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RAMSEY’S THEOREM AND POISSON RANDOM MEASURES

By TimotHY C. BROWN AND JOSEPH KUPKA

Monash University

Prékopa’s theorem gives a qualitative sufficient condition for a completely
random point process to be Poisson. A generalization of this theorem is
presented. The proof is elementary and uses a combinatorial principle known
as Ramsey’s theorem.

1. Introduction. Itis well known that the Poisson and exponential distributions may
be derived from purely qualitative assumptions, and they perhaps owe their ubiquity to
the fact that these assumptions appear eminently reasonable in many applications. In this
note we shall show that the Poisson distribution arises, in the context of integer-valued
completely random measures, as a consequence of a simple combinatorial condition upon
the random measure. The first theorem of this sort was due to Prékopa [9, Theorem 1,
page 155]. It requires a more restrictive combinatorial condition than our own, and it also
makes use of a special assumption about the underlying probability measure space.
Kallenberg [4, Corollary 7.4, page 48] and Jagers [3, Theorem 4, page 215] replace this
special assumption with topological conditions upon the phase space. As Ripley [10, page
983] points out, it is inconvenient to have to satisfy such topological conditions in certain
problems of stochastic geometry, and they happily turn out to be unnecessary. Previous
authors have also attached great importance to singleton subsets of the phase space. In
the event these need play no part in the derivation of the Poisson distribution.

Our proof will be completely elementary. We shall use only the basic convergence
theorems of measure theory together with a simple combinatorial principle known as
Ramsey’s theorem (see Section 2). The general theory spawned by this result, which is
called Ramsey theory, has already been used extensively in the study of Banach spaces [8]
and is beginning to make its influence felt in general measure theory [6]. We anticipate
that it will soon find other applications in probability.

Sections 3 and 4 comprise modifications of standard arguments in random measure
theory. Since these arguments are brief, we have presented them in full. This serves to
make the exposition self-contained, and it also clarifies how Ramsey’s theorem fits
naturally into the overall development. The Poisson distribution is obtained in Section 5
by a technique which is new even in the topological setting, and Section 6 briefly explores
the ties between our combinatorial condition and the “nonatomicity” of the random
measure.

Before we turn to the main theorem, let us review the definition of a random measure.
Let (R, &% P) be a probability measure space, let H be a nonempty set, and let 2 be a §-
ring of subsets of H (that is, 2 is a ring which is closed under countable intersections).
When H = R* for some k = 1, 2, - - -, the bounded Borel sets constitute a natural choice
for 2. A random measure defined on (2, % P) with phase space (H, 9) is a function ®
which assigns to each point w € £ a nonnegative, countably additive measure ®(-)(w) on
2 in such a way that, for every set D € 2, the function ®(D) is a random variable (that is,
®(D) is #measurable). Following Kingman [5, page 60], we declare ® to be completely
random if, for every choice of pairwise disjoint sets D, D;, --., D, € 9, the random
variables @(D;), ®(D:), - .-, ®(D,) are mutually independent. (Useful minimal conditions
for the existence of a completely random measure are provided by [7, Theroem 13.3, page
16].) We shall say that a set D € 9 is small (with respect to ®) if ®(D) < 1, and if
®(D) = 0 a.s. This definition is mainly intended for the case where ® is integer-valued,
that is, where ®(D)(w) is an integer for all w € Q, and for all D € 2.
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We shall now state the principal result of this paper.

1.1. THEOREM. Let ® be an integer-valued completely random measure defined on
(2, &% P) with phase space (H, 9). Assume that:

(1.2) For every set D € 2, there exists a countable family # C 9 such that D C U %,
and such that, for all x € D, the set N{B € #:x € B} is small.

Then ®(D) has a Poisson distribution for all D € 9.

The traditional assumption which has been used in place of (1.2) is that singleton sets
belong to 2 and are small. This assumption implies condition (1.2) in all known special
cases of Theorem 1.1. For example, when H is a metric space, one may obtain (1.2) with
the mild additional requirement that every set D € 2 can be countably partitioned by sets
in 9 of arbitrarily small diameter. In particular, such a partitioning is possible in a
separable metric space, provided only, for example, that open sets are locally measurable
(that is, U N D € 2 for every set D € 2, and for every open set U).

Although the phase space H is undeniably important in applications, it will serve mainly
as a “security blanket” in the present discussion. The following condition is equivalent to
(1.2), it makes sense when (H, 2) is replaced by an abstract §-ring, and our proof of
Theorem 1.1 carries over to this abstract setting.

(1.3) For every set D € 9, there exists a countable field # C 9 of subsets of D such
that the intersection of every maximal filter in 4 is small.

When H is present, the wording in (1.2) is clearly to be preferred because of its greater
simplicity.

We shall divide up the proof of Theorem 1.1 into labelled pieces. It is possible to read
Section 5 prior to Sections 2, 3, and 4.

2. The fundamental sequence of partitions and Ramsey’s theorem. The first
step is to convert assumption (1.2) into a more workable condition. Write # = {B,}n-1,
and, forn =1, 2, ..., let &, be the partition of D which is determined by B;, :--, B,.
(Thus, 2, = {D N B, D N B5}, and so on.) Then the following facts are clear.

(2.1) For all n, the partition £,., refines the partition %,.

(2.2) If € C 2 is countable, and if ¥ N &, # ¢ for infinitely many n, then N¥ is
small.

Any sequence of finite partitions 2, C 2 of a set D € 2 which satisfies conditions (2.1)
and (2.2) will be called a fundamental sequence of partitions for D.

Condition (2.2) delineates a “local” phenomenon. In order to derive “global” conclusions
from it, we shall invoke the following combinatorial result. It is a special case of Ramsey’s
theorem, and its short, simple proof is to be found at the top of page 383 of [8].

2.3. THEOREM. Let each pair {i, j} of distinct positive integers be colored either
“red” or “blue” in an arbitrary fashion. Then there exists a strictly increasing sequence
{n;}Z: of positive integers such that all of the pairs from this sequence have the same
color.

Consider now the following “local” fact. If {D.}-; is a decreasing sequence of sets in
2 whose intersection D is small, then we have ®(D,) | ®(D) = 1 by the countable
additivity of ®@. Since the ®(D,) are integer-valued, it follows, for each point w € Q, that
®(D,)(w) = 1 for all n sufficiently large. We shall now use Theorem 2.3 to convert this
observation into the following “global” fact about a fundamental sequence {%.}5-1 of
partitions for a set D € 2.
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(2.4) For each point w € §, there is an integer n, such that, for every integer
n = n,, and for every set C € %,, we have ®(C)(w) < 1.

To establish (2.4), we suppose to the contrary that each partition £, contains a set C, for
which ®(C,,)(w) > 1. Let a pair {i, j} of distinct positive integers be colored “red” if C; N
C; = ¢, and let it be colored “blue” otherwise. By (2.1), we have C; D C; for any “blue” pair
{i, 7} such that i < j. Let {n;}; be a strictly increasing sequence all of whose pairs have
the same color. Suppose that the color is “red.” Then the sets Cy, are pairwise disjoint, and
this contradicts the fact that ®(D)(w) < . Suppose that the color is “blue.” Then the C,,
form a decreasing subsequence of the C, whose intersection C is small by (2.2). It follows
that ®(C,)(w) | ®(C)(w) = 1, and this contradicts the fact that ®(C,,)(w) = 2 for all i.
Therefore (2.4) is established.
An identical argument will also yield the following fact.

(2.5) Let » be a finite, countably additive measure on 2 such that every small set
has »-measure zero. Then for every number ¢ > 0, there is an integer n. such
that, for every integer n = n,, and for every set C € %,, we have »(C) <.

We shall shortly apply this fact to the measure »(D) = E®(D).

3. The parameters u(D) of the family ®(D). If the random variable ®(D) were
Poisson, then its single parameter u(D) would be determined by the identity

(3.1) w(D) = —In P(®(D) = 0).

For the moment we shall content ourselves with the observation that the right hand side
of (3.1) is well defined for every set D € 2. If it were not, then we would have ®(D) =1 a.s.
for at least one set D € 2. Let { #.}7-1 be a fundamental sequence of partitions for D.
Then the identity 0 = P(®(D) = 0) = [[ces, P(®(C) = 0) shows that ®(C;) = 1 a.s. for at
least one set C; € #,. We repeat this argument with C; in place of D and continue by
induction to produce a decreasing sequence of sets C, € £, such that ®(C,) =1 a.s. for all
n=1,2, .... By (2.2), the set C = N;-; C, is small, and therefore ®(C) = 0 a.s. But it
follows from the fact that ®(C,) | ®(C) that ®(C) =1 a.s. This is a contradiction.

A glance at the complete randomness of ® now suffices to complete the proof of the
following assertion.

(3.2) The set function p of (3.1) is well defined and constitutes a nonnegative, finitely
additive measure on 2.

In fact u is countably additive, as is easily checked, but we shall not make use of this fact.

4. The finiteness of ».(D) = E®(D). We shall wish to apply (2.5) to the set function
» defined, for all D € 9, by #»(D) = E®(D). It is clear that » is countably additive and
that » vanishes on small sets, and so it remains to check that »(D) < « for all D € 2. To
this end, let {£,} -1 be a fundamental sequence of partitions for D, and, forn=1,2, - --,
define f, = Yce», £ (®(C) = 1), where S F denotes the indicator function of the set F. Then
it is clear from (2.4) that f, 1 ®(D), and so it follows from the monotone convergence
theorem that Ef, 1 E®(D), or, in other words:

(4.1) Ycex, P(@(C) = 1) 1 m(D).

By elementary calculus, we have P(®(C) = 1) =< u(C), and so (3.2) and (4.1) combine to
yield

(4.2) m(D) = u(D) < o,

as desired.

The finiteness of » has one further consequence which we now note. For n = 1, 2,
.-+, define g, = Y ce», F(®(C) = 2) < ®(D). Then it is clear from (2.4) that g, — 0, and so
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it follows from the dominated convergence theorem that Eg, — 0, or, in other words:
(4.3) Yceo, P(@(C) =2) — 0.

This observation completes the preparation for our central argument.

5. Derivation of the Poisson distribution. If ®(D) were Poisson, then its param-
eter would (also) be given by

_P@®WD)=1) _
T P@D)=0)

In view of (3.2), the complete randomness of ® implies easily that » is finitely additive, and
we shall base an inductive argument upon the finite additivity of @, of u, and of ».
Thus, forn =0, 1, 2, - .., and for each set D € 2, define

(5.2) an(D) = e*PP(®(D) = n) — »(D)*/n!.

It will be sufficient to show that a, = 0 for all n, since the identity 1 = Y50 P(®(D) = n)
= ¢ De"®) yeyeals at once that ®(D) is Poisson with parameter u(D) = »(D). Clearly we
have ay = a; = 0, and so, by induction, we may assume that n > 1, and that ap = a; = - -
« = a-1 = 0. Let us first verify that a, is finitely additive. To this end, let D, E € 2 be
disjoint. From the binomial theorem, and from the standard convolution formula for the
distribution of the sum of independent random variables, we obtain the identity

a(DU E) = e*Pet®) T2 o P(®(D) = i)P(@®(E) = n — i)

- % S (’;)v(D)"v(E y

(5.1) v(D) e*Dp(@(D) = 1).

and this in turn is = a,(D) + a.(E) because, by the induction assumption, the terms for
1=<i=<n —1cancel. Now let any set D € 2 be fixed, and let ¢ > 0 be arbitrary. By (4.2),
(2.5), and (4.3), there exists a (finite) partition 2 C 2 of D such that »(C) < ¢ for each set
C € 2, and also such that Yce » P(®(C) = 2) < &. Since P(®(C) = 1) = E®(C) = »(C), and
since P(®(C) = n) = P(®(C) = 2), it follows easily from (5.1) and (5.2) that

|an(D) | = Tcer | an(C)| < e(e"® + m(D)e™ ™).

It is now clear from the arbitrary choice of ¢ that a.(D) = 0, and so the proof of Theorem
1.1 is complete.

6. The general case. We conclude this note with a brief discussion of how close an
arbitrary completely random measure ® comes to satisfying the hypotheses of our main
theorem. The key point, due to Kingman [5, page 67], is to associate with ® a canonical
countably additive measure A defined, for all D € 2, by

AD) = —In E(e™®®).

(The finite additivity of A is immediate from the complete randomness of @, while the fact
that D, 1 D implies A(D,) 1 A(D) follows from the dominated convergence theorem, and
from the continuity of In.) We may think of A as a kind of “control measure” for @, at least
in the sense of the following obvious relations.

(6.1) AD)=0 ifandonlyif ®D) =0 as;
A(D) = if and only if ®(D) = a.s.

The standard partition of a set D € 2 of finite A-measure into at most countably many
A-atoms together with a purely nonatomic set yields a corresponding decomposition of
®(D). If A € 2 is a A-atom, then it is immediate from (6.1) and from the definition of an
atom [2, page 168] that, for every subset D € 2 of A, we have either that ®(D) = 0 a.s. or
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that ®(D) = ®(4) a.s. Thus the single random variable X, = ®(A) completely describes
the behavior of ® on A, and the assumption of complete randomness imposes no restrictions
upon the distribution of X4. (But let it be emphasized that the X4’s corresponding to
distinct A-atoms are mutually independent.) It is precisely for a purely nonatomic set
G € 2 that we come close to the circumstances required by Theorem 1.1, provided that
® is integer-valued on the subsets of G.

6.2. THEOREM. Let ® be an integer-valued completely random measure (as in Theo-
rem 1.1), let A be the canonical measure associated with ®, and let G € 9 contain no \-
atoms. If every A-null subset of G is small, then ®(D) is Poisson for every subset D € 9
of G.

Note. While it is convenient to state this theorem in terms of A, the first relation in
(6.1) could be used to reformulate it in terms of ® alone.

Proor. It is clear from the well known special case of Liapounoff’s theorem [2,
Exercise (2), page 174] that there exists a countable family # C 2 such that G C U, and
such that, for all x € G, the set N {B € #:x € B} is A-null. (Indeed, this is perhaps most
easily seen by constructing a sequence of finite partitions of G which satisfies (2.1) and
(2.2) with “A-null” in place of “small.”’) Since A-null implies small in this case, the result
follows.

6.3. REMARK. In [5, page 62] it seems to be assumed that A-atoms are singletons. This
assumption is of course valid when A is a Radon measure, but it is not valid in general [1,
Example 4.6, page 46]. As a consequence, Theorem 1 on page 63 of [5] could possibly
require some slight modification.
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