 6.6.
Now assume (2.63) holds. Then (6.7) holds and hence

S Sen P(@(X; — XJ) > 2y(na))
(6.9)
=< Y Yen [P(@(X) > () + P(g(X}) > y(m))] < .

Applying Lemma 6.6 to X — X’ we thus have

(6.10) E(a7'ga(q(X — X'))) < .
If, in addition, we assume (2.61-iv) for X, then we also have no < » such that
Sn - S;z 1
(6.11) supnzm,P(q (—E(—r;—)—) > 2to) = el

Thus if X satisfies (2.63) and (2.61-iv) we have the symmetrization X — X’ satisfying (6.10)
and (6.11). Our next goal is to prove-that for X symmetric, (2.63) and the condition

S, 1
(612) sup,,zm,P <q (a—-(-;l—) ) > 2to) = 8_32

together imply

(6.13) lim sup,,q(%) =[32¢%+ 96(2 + v2)Jto w.p.l.
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From this we then will have (6.10) and (6.11) implying

(6.14) lim sup.q (S" (;;g ") =[82e2+96(2 + V2)Jto w.p.L
Y
Using Lemma 2, (2.67-x), we thus have (2.62) since
. q(Xz)
lim n =0 wp.l
sup, ey w.p

(by using Lemma 6.6), and forallp >0,0<p <1,

q(nE(XI(q(X ) = y(n))) — nEXI(g(x) = pv(n)))) __n
y(n) y(n)

=nP@X)>py(n)) >0 as n—ox

9(EXI(py(n) < ¢(X) = y(n))))

(by using Lemma 6.6 since (2.63) holds).
Hence we assume X is symmetric, X satisfies (2.63), and (6.12) is satisfied. If 2¢, > 1 we

replace X by X/2t, and using Lemma 6.6 it suffices to show (2.63) and

(6.15) SUPr=n, P(q(Sn/d(n)) = 1) = Yke®
imply
(6.16) lim sup,,q(yf;;)) =[16e® + 48(2 + v2)] w.pl

k k k
Now d(a(ns)) = d(i,;) = d(i-) > d(z—) > d(rs) so (6.15) implies there exists ko
Ly2 Lk Pr

< o such that

S, 1
.17 - Tk <=Ze2
(6.17) supk_koP(q(da(nk)) > 1) =< 5 e

Now we set

Y= X;I(g(X)) < da(nk)) (JE€ L)
(6.18)
Zj=X;- Y, (JEL).

Next we define
Vo=3Y31Y, and Th=V,—Vn
for n < 1. The proof will be completed by showing
(i) lim sup.q(V,/y(n)) < 16¢? w.pl

(6.19)
(ii) lim sup.q (X1 Zi/y(n)) < 482 + v2) w.pl

To prove (6.19-i) we will apply the argument used in the proof of Theorem 4 and to
prove (6.19-ii) we will apply Lemma 6.4 to {Z;}.
Applying (6.3) with di = da(n:) we obtain for A > 4e” that

Ek P(max,er, ¢(Va) = 2Aprda(ng)) < .
Hence for any 5 > 0 (6.5-iv) implies there exists ko such that

ket P(Maxneng(Va/y(n)) = (2 + 20)24) < Yi=p P(maxnenq(V,) = (1 + 2)2Ay(nk))

= Yimto P(maxnerq (Vi) = 24p; da(ny))

< oo,
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In the last inequality we have made use of the fact that L, da(n:) ~ pr as k — « and this
follows from (6.5-v). Since n > 0 was arbitrary

(6.20) lim sup,q(V./y(n)) < 16e*> w.pl

and it remains only to establish (6.19-ii).
Recalling {Z;:j = 1} as in (6.18) we choose 0 < § < 1 and apply Lemma 6.4 to {Z;}.
To apply Lemma 6.4 we first identify ¢; and c. since y(£) = a™ da(¢) /. Now from

(6.5-iv) we have ¢; = 2 + ¢ for any € > 0 and ¢, = v2(1 — ¢) for any ¢ > 0. To see ¢z =
v2(1 — &) works for any & > 0 note that (6.5-i, v) implies that for sufficiently large ¢

Y(28) _da(2t) _ d2Q' - e)a(t)
y©)  da(®) —  d(a@)

Now (2.61-iii) implies

rr—  Gla(?)
d(2(1 - e)a(t)) = V2(1 — &) Va(?) )
E)a € o J—_

a(t)

so combining these facts we see for all sufficiently large ¢

Y@ . Bas.

y(®)

Since 0 < 8 < 1 is fixed we easily have condition (a) of Lemma 6.4 by applying Lemma
6.6 since we are assuming X satisfies (2.63). To see that condition (c) in Lemma 6.4 applies
recall that the {Z;:j = 1} are independent and symmetric, so for all sufficiently large &

P(q(Xjen ZiI(@(Z) < AR)*y(re))) = y(me))
=< 2P} jen Xj) = y(m))
= 2P(q(Sr,_,) = y(n))

<2P(q(S,, ) = g o)) (by (65-iv))

<2P(g(S, ) =2 d(m))  (by (65-vii)

-1 <1
T (4e?) 24

Thus (c) of Lemma 6.4 holds with 1o = 1, and once we establish (b) of Lemma 6.4 with
r = 2 we will have '

(by (6.15)).

(2+¢e)v2(1 —¢)
Vv2(1—¢) —1

where A = 48, 0 < § < 1. Since 8 > 0 and ¢ > 0 are arbitrary, (6.21) implies (6.19-ii).
Hence the theorem is proved once we verify

(6.22) - TR AR) <o

(6.21) lim supngq (X1 Z))/y(n) < (24 + A} wpl

where -
A(k) = Y jen E(q*(Z)1(q(Z) < 8y(m))) /" ()
and 0 < 8 <1 is arbitrary. From (6.18) and that § < 1 we see
A(R) = T jen E(@*X)(da(ms) < ¢(X)) < y(m))) /v ().
To show (6.22) let X, Y be independent and identically distributed and set ¢ = ¢(X) and
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1 = q(Y). Then there exists ko such that

Thzho A%(R) = 2 Tizho ( ) E[¢"°I(da(n) < § =1 = y(m))]

ng
¥*(n)
= 2E{€ N Yk ( T )> I¢=n,a'gam=m=a g(&))}
= 2A2E{s 2% pako ("‘ f;"“"’) IE=n=a™'(®),

La"'ga(m) =klog2 =< La~ g(ﬁ))}

by (6.5-vi)

2\ (g%

=Tog2 {£ e IE=n=a”E)IL"gE)/a” ga(s»]}
o

1 {gz(a ga(n)) I¢ < n=a '())L(miA(L:£)* )}
og 2 n

by (6.5-vi) for some finite constant m;

with ¢ = o 'g(¢) and s = a7 'ga(§)

22°
=fog2 E{a"'ga()a"gamI(t = n < a”'(§) LAmMIL2£)*)}

by (6.5-vi)

= 2myE[a""ga(¢)a gamI(¢ = n =< a'(§))Ls¢]
for some positive m.

= msE(Ls§(L2¢)°ga()ga(mI¢ < 1< a™'(§)))
for some positive ms by use of (6.5-v, i).

Now for s sufficiently large integration by parts and a standard application of Theorem
264 of Kestelman (1937) implies that

E(gam)I(s=n=<a™(s))) = P(n=s)ga(s) + j P >t) d(ga)(t)
(s,0” (s)

a(s)
= P(n = s)ga(s) + j Py > t)(ga)'(2) dt.

Recalling g(u) = d'(u) we see that Lemma 6.3 and (2.61-i) imply that there exists a
positive constant m, such that for all s sufficiently large

al(s) ,
gla(s) +J’ gla(?)) «'(2) dt] .

<a! =
E(ga('fl)I(S =nN=a (S))) - m‘[ g(s) a(t) g(t)

Hence by (2.61~ii) for s sufficiently large there are positive constants ms, me such that

o 1 I(s) dt _
E(glam)I(s=n=a(s)) = ms[————(Las)g(Lzs) + f ] =< me/(L3s)(L2s).

(Lat)*(L2t)t
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Using the independence of £ and 7 and the previous inequalities we now have positive
constants m; and ms such that

Skzro A%(k) < mr (1 + E[(L2£)*(Lsé)g(a(£))/(LsL28)])
=ms(E(a™ga(f)) + 1) < .
Hence the theorem is proved.
PROOF OF COROLLARY 7. Let X € DA(Z) and assume X is symmetric. Then there
exists d(n) / » such that d(n + 1)/d(n) — 1, and
ZL(Sn/d(n) - £(2),
and, hence for all f € B*,
Z(f(Sn/d(n))) - N(ZL(f(Z))).
If 0 < Ef%(X) < « for some f € B* such that £ (f(Z)) # 8, then
L(f(Sa/Vn)) > N©, E(f*(X))),

and hence
lim,d(n)/vn=c (0<c< ).
But then
& (—§"—> — P(c2)
vn

and hence Ef*(X) < « for all f€ B*. Taking d(t) = Vt we have g(¢) = ¢* and (2.61) holds.
Thus

a 'ga(t) ~ t?/Lyt
and
a lda(t) ~ VtLyt

so Theorem 4.1 of Goodman, Kuelbs, Zinn (1981) completes the proof in this case.
Hence we assume Ef%(X) = 0 or o for all f € B* such that £ (f(Z)) # &. If E(f*(X))
= 0Vf € B*, then X = 0 s0 X € DA(Z) and hence we choose f € B* such that

Ef*(X) = oo.
We now show the corollary holds with d = Kyx, and that d(n) = d(n). Let £ = f(X) and set
U@ =EEI(E|<t) O=t<w),
and
V) =E(|£|I(|§]| >2) O0=t<o).
Then £ € DA(f(Z)), so it is well known that U(¢) is slowly varying and

tzP(|§|>t)=

U@ 0.

(6.23) lim,_,

Now U(t) slowly varying at infinity implies.
Ut)

lim/; o ——=10
t

&

for all e > 0, and hence (6.23) implies
E|£&|* <o
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for 0 < a < 2. Further, by the “equivalence lemma” of Hahn and Klass (1980) or Feller
(1971) we have

V() _
(624) hmg_m ?(7)— =0.
Hence, if we define
(6.25) S(¢) =J' E(|§]1(]€] > u)) du,
0

then
S@t)=E(&|(|E]A ) = U@+ tV(ie) ~ Ut)

is slowly varying. By the representation theorem for slowly varying functions as given in

Seneta (1976) we have
a(t)exp{J 5(—'2 ds}
S 1 S

S - a(t)
(al®) a(a(t))exp{ f i(_sﬂ ds}
1

(6.26)

where
0<lim,,.a(t) =c<o and lim,,.e(s)=0.

Hence for all § > 0 we have for all ¢ sufficiently large that

' S(t) * e(s) B »
6.27) 1= 5@ =2 exp{Lm _ ds} =< 2 exp{6Lst} = 2(L»t)°.

Hence, if we let
(6.28) g(t) =t*/S(),
then for ¢ sufficiently large
gla(?)) - 2
gty ~ (Let)*%
Since S(¢) = [6 E(| ¢|I(] £]> s)) ds we have
S't)=E(&I(|E]>t)=V(E)=0

on the complement of the discontinuity points A of the decreasing function E (| £|I(| £| >

t)).
Further,

b 2S(2) —t°S'(t) _ 2t _
(629) g (t) —-—-—*S—z-(—t—)———Sm = 2g(t)/t

on A°. Further, since S(t) ~ U(¢t) as t— o, S'(t)=V({t)onteE A, and tS’'(¢)/U(t) > 0 we
have-

S
(6.30) llm,_,m W =0

Therefore, combining (6.28), (6.29), and (6.30) we have for all sufficiently large ¢ that

ge) ¢ _ 3t
7 =50 280 ~¢"
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Also, g(2)/t*> = 1/8(t) | so we have (2.61-i, ii, iii).
Applying (2.20) of Lemma 1 we have

(6.31) E|f(S.) | = g7\(n),

so defining d(¢) = g7'(¢) we have

E|f(Sn)|
d(n)

Now Z(f(S.)/d(n)) - £(f(Z)) and by A. de Acosta and E. Giné (1979), Theorem 6.1, for
l=sa<2

= 1.

a

S| _

i d(n)

sup,E

Hence by uniform integrability

(6.32) lim.E

S
(=) | = Err>o
d(n)
and by combining (6.31) and (6.32) we have d(n) = d(n). Therefore, {S./d(n)} is tight so
(2.61-iv) holds with g(-) =]| - ||
Applying Theorem 5 we now have

lim sup,| S»||/a™ da(n) < w.pl

iff
E(a7ga(]| X)) < o».
Further, by Klass (1976), Theorem 1.2, we have
|£(Sh) |
a~ da(n)
since a~'da(n) = (Lyn) d(n/L:n) by Lemma 6.5-(v) and d as defined here is the K-
function, Ky, of Klass. Hence

0 < lim sup|| Su||/a! da(n) <~ w.pl

0 < lim sup, < o

iff
E(a™ga(| X|) < o».
To complete the proof in the symmetric case it now suffices to show that E (a 'ga (|| X ||))

< oo implies
S,
a” ! da(n)
is conditionally compact.

Since {S./d(n)} is tight we choose a compact convex symmetric set D such that

S» 1
n P = .
sup (d(n & D) = 16¢?

Define the semi-norm ¢ = ¢5(0 < ) on B by
q(x) = inf{t:x/t € D°}.

Then ¢ is equivalent to || - || (so g(x) < = for all x € B), and E(a 'ga(q(X))) < » by
Lemma 6.6. Hence by applying Theorem 5 (since d and g satisfy (2.61) with £, = 1) we
have for every 8 > 0 that ¢ = ¢; is such that
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lim supnq(%';(n)) =26 [32% + 96(2 + v2)] w.pl

Hence {S,./a™' da(n)} is relatively compact with probability one and with limit set
contained in the compact set 26{32¢” + 96(2 + V2)1D. Of course, the limit set is not {0} as
lim sup,|| S.||/a™" da(n) >0 w.p.l.

_If X is not symmetric, then X € DA(Z) implies there are shifts 8. and normalizations
{d(n)} such that £ ((S. — B.)/d(n)) — £(Z), and B, Y-1 EXI(| X|| = d(n))) = o(d(n))
by Corollary 2.12 of A. de Acosta, A. Araujo, and E. Giné (1978). Hence £ ((S. — S7)/
d(n)) > £(Z — Z’) where X’ and Z’ are independent copies of X and Z, respectively. Since
the normalizing functions we construct for X — X’ again we call them d and g, satisfy
(2.61) and d(n) = d(n), the condition (2.65) for X implies (2.65) also holds for X — X’, and

hence by the previous case
S, —S»
alda(n)

is conditionally compact and has a non-zero cluster set with probability one. If C is a
compact convex symmetric set which contains the cluster set of

S.— S
a lda(n)

w.p.l, then by applying Lemma 2-xi we have for all p > lim sup, || X. ||/ a~! da(n) that with
probability one

{S,. - nEXI(|X|| = pv(n)))}
y(n)

is relatively compact with cluster set in 2C. Here, of course y(n) = a~! da(n). Since (2.65)
holds, any p > 0 works (see Lemma 6.6).
Thus Corollary 7 is proved provided

. n
llm::;' IEXI(|X]| > v-)) || = 0.

That is, given the above limit is zero, then (2.64) holds as 2C is compact and hence if

o(2=29)) -0

then
lim,, S, —nEX) _ 0 wpl
Yn
Thus
lim, 22 =52 _ 0 wpl
Yn

which contradicts the fact that

C({s" — S"}) # {0).
Yn
Hence Corollary 7 will be proved if we show

. n
lim sup, by IEXI(X]|> =) | =0.
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Now

YﬁnE(XI(an >yl syﬁmuxuuuxu > 1)

=Y£ [YnP(||X||>7n) +f P(|X|| >t dt],

Tn

and lim,nP (]| X| > y») = lim,nP(a”"ga(|| X||) > n) = 0 from (2.65), so it suffices to show
that

limnyﬁj P(|X||>¢) dt=0.
" Yn

Using the properties of g(t), its inverse d(t), and a(f) = ¢/Lst and a~'(¢), it follows that
y(t) is strictly increasing and continuous for all ¢ sufficiently large, and y’(¢) exists except
possibly at a countable number of points. Further, using the chain rule and (2.61-i) we get

1 d® _d@)
g'(d@) gd@) ¢t
for ¢ sufficiently large except for countably many #’s. Again, using the chain rule and that
La 'da(t) = Lt

a'@t) =

we obtain for all except countably many #’s that
d(t/L:t)
t/Lst
as ¢t — . Thus by applying Theorem 2.64 of Kestelman (1937) we have a constant ¢ < o
such that

Yty =

n (" n Tt n
7‘[ P(|X]|| > ¢) dt =Y—Z;'°=nJ’ P(|X] >0 dtSY—ZELn P X > v)) g1 = v5)
n Jyn n . n

Y

J+1 J+1
ng ‘ , en g, . d(t/Lst)
== Y en P(1 X[ > v5) J: Y'(t) dt= - Yi=n PIX|| > v) J: Lot dt.

Since @ | we thus have

n (" cnd(n/Lan cLsn d(n/Lan
o f P(IX| >0 dt< 22N 5 p(x) >y =LA 5 x> ).
v, yn n/Len Yn

Now vy, = Lon d(n/L.n) and ;= P(| X| > v;) = 0 as n — o so we have the proof
complete. .

ProoF oF LEMMA 2. Fix A <w,let T'= {n:|y.| = A}, and assume T is infinite. Then,
fA>MandneT

nP(gX — X’) > 2\ A)
1+ nP(g(X — X)= 2\ A)

= P(maxj=-q(S; — S)) > AA)
=2P(q(S. — S;) > AA).

< P(max;=.q(X; — X}) > 2\ A)
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Using (2.66-a) and A > M we have
lim,_wrerP(q(S. — S7) >AA) =0
and hence nP(g(X — X’) > 2AA) = 0. Thus T infinite implies
P@X—-X')=2\4) =1

for all A > M.

Now since we assumed X is not equal to a constant, it is the case that ¢(X — X’) 5 0
with positive probability. Further, since we assume the g-topology on B is separable there
exists a g-continuous linear functinal f on B such that

Supgw=1|f(x)| =1

and such that f(X — X’) is not degenerate at zero. Hence
0<E(fA(X-X')) = E(@*X — X')) = 4A?A” < » and the central limit theorem (on R!)
applies. But this contradicts

limpwnerP(| X]=1 f(X; — Xj) | >AA) < limnswnerP(q(S, — S) > AA) = 0.

Hence T is finite and since A was arbitrary y, — o as claimed.

To prove (ii) observe that for all {c,.} C B

Sn = Cn . ;z = Cn
2(———L)- + lim sup.q M w.p.l,

Yn Yr

M < lim sup,

and since y, — o, Kolmogorov’s zero-one law implies each of the limit superiors is a
constant. Now {(S. — ¢.)/v»} and {(S» — c»)/v»} have the same distribution so (ii) holds.
The proof of (iii) and (iv) follows immediately from Fubini’s Theorem.
To prove (v) observe that by (i) and (iii) there exists{c,} C B such that

n = Cn . S, —X1—cn . -1 Cn
M = lim sup, 25 =) _ jim gup, IS =K m ) o, LSz )
Tn Yn Yn
Hence
X" . n — Cn . -1 — Cn
lim sup, q( ) < lim supng(s—c)+ lim sup, q(S 1 Cr) =9M.
Tr Yn Yo

To prove (vi) let
X = X,I(q(X)) < pva) — E(X;1(@(X)) < pyn))
o = X,I(q(X)) = pva) — X;1(q(X}) < pyn)
St =371 X5
St=31. %

Then Jensen'’s inequality implies

(6.33) Eq(S5/vs) = Eq(8i/vn),
and for sufficiently large n Lemma 6.1a implies
(6.34) Eq(S8./v:) < 24ty +12p,

since for all y > 0
| P(g(5,) > Ay(n)) — P(q(S5) > Ay(n)) | < 2P(max <= ¢(X;) > py(n))
=2nP(@X) >py(n)) >0 as n— x

where p > lim sup.q(X,)/y. and v, /.
Combining (6.33), (6.34), we get (2.67)(vi) since
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P(q("Sn/n) = A) = P(q(S7/v2) = A) + nP(q(X) > py(n))

= % E(q(S2/va)) + nP(q(x) > py(n).

To prove (vii) we first assume that X is symmetric and then (b) implies {S,./y.} is g-
conditionally compact with probability one. That is, (b) and Fubini’s theorem unp].les
there exists (¢,) C B such that

)
Yn

is g-conditionally compact with probability one. Hence {(—S, + ¢»)/y»} is g-conditionally
compact and hence by symmetry so is {(S. + ¢.)/v»}. Adding we have {2¢./v.} q-
conditonally compact with probability one, and thus {Sn/yn} is g-conditionally compact

with probability one.
Further, since B is separable in the g-topology, Lemma 1 of Kuelbs (1981) implies that

there is a g-compact convex symmetric set D C B such that
P(C,({Sn/va}) C D) =1

P({f"} € D? eventually) =

Here, of course, D° is as defined in (2.67-x). Therefore,

and for all § >0

Yn Ym

Now D g-compact implies that for all n > 0 there exists fi, - - -, fv g-continuous linear
functionals such that

(S" € D5> (Sm €D’ forall m= n) —now L.

q(x) = SuplsjsNIf}(x) I + 4"7
for all x € D". Hence

A erer) o))
Yn Yn Yn Yn

=o0(1) + P(sup,-sN ﬂ(§> > e/2>
Yn
=o(l) +YN, P( fi J) > e/2)

= 0(1)

by Kesten (1972), Lemma 4, page 728.
We now consider the general case. By the symmetric case

S, —Sx
q( ) _)prob. 0.
Yn

Therefore, for all p > lim sup.q(X,)/y. and ¢ > 0 we have

635) P(q(¥}-1 [Xi1(q(X;) < pyn) — X;1(q(X}) < pyn)]) > €yn)

S, — S»
5P<q( ” )>e>+2nP(||X||>py(n))—>0 as n— oo,
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Further, by Lemma 6.1-a we have
. 1
(6.36) lim sup.E (qz(y— Y1 [XiI(q (X)) = pyn) — XjI1(@(X}) = pyn)])) =< 18(2p)>.
Combining (6.35), (6.36) and standard arguments we thus have

q(X7-1 [X1(g(X)) < pyn) — XjI(q(X}) = pvn)])) -0
Yn

(6.37) lim.E (

Using Fubini’s Theorem and Jensen’s inequality (6.37) implies that

6%  lmE ( . (2?_1 [X1(g(X) = pys) — EXI(q(X) = pm])) o
Yn

Chebyshev’s inequality, (6.38), and

now give (2.67-vii).
To prove (2.67-viii) recall that (iii) implies there exists {c.} C B such that

(6.39) lim supon =M wpl

Yn
Hence, if A > M, for n sufficiently large we can find a sample point w = w, such that
Sn n) — Qn Sn n) — Cn
q<_(_a’__)___d_) < AB and q<_(‘o__)__.£_) < A‘
Yn Yn
Hence for n sufficiently large we have

q(Cn - dn) =< q(Sn(wn) - cn) + q(sn(w") - d") <A+ A&-
Yn Yn Yn

Thus
. q(S» — d») < lim éupnM'F A+ A, <2A + a;.

Yn Yn

lim sup

Since A > M was arbitrary we now have (viii).
To prove (ix), for each n > 0 we define the semi-norm A(x) = h,(x) = inf{¢ > 0:
x/t € D"}. Then h is equivalent to g. By (iv) there exists {c.} C B such that for all > 0

lim sup,.h(s"y_ c") =1 wpl

n

Hence by (viii) for all n > 0
S, — d»
Yn

lim sup,.h( ) =2+ A; wpl

Thus, for any A > 2 + A;

P(S" ) € AD” eventually) =1.

Yn
=)
Yn
is g-relatively compact with cluster set contained in (2 + As)D.
To prove (x) note that if « > M then (a) implies

Hence
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S.— S,
lim,.P(q( ” ) > a) =0.

Hence (vi) implies that for all n sufficiently large and p > lim sup.q(X,)/y» that

24a + 12p
A

Now fix A > 24a + 12p. Since lim,nP(q(X) > py.) = 0 the right hand side of (6.40) is now
less than 1 — 8 for some 8 > 0 provided 7 is sufficiently large. Applying (viii) we thus have

S, — nE(XI(q(X) =< py»))
Yn

(6.40)  P(q(S. — nEXI(q(X) =pvn))) =A) = + nP(q(X) > pYn).

lim sup,.q( ) =2M+ X wpl

where A > 24a +12p. Since a > M was arbitrary we thus obtain

S, — nE(Xq(X)
Yn

<
lim sup,.q( = ”7")) < 26M + 12.

The proof of (xi) follows from (vii) and (ix). Hence Lemma 2 is proved.

7. Some examples and final remarks. In Goodman, Kuelbs, and Zinn (1981)
necessary and sufficient conditions for the BLIL and CLIL (with classical normalizations)
were found for Hilbert space valued random variables. For example, if X takes values in a
separable Hilbert space H then X # 0,

(7.1) E(fX)) =0, E(f*X)) <o (f€ H*)
and
(7.2) E(|X|*/La|| X)) < o
are necessary and sufficient for
- (7.3) 0 <lim sup,.—-lLS—""--< o w.p.l.
2nL:n

It is easy to construct random variables X satisfying (7.1) and (7.2) such that E || X||?
= oo, S0 we assume X has these properties as well as being symmetric. Then (7.3) holds,
and X & DPA(Z) for any Gaussian law on H. To see this last claim, note that if
X € DPA(Z) then X symmetric implies there are normalizing constants {«,} and a
subsequence {n’} such that

LSw/ an) = L(Z).

However, then Z(f(S,,/a,)) — L(f(Z)) for all f € H*, and since Z is non-degenerate with
Ef?*(X) < oo for all f € H* we must have o}, =+n' . In fact,

, ’ 2
()20

for all f€ H*. Hence n’/a% — ¢ >0 (since Z is nondegenerate), and hence for n’ sufficiently
large
c
o> E(|Z]*) = 3 E(e? (2)) 2-2- Y71 E(e} (X)) = oo,

Thus we have a contradiction, so X & DPA(Z) for any Gaussian random variable Z with

values in H.
On the other hand, since X satisfies (7.1) and (7.2) we have (7.3), so X has LIL behavior.
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Applying the remark following Theorem 2 we thus have {d.} / and {n:} / o such that

e (5]

is stochastically bounded in H,
(7.5) E(1Z7: X1 X5 )| < do) 1) /di =40 1.
Further, (7.5), E|| X||*> = », and Ef*(X) < o for all f € H* implies that

a9 {(5))~ w0 e

That is, (7.5) and E || X ||* = o implies

ne

a0
and hence the classical central limit theorem on the line implies (7.6). In fact, (7.5) implies
the constants {dy} are such that dj ~Vny iff E | X||? < c.

The concept of a generalized domain of attraction has recently been considered in a
number of articles (see, for example, Hahn and Klass, 1980) and is as follows. We say a B-
valued random variable is in the generalized domain of attraction of a random variable Z
if there are shifts {8,} and linear transformations {7} such that

L(Tn(Sn — 82)) = L(Z).

Using the idea of a generalized domain of attraction and the method of proof in
Theorem 1, it is possible to prove an analogous result for generalized domains of attraction.
That is, it is easy to see that one could prove the following result.

THEOREM. Let X be symmetric and in the generalized domain of attraction of the
mean zero Gaussian random variable Z. Let K denote the unit ball of Hez . Then, there
exists a subsequence of integers {n.} and linear operators (T} such that if

T
T, = L n € (ng-1, nk],
v2Lk

then
P({T.(S»)}»K) =1
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