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SOJOURNS OF STATIONARY PROCESSES IN RARE SETS'

By SiMEON M. BERMAN

New York University

Let X(¢), t = 0, be a stationary process assuming values in a measure
space B. The family of measurable subsets A,, « > 0 is called “rare” if P(X(0)
€ A,) —» 0 for u > ». Put L(u) = mes{s: 0 < s < ¢, X(s) € A.}. Under
specified conditions it is shown that there exists a function v = v(¥) and a
nonincreasing function —IV(x) such that P(v(u)L.(u) > x)/E(v(u)L:(u)) —
—I(x), x > 0, for u — o« and fixed ¢ > 0. If u = u(¢) varies appropriately with
t, then, under suitable conditions, the random variable v(u)L.(z) has, for
t — oo, a limiting distribution of the form of a compound Poisson distribution.
The results are applied to Markov processes and Gaussian processes.

1. Introduction and summary. Let X(¢), ¢ = 0, be a separable, measurable station-
ary stochastic process assuming values in a measure space B. The particular nature of the
space is not of significance; however, for definiteness, we can take B as the real line or a
finite dimensional Euclidian space. Let {A,, u > 0} be a family of measurable subsets of B.
The family is called rare if

(1.1) lim, ,.P(X(0) € A,) = 0.

We define the sojourn time of X(s),0 <s=<+¢in A, as

¢
(1.2) Li(uw) = j Iixea ds,
)

where I} jis the indicator function.
In this paper we derive two limit theorems for L.(z). The first is the local sojourn
theorem (Theorem 2.1). By stationarity and Fubini’s theorem, it is easily seen that

(1.3) EL(u) = tP(X(0) € Ay);

hence EL,(u) — 0 for u — « if {A,} is rare. We will show that, under general conditions,
there is a function v = v(u) tending to o with u such that

P(v - L(u) > x)

(14) B L)

converges to a certain limit for each x > 0 and ¢ > 0, and that the limit does not depend
ont.

Our second major result, which is partially based on the first, is the global sojourn
theorem (Theorem 4.1). We define u = u(¢) as a function of ¢ such that the denominator
in (1.4), which, by (1.3), is equal to tvP(X(0) € A,), converges to 1. Then we prove, under
certain additional mixing conditions on the process, that the numerator in (1.4) converges
to a limit, that is, the random variable v - L,(u) has a limiting distribution. The Laplace-
Stieltjes transform is identified, and is shown to represent an infinitely divisible distribution
whose Lévy spectral measure is derived from the local sojourn limit.

Received March 1982.

! This paper represents results obtained at the Courant Institute of Mathematical Sciences, New
York University, under the sponsorship of the National Science Foundation, Grant NSF-MCS-79-
02020.

AMS 1980 subject classification. Primary 60G10; secondary 60G15, 60J60.

Key words and phrases. Sojourn, stationary process, limit distribution, Markov process, Gaussian
process.

847

%J

v

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁv
The Annals of Probability. STOR

®

Www.jstor.org
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These results are generalizations of earlier ones about the sojourns of a stationary
process above high levels. General processes were considered in [3], and more specific ones
in [2], [4], [5] and [6]. The theory had been closely tied to that of the extreme values of
independent random variables; and there B was the real line and A, = (i, ). In this paper
we will show that the theory of sojourns in rare sets is quite independent of the particular
nature of the set. For example, {4,} may represent a nested family of closed sets shrinking
to a fixed point. In this case the sojourns are identified in radio engineering as “fades.”

The sojourns in rare sets are also related to the concept of local time. Indeed, if A, is
defined as a neighborhood of a point x, and Nu-o A, = {x}, then the local time of X at x can
often be defined as the limit of L,(z)/mes(A.) for u — . It is known that the local time
does not usually exist when the dimensionality of the state space is large relative to that
of the time parameter set. For example, it does not exist for Brownian motion in several
dimensions. However, our results imply a distributional definition of local time even when
the latter does not exist in the ordinary sense. Here the normalization of L.(x) is not a
division by mes(4,) but by another function of u.

The conditions for the validity of the local sojourn theorem are slightly more general
than those of [3] in the case considered there. However, the conditions for the global
theorem are not strictly comparable to those in the earlier version but are certainly simpler
to use. As an application we show that they are convenient to check for a certain class of
Markov processes. We give, as an example, the verification of the conditions for an M-
dimensional Ornstein-Uhlenbeck process, for M = 3. Then we show that our general results
can be applied to examples of rare sets of stationary Gaussian processes which are not
necessarily Markovian.

The conditions on the process X(¢) for the global sojourn limit in [3] consisted of local
and global mixing conditions stated in a relatively complex form. The present conditions,
stated in Sections 3 and 4 below, are relatively simple, and are analogous to the correspond-
ing conditions C(ur) and C’(ur) of Leadbetter, Lindgren and Rootzen [7]. The main
difference between our global mixing condition and their condition C(ur) is that ours is
stated in terms of ratios of probabilities and theirs is stated in terms of differences.

In the appendix we furnish a correction to the statement of the local mixing condition
in [3], Lemma 17.2. The corrected version is based on the current more general approach
to the global theorem.

2. The local sojourn limit theorem. Our first result is a generalization of the
sojourn limit theorem in [3], Theorem 3.1. Here we introduce the adjective “local” to
signify that the time interval is fixed.

THEOREM 2.1. Suppose that there is a continuous nonnegative function v = v(u) such
that

(2.1) lim,_.U(u) = o,
and
(2.2) lim,.v(u)P(X(0) € A,) =0
and a stochastic process Z(t), t = 0, in B and a measurable subset A of B such that
(2.3) lim, ..P(X(t/v) € A,, t ET|X(0) €A,) =P(Z(t) EALtET),
for all finite subsets T of (0, »). Assume also that
1

(2.4) limg,olim sup, e U J P(X(s) € A,| X(0) € A,) ds = 0.

d/v
Define

(2.5) I(x) = P{ J Iizea) dt > x} , x=0;
’ 0
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then

J P - L(uw) > y) dy

tv(u) P(X(0) € A,)

(2.6) lim,, e = I'(x)

for each x > 0 in the continuity set of T, for each 0 <t < 1.

Proor. The proof is practically the same as that of [3], Theorem 3.1, where X(¢) was
taken to be real valued, and A, = (&, »). The only modification requiring a comment is the
demonstration of the convergence of the conditional moments of the random variable in
[3], formula (3.15), whose form here is

d
v(u) + Lajow(u) = J Iixs/vean ds.

0
The conditional moments given X(0) € A, are now computed in the same way as before:

E[(v-Lap)*| X(0) € Au]

d d N
=f j PX (si/v) €A, i=1,.---, k| X(0)EA,) ds; -+ ds
0 0

d d
—)J ---fP(Z(si)GA,i=1,---,k)dsl---dsk,
0 0

where the latter limit relation follows from (2.3).
We also have the following version of [3], Corollary 3.1:
P(vL:(u) > x)

2.7) llmu.»mm‘—‘ -I (x), a.e. x>0.

Throughout this work we will assume that
(2.8) J Iizineay dt < o, almost surely;
0

otherwise, we would have to make obvious but cumbersome modifications.

In applications, condition (2.3) can often be verified by using the construction in the
earlier version, [3], Theorem 3.1. Suppose, for each u, that there is a continuous function
£. mapping B into B and which maps A, one to one onto A. Then the condition (2.3) may
be expressed as

lim, .« P(g. ° X(¢t/v) EA,tET|g. > X(0) EA) =P(Z(t) EA, tET).

This condition certainly holds if the conditional finite dimensional distributions of the
process g, ° X(t/v), given g, ° X(0) € A, converge to those of the process Z(¢), and A is a
continuity set of the distribution of Z(¢) for each ¢.

REMARK 1. The convergence of the conditional finite dimensional distributions may,
in applications, be demonstrated by proving the convergence of the conditional joint
densities. For arbitrary 0 < ¢; < ... < ¢, and a point (xo, Xi, - - -, x3), where xo € A and
%EB,i=1,-.., ket fi(xo, x1, - - -, xz; &) be the joint density of (g, ° X(0), g, ° X(t1/v),
“++, 8u ° X(t:/v)), restricted to the set A X B*; then f,/P(g, > X(0) € A) is a density
function on the latter set. If the function converges almost everywhere on this set to a
density function, then, by Scheffe’s Theorem [8], the corresponding distribution function
converges.
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REMARK 2. The function g,(x) = w(u) - (x — u) was used in [3] to map A, = (u, )
onto A = (0, «),

REMARK 3. We comment on the condition v(z) — o, and its relation to (2.4). A much
simpler version of Theorem 2.1 is valid for the case where v is taken to be identically equal
to 1. Indeed, in this case the theorem is true without the requirement (2.4). Thus, the
reader might question the role of the condition v — . The answer is that the latter
describes the fact that the events X(¢) € A, are infrequent for large u: For every ¢ > 0,

lim,..P(X(t) € A.| X(0) € A,) = 0.

If v were bounded, then the condition (2.3) would allow P(X(t) € A.|X(0) € A.) to be
bounded away from 0. The infrequency of A, is used to get the particular limiting
distribution of L, for ¢t — oo in our application to the global sojourn limit theorem. Indeed,
it is an essential element of the proof of the compound Poisson limit theorem in [2] upon
which Theorem 4.1 below is based.

REMARK 4. In[3] we used the earlier version of Theorem 2.1 to obtain a general lower
bound on P(sup(X(s) : 0 < s < t) > u) for large u and fixed ¢. In the same way we can now
obtain a bound for P(X(s) € A, for some 0 < s < ¢t). According to the same calculations in
[3], Section 11, we have

P(X(s) € A,,forsome 0 =s=<1t) -
tvP(X(0) € A,) -

lim inf, =I"(0).

3. An extension of the local sojourn limit theorem under mixing. We now
introduce a mixing condition on the events {X(¢) € A,} for time points ¢ which are
mutually separated by sufficiently large intervals. This condition provides the asymptotic
independence which is needed for the derivation of our limit theorem.

Suppose that the function P(X(0) € A,) is continuous for all sufficiently large u; then
(2.2) implies that the equation

(3.1) t-v(w)PX0)eEA,)=1

has, for all sufficiently large ¢, a solution u. Let u = u(t) stand for the largest solution. In
what follows u is understood to be a function of ¢ even though the argument is suppressed;
and v(z) and P(X(0) € A,) are corresponding functions of ¢.

For any finite subset S, we put #(S) = cardinality of S; and for any pair of subsets S;
and S, we put d(S;, Sz) = inf(| sy — s2|; s1 € Si, s2 € S2). Consider the mixing condition:
For all positive integers m and N,

3.2)
P(X(s) € Au, sE S1; X(s) EAu, SE S)

PX(s)€A,,s€ SI)PX(s)E A,,sE S:)

3 t
Ko o8UP (s, <N S0 <N,(5: 8=

—1,=0.

The condition above implies an extension from pairs of sets S; and S to any finite
collection: For all positive integers m, N and k,

(33)
P(Nk1 {X(s) EAu, sES))

E P(X(s) E A, sES)) 1

=0.

1 t
lunz—»wsupmax(#(s,),i=1,- <+ R)=NA(S,S )2 i

In preparation for the proof of the main result of this section, we present some
elementary preliminary results.

LEmMMA 3.1. Forevery x>0,t>0,
(3.4) P(L,(u) > x,X(t) € A,) = P(L:(u) > x, X(0) € A,).
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Proor. The proof of [3], Theorem 3.1, was based on the identity
00 t
(3.5) f P(L:(u) > y) dy = f P(Ls(u) > x, X(s) € A,) ds..
x 0

The argument preceding the statement of that theorem shows that X(s) on the right hand
side of (3.5) can be replaced by X(0); hence,

f P(Ly(u) > x, X(s) € A,) ds = J P(Ls(u) > x, X(0) € A,) ds,
o o

and the claim (3.4) follows by differentiation.

LEMMA 3.2. Forevery0<t; <t

ty to—t)
J PX(s) € Au| X(0) € Ay) ds = f PX(s) € A.| X(;) € A,) ds.
¢ 0

1

ProoF. Since X(0) and X(s) have the same marginal distributions, we have
P(X(s) € A.| X(0) € A,) = P(X(0) € A, | X(s) € Au),
and the latter, by stationarity, is equal to
PX(t—s) €A | X(t) € Au).

Thus, by integration,

sz(X(s) € A.|X(0) € A,) ds =J PX(t, - s) € Au| X(&:) € Au) ds,

1 1

and the latter, by a change of variable, is equal to

f P(X(s) € Au| X(%) € Ay) ds.
0

THEOREM 3.1. Under the conditions of Theorem 2.1 and the condition (3.2), if J; is
an interval of unit length, i =1, - .-, k, and we define

LJ,- =J I[X(s)EAu] ds,
T,

v

then, for everyk =1 and m = 1,

limtqmsupd(J“J/)Zt/m

coo | PwLy>yi=1, .o,k dy - d
(3.6) f L 7, > Y lyi «+ - dys

— 11X . =
VP (X(0) € AJ) [l T | =0

for all x; in the continuity set of I, i =1, .-, k.

Proor. We adapt the relevant part of the argument in [3], Section 18. Put

L: = Lff,ﬂ[O,s] .
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Then, by an extension of the reasoning behind (3.5), we have

f f PLy, > yiyi=1, -+, k) dys -+ d
3.7) o *
=ka f P(vLil>xi,X(si)EAu,i=l,---,k)dsk---dsl,
i 7

for every set of disjoint intervals oJi, - - -, Jx.

Next we show that the sojourns L may be clipped to a small interval of length d/v with
right endpoint s;, where d is some fixed but large number. Indeed, by Markov’s inequality,
for every ¢ >0,

v* f cee J P(vLi.l_d/., >¢ forsome 1=i=<k,
gy Ik

X(s;) €A, forall 1=i=<k)ds,---ds

k
U .
= ? f cee f Ztl'z=1 E{U-L;l—d/v ij=1 I[X(s,)EA,,]} dsk oo dsl,
Jy )

which, by Fubini’s theorem, is equal to

k
v—f f Zfilvf P(X(s) € Ay, X(s)) € Ay,
(38) £ Jy Iy J.N[0,s,—d/v]

j=1,.--,k)dsds, --- ds.
By (3.3), if d(«J;, J;) = t/m for all i # j, then
P(X(s) € Au, X(s)) € Au,j =1, -+ -, k) ~ P*(X(0) € A)P(X(s) € A, | X(s;) € Au)

for t — o uniformly for s € J;, for i =1, - . -, k. Hence, the expression (3.8) is approximately
equal to

e v-P(X(0) € A)E Y v J J P(X(s) € A, | X(s:) € A) ds ds;,
J, J JN[0,s—d/v]

which, by stationarity, is at most equal to

1-d/v
ke '[v-P(X(0) € Au)]kvj P(X(s) € A, | X(1) € A,) ds.

0

By Lemma 3.2, the latter is equal to
1

ke7'[v-P(X(0) € A))]* vj P(X(s) € A.| X(0) € A,) ds.

d/v

By condition (2.4) this expression is of smaller order of magnitude than ke [v-P(X(0) €
A,)]* for t > o and then d — . Therefore when the members of (3.7) are divided by
[v-P(X(0) € A,)]% the right hand member is approximately equal to

jj P- (L, — Li—ap) > %, X(s) € Ay, i =1, .-, k) dsy. - -+ ds1
(3.9) /I

P*(X(0) € A)

because ¢ > 0 is arbitrary.
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In order to complete the proof we will show that the expression (3.9) converges to
[1%: T'(x;) under the uniform limiting operation indicated in (3.6). First we note that the
expression (3.9) may be written as the product of the factor

PX(si) €E Au,i=1, -+, k)
P*X(0) € A))

which, by (3.3), converges to 1 for ¢ — o, and the factor

J’ oo J’ Plo-(Li — Li—ap) > x,i=1, -+, k|
(3.10) % i
X(S,‘) EA.,, = 1, ey k} dsp «+- dsi.
Next we will show that the integrand in (8.10) converges to [[%; I'(x;) for £ — o and then
d — o, For this purpose it suffices to show that the random variables v- (L — Li, —d/v)s
i=1, ... kare conditionally, given X(s;) € A,,i =1, -- -, k, asymptotically independent,
so that the multiple integral (3.10) factors into a product of single integrals to which

Condition (3.3) and Theorem 2.1 are applied.
For arbitrary positive integers pi, - - -, pz let us estimate

(3.11) E{H{:l (U’L.il - L;l—d/u)pl |X(S,) € Au’ i= 1’ M) k}'

Expand each factor in the product as a p;-fold multiple integral:

(0L, = Liyap) = f o J ' Iixacaper oy dou -+ do,

s,—d/v s,—d/v

and then write the expected value of the product over i = 1, - - -, k of these integrals as a
multiple integral of

PX(ow) EAu,h=1, -, pi,i=1, .-, k| X(s)E Au,i=1, ---, k).
By (3.3) this is asymptotically equal to

2L P(X(oin) EAu, h=1, -+, p:i| X(s:) € Au).
Integrating this over the intervals [s; — d/v, s;] we obtain the product of moments
[I%1 E[(v-Li, — L5 —ap)” | X (s:) € A,],
which, by (3.4), is equal to
b1 E[(v-Li — L —ap)™| X(s: — d/v) € A,],

which, by stationarity and the moment computation in the proof of Theorem 2.1,

converges, for t — o, to
d p,
sz=1 E(J Iiziea dt) .
0

Therefore, the random variablesv-L% — L, 4/, in (3.10) are conditionally asymptotically
independent, and so, by the comments following (3.10), the latter integral converges to

%, I'(x;). Here the application of the moment convergence theorem is justified by the
net convergence theory given in [3].

4. The global sojourn limit theorem. In this section we prove our main result,
namely, that the random variable v(u)-L.(u) has, for ¢t — o, a limiting distribution of an
explicit form. The proof follows the plan of the corresponding proof in [3], Sections 16-18.
The random variable vL, is represented as the sum of nonnegative random variables from
a stationary array. Suppose for simplicity as in [3] that ¢ assumes only positive integer
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values n. (The general case follows by a simple extension). Put

(4'1) Xn,j = U‘(Lj(u) - Lf—l(u))’ .] = 1’ e,y
then
(4.2) vL(u) = ¥ 1 Xn ).

For the convenience of the reader, we quote the “compound Poisson limit theorem” for
stationary sums. The following four assumptions are made:

4.I There is a nonincreasing function H(x) such that

(4.3) lim,_,..H(x) = 0, J x dH(x) > —oo,
0

(4.4) lim,_..n J x dP(X,1>x) = f x dH(x)
(1]

0
at every continuity point y of the limiting function; furthermore, the relation above also
holds for y = co:

00

(4.5) lim, ,onEX,; = — J x dH(x).

0

4.II. The “local mixing” condition holds:

(4.6) limg_, lim sup,l_m[k lei<js[n/k] EXn,an,j] =0.

4.II1. The following “global mixing” condition holds for the k-dimensional joint distribu-
tions for each fixed £ = 2, and each ¢, 0 < g < 1:

hmn-—msul)lst <o <je=n,minin—jn, 1<h<k)>qn

4.7) P(X,,, > x1, +++, Xnj, > X0)

- — 0’
P(X,j, > x1) +++ P(X,,j, > xz)

for every k-tuple of x’s such that H(x,) > 0 and x; is a point of continuity of H, i = 1,
oo k.

4.IV. The following global mixing condition holds for the joint moments of order 1, for
eachk=2,eachh,1<h<k,andeachq,0<g<1:

EXnj, -+ Xnjy

-1
(EX",J] tee X”,J'h—j)E(X"»J'}. e X",jk)

=0.

(4.8)  limywSUPi<jc...<pmn jimjii>gn

The following is the result of [2]:

THEOREM 4.A. Under Assumptions 4.1 through 4.IV above, the distribution of
¥ 7_1 X, ; converges, for n — « to the distribution with the Laplace-Stieltjes transform,

(4.9) Q(s) = exp [f 1—-e*) dH(x)].
0

Now we introduce a new local mixing condition for the stationary process X. The index
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u is again assumed to be related to ¢ through the equation (3.1). For every é > 0,

1 f‘/k P(X(0) € Ay, X(s) € Ad)
8

(4.10) lim—,..lim sup;_,« 7 PAX(0) € Ay

ds=0.

Our main result is:

THEOREM 4.1. If X(t), t = 0, satisfies the conditions of Theorem 2.1, and also (3.2)
and (4.10), then v-L,(u) has, for t — o, a limiting distribution with the Laplace-Stieltjes
transform (4.9) with H(x) = — I''(x).

Proor. The outline of the proof is similar to that in [3]. We show that the assumptions
of the theorem imply that random variables X,,, in (4.1) satisfy the four conditions of
Theorem 4.A.

The conditions of Theorem 2.1 imply that the array {X, } satisfies Assumption I of
Theorem 4.A. The proof is exactly the same as that of [3], Lemma 17.1.

Theorem 3.1 implies that the array satisfies (4.7); indeed, this follows from the multi-
variate version of [3], Lemma 2.1. Therefore, the validity of Assumption 4.III for the array
is a consequence of Theorem 2.1 and the mixing condition (3.2).

The mixing condition (3.2) also implies that the array satisfies the condition of
Assumption 4.IV. Indeed,

1 i
EX,i +++ Xoi = ka f PX(s) € Au,i=1, -+, k) ds; - dsy,
i—1 -1

and so the asymptotic factorization in (3.2) implies the corresponding factorization (4.8).

We have shown that the array satisfies the conditions of Assumptions 4.1, 4.III and
4.IV. It remains to be shown that Assumption 4.II holds. Since the local mixing condition
(4.10) is fundamentally different from the corresponding one in [3], we will give the full
proof. (Comments about the earlier condition are given in Section 9.)

The condition (4.10) does not imply that the random variables X,, j satisfy 4.1I; however,
it implies that a suitably modified version of these random variables satisfies 4.II. Then we
show that Theorem 4.A holds for modified array, and, finally that the distribution of the
sum of the modified array is close to that of the sum of the original array.

For arbitrary 8, 0 < 8 < 1, we modify the random variable X, ; in (4.1) by removing a
subinterval of length § from the right end of the interval [j — 1, j], and define

X;,,j = U-(Lj_5 - Lj_l).
It follows from (3.1) that
(4.11) E|Y 1 Xn— XY <1X | = vtdP(X(0) € A,) = 6.

If (4.10) is assumed, then (4.6) holds for the array {X7,,}. Indeed, the stationarity of the
array implies

k Zgz/jl,#,‘ EX, . X,;=n Z&'Z’” EX, . X",

where the latter, by Fubini’s theorem, is
1-8 (j—8
nv? Y [ f f P(X(s) € A,, X(s') € A,) ds ds’,
0 -1
which is at most equal to

1-8 ([n/k]
nv? J’ f P(X(s) € A,, X(s') € Ay) ds ds'.
0 1
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By stationarity, this is equal to
1-8 pn/k)
nv? f f PX(s—s)e A,, X(0) e A,) dsds’
0 1
which, by a change of variable of integration, becomes

1-8  A[n/kl—¢
nv? J f P(X(s) € A., X(0) € A,) ds ds'.
0 1-¢

The latter is at most equal to

n/k
anJ P(X(s) € A, X(0) € A,) ds,
8

which, by the identification of n as ¢ and the relation (3.1), is equal to the expression under
the limit sign in (4.10). Thus we have shown that the array { X7, ;} satisfies (4.6).

Now the conditions on X assumed in our Theorem imply not only the validity of
Assumptions 4.1, 4.I11, and 4.1V for the array {X, ;}, but also their validity for the array
{X.;}. The only modification is that —I''(x) is replaced by —(1 — §)I"’(x). These assertions
can be verified by checking the proofs given above for the array (X, }. In order to
complete the proof of the theorem, we note that we have just demonstrated that the array
{X.;} also satisfies the condition of 4.II, for every § > 0. Therefore, by Theorem 4.A,
3 X7, has a limiting distribution with the transform

Q(s) = exp{—(l =9 J (1—e™) dI"(x)}.
0

Furthermore, by (4.11), the L;-distance between the sums ) X, ; and Y X7, ; is equal to §
for all n. Since § is arbitrary, it follows that ), X,, ; also has a limiting distribution, and that
the limiting transform is given by (4.9) with H(x) = ~I"’(x).

REMARK. u was defined as a function of ¢ through (3.1). The proof of Theorem 4.1
requires only that u = u(t) satisfy

(4.12) lim,t-v(w)P(X(0) € A,) =1,

so that our results are more generally valid.

5. Application to a Markov process. Let X(¢), ¢ = 0, be a stationary Markov
process in R having a transition density with respect to Lebesgue measure. Let the density
be of the form p(t; x, y), representing the conditional density of X(¢) at y, given X(0) = x.
Suppose also that the stationary marginal distribution has a density f(x).

The hypothesis of the following theorem is stated in terms of the family of mappings
(8.) discussed in Section 2.1.

THEOREM b5.1. Let the sets A and A,, and the function g.(x) be defined as in Section
2.1. Let (g2"(x))’ be the modulus of Jacobian of g,". If there is a density function h(x)
with support in A, a Markov transition density q(t; x, y) such that

5.1) T f(gu () (g (x)  _ h(x)

f flg" (M) (ga'(3)) dy

A

almost everywhere on A, and a function v = v(u) such that

(5.2) limu,p(t/v; g2 (x), 8 ()& () = q(t; x, ¥),
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for almost all x, y, for each t = 0, then Condition (2.3) of Theorem 2.1 holds. More exactly,
there is a Markov process Z(t) in B with the initial distribution over A with density h,
and with transition density function q such that (2.3) holds.

PROOF. According to Remark 1 of Section 2, it suffices to prove the convergence of
the conditional finite dimensional densities of the process g, ° X(¢/v), given g, X(0) € A.
For arbitrary 0 < ¢; -+ < & and xo in A and (xi, -, xz) in B* the conditional joint
density of (g, ° X(0), g.° X(t:/v), -+, 8.° X(£/v)) at the point (xo, %1, -« -, xx) in A X B¥,
given g, X(0) € A is, by the Markov property, equal to the product of

f(ga'(x0))(ga" (%))’

(5.3)
J’ flgz'(y)(g="(y)) dy
A
and
k Li—tia -1 -1 -1 ’
(5.4) Hi:lp( o 8u (xi-1), &u (xi)>(gu (x:)),

where # = 0. According to (5.1) and (5.2), the factors (5.3) and (5.4) converge-to the limits
h(xo) and

Hf:l q(t — tio1; X1, Xi).
This proves that the conditional joint density converges to the joint density of the Markov
process Z(t) with the indicated stationary distribution and transition density.
THEOREM 5.2. If the Markov process satisfies the condition

pls;x, y)
f(y

for every m = 1, then it necessarily satisfies condition (3.2).

(5' 5) limtamsupx,yEAu ,s=t/m

1'=0

ProoF. For arbitrary sets S; and S; of cardinality at most NV, with s < s’ for all s € S,
s’ € S,, put s; = max S; and s; = min S,. By the Markov property, the probability

PX(s) €A, sESIUS)

is equal to

f J’ P(X(s) €Ay, s€ S — {s1}| X(s1) = x, X(s2) = y)
All Au

- P(X(s) € Au, s € 82 — {82} | X(s1) = x, X(s2) = )
f(x)p(s2 — s1; x, y) dx dy.

According to condition (5.5), if s, — s; = t/m and ¢ is sufficiently large, then the function
p(se — s1; x, y) in the integrand above may be replaced by f(y). The resulting integral
factors into the product P(X(s) € A., s € S1)P(X(s) € A,, s € S>).

Theorems 5.1 and 5.2 are useful for the Markov process because the conditions (2.3)
and (3.2), which are stated in terms of finite dimensional distributions of arbitrary order,
are replaced by conditions involving only the marginal density and the transition density.
The conditions (2.4) and (4.10) are stated in terms of the bivariate distributions alone, and
these can be expressed simply in terms of the marginal and transition densities. The results
of this section can be applied not only to a Markov process but also to one which is
embeddable in a Markov process because the dimension of B is arbitrary. Indeed, suppose
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that (X(¢), Y(¢)) is a Markov process in B X B, and that (A,) is rare for X(¢). Then (A, X
B) is rare for (X(¢), Y(¢)), and the sojourns of X(¢) in A, are identical with the sojourns of
(X(¢), Y(¢)) in A, X B. Thus the distribution results for the sojourns of the Markov process
(X(2), Y(t)) are equally valid for the non-Markov process X(¢). However, the conditions of
the theorems have to be shown to hold for the augmented Markov process.

Finally we remark that Theorem 5.1 is better than [3], Theorem 9.1 even in the
particular case A, = (¢, ) because the hypothesis of reversibility has been dropped.

6. The sojourn of a several dimensional Gaussian Markov process in a small
cube. Let X(¢), ¢t = 0, be a real Gaussian process with mean 0 and covariance function
EX (s)X,(t) = e7!*"*!, This is the well known Ornstein-Uhlenbeck process: It is Markovian
with the standard normal stationary density ¢(x) and the transition density

1 y—xe™!
(1 - e—2t)1/2¢ (1 _ e—2t)1/2 N
Let X () be the vector process obtained by taking M independent copies of Xi:
X(t) = (Xi(t), - -+, Xu(®)).

For u > 0, define the M-dimensional cube A, = [—u~!, u™']". If x and y are vectors with
components x; and y;, i = 1, - - -, M, respectively, then X(¢) has the stationary density

(6.1) f(x) = TT%: o(x:)

and the transition density

orr— yi— xie™
(6.2) plt; x, y) = (1 — e )™ 1Y, ¢(m‘-?:;m) .
Define
6.3) v(uw) = u?,

and put A = [—1, 1] and g.(x) = ux, where x is an M-component vector and u > 0.

THEOREM 6.1. If M = 3, then X(t) satisfies the conditions in the hypothesis of
Theorem 2.1, and where Z(t) is a Brownian motion in R™ with variance parameter 2, A
is the cube [—1, 1™, and Z(0) is uniformly distributed on A.

ProoF. By the elementary properties of jointly normally distributed random variables,
we have
E(@uX, (t/u®)| uX;(0) = x) = xe™""* — x,
Var(uX;(¢/u?) | uX, (0) = x) = u?(1 — e /%) — 2,
Var(u[X(t/u?) — X(s/u®)]|uXi(0) = x) — 2|t — s].

Furthermore, it is easily seen that the conditional density of uX;(0), given u |X;(0) | < 1,
converges to the uniform density on [—1, 1]. Therefore, by the independence of the
components X;(t),i =1, - .., M, conditions (5.1) and (5.2) hold with A uniform on A, and

) — T, (2512 o LT K
(6.4) Q(t, X, y) = Hlsl (2t) ¢( (2t)1/2>'

Next we verify (2.4). The expression following the limit sign assumes the form

u? J’ {P<|X1<o>| suh | Xi(9)| = u")}M ds.
d

(65) P(X0)|=<u)

/u?
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By the form of the bivariate normal density the numerator within the braces above is at
most equal to

[(7/2u*(1 — e )]

and the denominator is, for large u, asymptotically equal to (2/7)"/?/u. Therefore, the
expression (6.5) is asymptotically at most equal to

2 M/2 1
<-) u? J [u?(1 — e7%)]™™% ds,
m d/u?

which, after the change of variable s = t/u? is seen to converge for u — , to

9 M/2 poo
(—) J (2t)~M72 dt.
T d

This is finite for M = 3, and converges to 0 for d — . This completes the proof.
Theorem 2.1 implies the following result for X(¢): For every x > 0, and M = 3,

P@w’mes{s:0=s=<¢|Xi(s)|=uli=1, ..., M} >x)

lim, o PR Ty

(6.6)
= - % P(mes{s:s =0, Z(s) € [-1, 1]} > x).

Although X does not have a local time, the formula above gives an asymptotic estimate of
the time spent in the cube.

Next we consider the verification of the conditions of Theorem 4.1. First we choose the
explicit form of a function u(¢) which satisfies (4.12), namely,

©6.7) u(t) = (2/m)M/2M-2g1/ D),

THEOREM 6.2. If u(t) is defined by (6.7), and M = 3, then the conditions of Theorem
4.1 are satisfied.

ProoF. Let us first verify (4.10). By the same analysis as that for (6.5), we find that
the expression following the limit sign in (4.10) is asymptotically at most equal to

1 t/k
;J (1 — e—25)—M/2 dS,
8

which converges to 1/k for ¢ — . This confirms the condition (4.10).

Next we verify (5.5). The ratio p(s; x, y)/f(y) is identical with the ratio of the joint
density of X(0) and X(s) to the product of the marginal densities, and so takes the form of
the product of functions

2 2,—2s

$— 2x; 7.6 + yie
2(1 — e™%)

xte”

a- e_zs)_’/zexp{— }i =1 ..., M.
Each of these factors converges to 1 for s — o, uniformly for all x; and y; in compact sets,
and so (5.5) holds.

7. Application to Gaussian processes: necessary conditions. Let X(¢), =0, be
a real stationary Gaussian process with mean 0, variance 1 and continuous covariance
function r(¢). In this section we show that the conditions of Theorems 2.1 and 4.1 imply
corresponding conditions on r(¢). Then we show that in several cases the latter conditions
are actually sufficient for the conclusions of the corresponding theorems.
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Let ¢(x, y; p) be the standard bivariate normal density function with correlation
coefficient p; then ¢ satisfies the well known differential equation,

2
(7.1) % = id_’_ .
ap  axay

It is also well known that

o(x, y; 0) = ¢p(x)p(y),

where ¢(x) is the standard normal density. Thus, the fundamental theorem of calculus,
together with (7.1), implies

P 2

(7.2) o(x, y; p) — p(x)p(y) = J (x, y; 2) dz.

, 9xdy
It is also well known that
o(x, ¥; p) = 8(x — y)¢p(x), for p—1,

where § is the delta function at 0; hence, we have the formal relation

1 .2
a4
(7.3) 3x — y)o(x) — ¢(x, y;0) = f i (x, y; 2) da.
, axay
Define
(7.4) Fulp) J f % (e, y;p) dx dy
. «(p) = V5P .
A, YA, dxdy
By integration of each member of (7.2) over A, X A,, we obtain
r(s)
(7.5) P(X(0) € Ay, X(s) € A,) — PX(X(0)E A,) = J ¥, (2) dz.
0
Similarly, integration in (7.3) yields
1
(7.6) PX(0) e A,) —PX0)eA, X(s)EA,) = j ¥, (2) dz.
r(s)
The latter implies

1
J v.(2) dz

(s)
PX(0) e A’

If in the relation above we put s = t/v(u), and fix £, and let u — o, then condition (2.3)
requires

P(X(s) € Au| X(0) EAL) =1~

1
f V.(2) dz

_ Jrie/v —
1 PXO) €A PZ(t) € A),

or equivalently,

1
j Y.(2) dz
Zrew  _ p(zt) & A),

J o(x) dx
A

u

(7.7) limy, e

for all ¢ = 0.
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Formula (7.5) and the assumption (2.2) imply that the condition (2.4) for Gaussian

processes is equivalent to
1 r(s)
v f J’ V¥,.(z) dz ds
d/v JO =

(7.8) limg . limsup,_, 0,
f o(x) dx
Au
and that condition (4.10) is equivalent to
t/k pr(s)
J’ ¥.(2) dz ds
(7.9) limylimsup;_e =2 =0.

2
t<f o(x) dx)
A

The condition (3.2), with S; = {0} and S, = {¢/m}, implies

P(X(0) € Ay, X(t/m) € Au) _

PAX(O) € A) L

lim,.o,

By (7.5), this is equivalent to
(7.10) limt_,w—(—J’-——-——>-2— =0.

ExaAMPLE 7.1. Suppose A, = (u, ©); then ¥, (2) = ¢(u, u; z), and the latter, by the
definition, is equal to

(7.11) ! L
: 2rl =) 72 P\ "1 2)"

We have the well known relation

(7.12) f o(x) dx ~?—(52, for u— oo,

u

Under the mapping g.(x) = u(x — u), we have A = (0, ). The condition (7.7) becomes

1 u2
NSV _
fr 1-2% exp( T z) dz

. (t/v)
limy e = P(Z(t) =< 0).

Va7 exp(—u?/2)/u

After the change of variable y = u%(1 — z), this relation becomes
1 u?(1-r(t/v))
(7.13) lim, o —f y Y2 dy = P(Z(t) < 0).
2va Jo

This is equivalent to the existence of
(7.14) lim, o u?(1 — r(t/v))

for every t = 0. If the latter is continuous, and is not identically equal to 0, then 1 — r(¢t) is
necessarily regularly varying of index a > 0. Since r is a covariance function, it is required
also that a < 2.
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Let v = v(u) be any function satisfying
(7.15) lim, o1 — r(1/v(w))) = 1;

then, as is shown in [2], (2.3) holds, and Z(¢) is of the form U(¢) — ¢* where U(¢) is Gaussian
with EU(t) = 0, EU*(0) = 0 and E(U(t) — U(s))* = 2|t — s|°.

By calculations similar to those in [3], Section 7, and to those leading to (7.13) above,
it can be shown that condition (7.8) is satisfied.

If u is defined by (3.1) or (4.12), then as in [2],

(7.16) u®~2logt, for t—s oo
The ratio in (7.10) is asymptotic to

r(t/m) u22
2 1 — z2) 12 d
u jo ( 2°)"/*exp T 2,

z

which, by the substitution y = u?z, is equal to

ur(t/m) y
f 1- yu‘z)exp[y/(l +;§)i| dy.
0

It can be shown by elementary arguments that this has the limit 0 if and only if u*r(¢/m)
— 0. By (7.16), the latter is equivalent to

(7.17) lim,...r(¢)log t = 0.

As shown in [2], this is a sufficient mixing condition for the conclusion of Theorem 4.1.
The condition (7.17) also implies (7.9). As in the preceding calculation, the ratio in (7.9)
is asymptotic to

1 t/k r(s)
(7.18) = J’ u? f - zz)‘mexp[
t 8 0

For every 8 > 0, r(s) is bounded away from 1 on s = §; this is a familiar property of
nonperiodic correlation functions. Therefore, the factor (1 — z?)~'/* in the integrand in
(7.18) is bounded away from 0 and ; thus, in proving that (7.18) converges to 0, it is
sufficient to consider the integral without that factor:

1 tk Fs)
(7.19) —J uzf exp[
¢ 8 0

For every £ > 0, the set {s:| r(s) | > ¢} is bounded. Furthermore z/(1 + 2) is strictly less
than % if z is bounded away from 1. Therefore, the portion of the integral in (7.18) over the
set {s:|r(s) | > ¢} is at most equal to a constant multiple of

u2e uzﬂ’

u’z
1+2z

] dz ds.

u’z
1+ 2z

] dz ds.

for some 6, 0 < § < %, which, by (7.16), is o(¢) for ¢ — . Therefore, the corresponding
portion of (7.19), after division by ¢, converges to 0. Thus, in estimating (7.19), it suffices to
assume that | r(s) | < ¢, for arbitrary ¢ > 0.

Now let us estimate the portion of (7.19) corresponding to the domain of integration 0
=< s < t°, where the number 0 < ¢ < 1 will be specified below. This expression is at most

equal to
tcuz . u’
—eex ,
t P 1+e¢

u2t25/(l+:)+c—l,

which, by (7.16), is of the order

which tends to O if ¢ < (1 — &) /(1 + ¢).
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Finally, we estimate the portion of (7.19) corresponding to the domain of integration ¢*

=s=<t/k,
1 t/k ) r(s) 2
- u? exp “z dz ds,
t ), o 1+z

which, since | 7(s) | < ¢, is at most

1 t/k |r(s)] 1 t/k
?J u‘Z J euzz(l—r)—l dz ds = (1 _ 8) -t_J’ (eu2|r(s)|(l—L)-l _ 1) ds.
e o I3

The latter tends to 0 for ¢ — oo under (7.17).

ExaMPLE 7.2. For an integer M > 0, consider a vector stationary Gaussian process
X(t) whose components X,(t), i = 1, ---, M, are independent copies of a real stationary
process with covariance function r(¢). This is a generalization of the process considered in
Section 6. Let A, be the M-dimensional cube defined there; and with A and g, similarly
defined. Put

Y, (2) =2Lpw ™, ul2) — o™, u™', - 2)]
1l e —u~2 _ —u2
—7-T(l 2%) exp1+z expl_z .
By definition,

(7.20) P(X(0) € A.) = PM(|1X,(0) | = u™),
PX(0)EA,X(s)EA)=P¥(|X,0)|=u",| Xi(s)| s u™');

hence, by the reasoning leading to (7.7), the condition (2.3) requires that (7.7) holds in the
form

V27 lim,_out J (Pl u';2) —dpu™,u™'; —2)) dz = P(Z(t) € A).

r(t/v)
By the change of variable y = u*(1 — z), the relation above is seen to be equivalent to

w(1=r(t/v)
V2 limg e f (2y) 31 — e7'”) dy = P(Z(t) & A).

0

The limit above exists if and only if (7.14) exists, which by the reasoning in Example 7.1
above, implies that 1 — r(t) is regularly varying, and that v(u) satisfies (7.15). It also
follows, that this condition is sufficient for (2.3) and that the process Z(¢) is identical with
the Gaussian process U(t) defined above; the reasoning is nearly the same as that for the
corresponding conclusion in Example 7.1.

Next we show that if (7.15) holds, then condition (2.4) holds for M > 2/a. The reasoning
is the same as that following (6.5) except that the general covariance r(¢) is used in the
place of the Markov covariance e . The expression following the limit sign in (2.4)
assumes the form (6.5) with v in place of ©?% and is asymptotically at most equal to

2 M/2 1
<—) v [u?(1 = r(s))]™"* ds.

‘ﬂ' d/v

After the change of variable s = ¢/v, and the application of the regular variation of 1 —
r(s), it is seen that the expression above converges for u — « to

1 M/2 oo
(_) J t~nM/2 dt,
m d

which converges to 0 for d — «, for M > 2/a.
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The condition (4.12) in this example becomes
M/2
(7.21) t- v(u)(—z) — 1, for t-— .
U

If 1 — r(t) ~ | ¢|* for £ — 0, then v(u) ~ u**, and (7.21) holds if u(¢) = constant . ¢t*/™=?,
This tends to o with ¢ under the current condition M > 2/a.

By virtue of (7.20), the condition (3.2) implies that (7.10) holds. By the specific form of
¥,, (7.10) implies the simple mixing condition r(¢) — 0 for ¢ — . We have not yet
determined whether this is also sufficient for (3.2).

The condition (4.10) also follows from the existence of (7.14) and the regular variation
of 1 — r. Indeed, by the same reasoning as in the proof of Theorem 6.2, the expression
following the limit sign in (4.10) is asymptotically at most equal to

1 t/k
n f (1 —r*s)™* ds,
8

which converges to 1/k for ¢t — .

8. Application to Gaussian processes: sufficient conditions. In Section 7, we
found that the necessary conditions for (2.3), (2.4) and (4.10) were actually sufficient in the
examples considered. However, we were not able to show that the necessary condition
(7.10) for (3.2) is sufficient for the latter; instead we referred to the earlier version of our
limit theorem in [3] for Example 7.1.

The complex conditions on the finite dimensional distributions of a general, not
necessarily Gaussian process, given in [3] for A, = (u, »), were, in fact, suggested by the
calculations in the Gaussian case. The present condition (3.2) was introduced for the
purposes of simplification and applications to more general families (A.). However, (3.2)
does not, without some stretching, easily apply to the Gaussian case.

Let us show how (3.2) can be adapted to the latter case. Examination of the proofs of
Theorems 3.1 and 4.1 show that (3.2) can be weakened to permit more convenient
calculations. It is sufficient that (3.2) hold for sets S; and S; of the particular nature used
in the proofs of the theorems; S; U S, consists of % clusters of points, where the points
within each cluster are separated by small prescribed distances, and where the clusters are
mutually separated by distances of magnitude of the order ¢ Such detailed conditions for
Gaussian process have already been verified in [2]. Thus our present condition (3.2) is at
least closely related to the previous sufficient conditions.

We now propose a second approach to the proof of Theorem 4.1 through (3.2) in the
Gaussian case. It was actually introduced earlier in [1]. Though the latter work contained
some errors which were noted in [2], the method of the calculation of the distribution of
vL,(u) for t — o is still valid, and, in fact, can be applied to an arbitrary family (A.). The
idea of the method is this. For a given large ¢, we construct a stationary Gaussian process
X,(s), s = 0, on the same probability space as X(s), s = 0. By the construction, the
distributions of X;(s) are close to those of X(s). However, X;(s) has the property that its
covariance function vanishes outside an interval of length o(¢) for ¢ — . Thus, for each m
= 1, the ratio of probabilities under the limit sign is, for the process X, (s), equal to 1 for all
sufficiently large ¢£. Thus X,(-) has the required global mixing properties needed for
Theorem 3.1. Since the distributions of X; are close to those of X, it is to be expected, in
examples under consideration, that the conditions on r which are sufficient for (2.3), (2.4)
and (4.10) for the validity of the theorems on the sojourns of X, will also be sufficient for
the sojourns of X;. Finally we show that the sojourns of X are asymptotically equivalent to
those of X;.

The details of the construction of X; are similar to those in [1]. Let f(A) be the spectral
density function of X, and let b(¢), —» < ¢t < o, be a non-negative function with compact
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support and [, b%(t) dt = 1. Then
o(t) = JW b(t + s)b(s) ds
is a covariance function with compact support and p(0) = 1. Let g(A) be its density:

2

1
q(>\) —'2—77

J’ e™b(s) ds

Let w(t) be an increasing positive function such that w(t) — oo, w(t) = o(t), for t — oo;
and define

8.1) - @rhw = L f(A +—u7ft—))q(y> dy.
Let
(8.2) X(s) =J eiMfl/z(A)U(d)\)

be the spectral representation of X with respect to the Brownian motion U; and define
(8.3) Xi(s) = f e™(qx )2\ U(dM).

The latter is stationary with mean 0 and covariance function r(s)p(s/w(t)). The support of
the latter function is in an interval of length o(¢), for ¢ — o, and the function converges
everywhere to r(s).

Put

t
L (w) = f Ix,9ea,) ds.
o

If we can show, by the methods used in Theorem 4.1, that vL{(x) has a limiting
distribution, then it will follow that vL,(u) has the same limiting distribution if it can be
established that

limy ,oVE | L(u) — L (u)| = 0.
By applying Fubini’s theorem, one sees that it suffices to prove that
lim,..vtP(X(0) € A, X:(0) € A,) = lim,,.vtP(X(0) &€ A,, X,(0) € A,) = 0.

By (3.1) and the identity of the distributions of X(0) and X,(0), the relations above are
equivalent to

(8.4) lim,_.vtP(X(0) € A, X:(0) €A,) = 1.
Put 7(¢) = EX(0)X,(0); then, by (8.2) and (8.3), we have

(8.5) n(t) = J [F(N)(ge /)(N]2 dA.

Then formula (7.6) and the relation (3.1) imply that (8.4) holds if and only if
1

(8.6) limy,0t J VY, (2) dz = 0.
7(¢)
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The latter condition holds if 5(¢) tends to 1 sufficiently rapidly for ¢ — c. This is related
to the smoothness of f. Indeed, 1 — 7(£) is equal to

%f VI(F = Vg ) +%f Vaor fVarf = Vf) dh,

or, equivalently,

5| - varir an

—o0

By (8.1) the latter tends to 0 for ¢ — «. The rate of the convergence to 0 depends on the
smoothness of f. Such an estimate was given in the particular case A, = (1, ©) considered
in [1]. We have not been able to formulate this rate of convergence directly in terms of
r(t), but only in terms of the spectral density itself.

We expect to apply the method in this section to the problem in Example 7.2 in a future
publication.

9. Corrections of previous results. In [3], Lemma 17.2, it was incorrectly stated
that the condition

' P(X(0) > u, X(ts) > u)

PXO S P <”

9.1) limsup;,« f

0

is sufficient for the local mixing condition 4.IT of Theorem 4A. The proof is correct except
for the last sentence, which is marred by the fact that u is a function of ¢ The conclusion
of the previous sentence implies that the lemma is correct if (9.1) is replaced by

t/k
1 j P(X(0) > u, X(s) > u) ds = 0,
0

9.2) limy.,.limsup;_. P PIX(0) > 1)

The condition (4.10), which is much weaker, should now be used in the place of (9.2).
In [3], page 8, line 13, the sentence should be “Since L, — Lg/, is nonnegative. . ..” Also
L; — Ly, should be replaced by Lg,, in formula (3.12).
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