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BROWNIAN MOTION, GEOMETRY, AND GENERALIZATIONS OF
PICARD’S LITTLE THEOREM

By S. I. GoLpBERG! AND C. MUELLER?

University of Illinois and University of Texas

Brownian motion is introduced as a tool in Riemannian geometry to show
how useful it is in the function theory of manifolds, as well as the study of
maps between manifolds. As applications, a generalization of Picard’s little
theorem, and a version of it for Riemann surfaces of large genus are given.

Introduction. The purpose of this paper is to introduce Brownian motion as a tool
in Riemannian geometry. In other branches of analysis, notably potential theory, and more
recently complex analysis, probabilistic methods have already achieved important results.
From one point of view this is not surprising, since Brownian motion is intimately
connected with harmonic functions, the Laplacian, and other fundamental objects in
analysis. The purpose here is to show that Brownian motion is also a useful and funda-
mental tool in the function theory of manifolds, and in the study of maps between
manifolds. Indeed, Brownian motion on manifolds has been studied for some time by
probabilists, and there are many fascinating differences between Brownian motion on
manifolds and on Euclidean space. Pinsky [12] presents a useful survey of this work. On
the other hand, whereas nonpositive curvature plays an essential role in geometric function
theory, this is not the case in our considerations.

In choosing a geometric problem to attack, the authors were guided by the analogy
with Brownian motion on Euclidean space. One of the most intriguing results in that
setting has been Burgess Davis’s probabilistic proof of the little Picard theorem [2], based
on the winding properties of Brownian motion. It is felt that many less obvious applications
of Brownian motion to geometry are possible, and the adventurous reader is invited to
explore these possibilities.

Our main problem arises from the generalized Picard theorem for harmonic maps
between manifolds, proved by Goldberg and Har’El [6], and Davis’s technique is used to
extend this result. The theorem states that, given certain assumptions on the sectional
curvatures of the Riemannian manifolds M and N, any harmonic map of bounded dilatation
between M and N must be constant. Using probability, Kendall [9] has already proved a
restricted version of the Goldberg-Har’El theorem which requires an additional condition
on the curvature of N. Our result still requires some restrictions, but includes many cases
not covered by the original theorem. In particular, while the Goldberg-Har’El theorem
assumes that the sectional curvatures of N are bounded above by a negative constant, our
theorem allows the curvature to tail off to 0, and even allows regions of positive curvature.
The main probabilistic tool used is the tail o-field of Brownian motion, which is trivial for
some manifolds but not for others.

Our second theorem is also motivated by Davis’ work, and deals with Picard’s theorem
for Riemann surfaces. It is our contention that the connection between Brownian motion
and complex analysis could well be exploited to study complex manifolds. Chern [1] has
extended Picard’s theorem to Riemann surfaces of low genus. Using the winding properties
of Brownian motion on manifolds, a version of Picard’s theorem which holds for Riemann
surfaces of large genus is established.

The paper is divided into two parts, each dealing with one of the theorems. The proof
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834 S. I. GOLDBERG AND C. MUELLER

of the first theorem is given in Part I in the form of a sequence of lemmas. Some of the
techniques are similar to those of Kendall [9], but the actual tactics require considerable
modification.

Whereas the manifolds considered in Part I are noncompact and of arbitrary dimension,
only compact Riemann surfaces are considered in Part II. Let M and N be compact
Riemann surfaces with a finite number of points deleted. Any such surface N is homeo-
morphic to a sphere with ¢(IV) tori attached and p (N) points deleted. Let n(N) = 2¢(N)
+p(N).Ift(M) >0, p(M) >0,p(N)>1and n(N) > n(M), then the second theorem says
that any holomorphic map from M to N must be a constant map.

Part1

1. Definitions and statement of the theorem Let M and N be complete Rieman-

nian manifolds with dimensions m, n, metrics *g;;, “g.s, and Christoffel symbols “T'%;,

NT'24, respectively. Assume that F:M — Nis a C? map. F'is said to be harmonic [3] if its
second fundamental form

&FY aFY aF* oF*
Y= — £ Ny —_—— —
(VAR = s = Tl o + " S =
has trace 0. Define the tensor £*#(x) on M by
aF* oF#
ap
£8(x) = [a ; ax’] (x), xE€ M.

Note that (£*#(x)) is a symmetric matrix, so the eigenvalues are nonnegative, and we may
order them as follows: A; (x) = As(x) = -+ - = A, (x) = 0. F is said to be K-quasiconformal
[7]1if for all x € M, A (x) < K*\.(x). It is of K-bounded dilatation if for all x € M, A, (x)
= K"z (x). In [6], Goldberg and Har’El proved the following:

THEOREM. Let M be a complete connected Riemannian manifold with nonnegative
Ricci curvature, and let N be a Riemannian manifold with negative sectional curvature
bounded away from zero. Then a harmonic mapping f:M — N of bounded dilatation is
a constant mapping.

Our theorem relaxes the requirement that the curvature be bounded away from zero,
but imposes some additional conditions. First, we wish to set up polar coordinates (r, §) on
N. Choose a point xo € N, and if § is in the unit sphere of the tangent space N, andr >0,
associate a point p € N with (r, §) through the exponential map: p = exp., (rf). Now we can
state our conditions on N:

(i) The sectional curvatures of N are bounded below by —L? < 0.

(ii) Each of the sectional curvatures at (r, §) € N determined by dr and some other
tangent vector, is bounded above by K (r), where K (r) satisfies:
(a) For some ¢ >0, —K(r) ~ r*7%
(b) There exists a C* solution u(r) of the equation

u”(ry = K(rju(r), u() =0, w'(0)=1,
and u’(r) is always positive.

Note that we can always find such a solution if K (r) is smooth and everywhere negative.
Condition (ii, a) allows the sectional curvature to tail off towards 0, a case not covered by
the Goldberg-Har’El theorem, but (i) is not required for their theorem. Condition (ii, b)
ensures that the map (r, §) — N is one-to-one. Indeed, let the manifold N’ be defined by
the metric

ds® =dr’ + u(r)? Y25 do?

where (dr, df;) is an orthonormal frame. An easy computation shows that the sectional
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curvature with respect to dr and any vector perpendicular to it is — u”(r)/u(r) = K(r).
Since u’(r) > 0, we know that there are no points conjugate to the origin ( = 0) in N’. By
the Rauch comparison theorem [4] and condition (ii), there are no points conjugate to xo
in N, so polar coordinates are unique.

We need to consider Brownian motion X, on M. For a definition and many properties,
see [12]. The tail o-field of Brownian motion is the o-field N7-o0{X;:¢ > T'}. Brownian
motion on manifolds such as R" has trivial tail o-field, but this is false in hyperbolic space.
We can now state the main theorem.

THEOREM 1. Suppose that M is a complete connected Riemannian manifold with N
satisfying (i) and (ii). Assume that Brownian motion on M has trivial tail o-field. Then
every K-quasiconformal harmonic map F:M — N is constant.

Geometrically, we can take for M a manifold of nonnegative Ricci curvature by virtue
of a theorem of Yau [16] regarding bounded harmonic functions on such manifolds.

2. Proof of Theorem 1. Assume F is not constant. The following results will be
essential to the proof. Some of our techniques are similar to those of Kendall [9]. Let
xn € N\{xo} be a point in the range of F.

LEMMA 1. Let X, be Brownian motion on M, with X, chosen so that F(X,) = xn.
There is a random time change o(t) and a constant C > 0, such that if p, =r o F(X,()),
then dp, = a(X,¢) dB; + b(X,«)) dt, when F(X,) # xo, where B(t) is some Brownian
motion, 1/K < |a(X,) | = 1, and b(X,) = Coi* ' if p; is larger than some constant R.

The statement uses the stochastic calculus, which is discussed in [10].
Let 7 be a stopping time for X, .

LeEMMA 2. Ifp!” is the distance of F(X,)) from F(X,), then for t > 1,
dp{” = a™(X,) dB{ + b7 (X,) dt,

where

1
RS |a(T)(Xam) | =<1

and

b (X)) == L coth(Lp{™).

Proors oF LEMMAS 1 AND 2. Let o(¢) = [§ (ds/Ai(xs)). Recall that A;(x) = ... =
A.(x) are the eigenvalues of (£*#(x)). By Ito’s lemma,

[rap Or Or a’r
dpt = g a_‘y"‘ ayﬂ dXo(t) + = g l:ay"‘ayﬁ NFZB a7 } do(t)
&P or or 1 aﬂ[ % N ]
VX e T |

where we have suppressed the dependence on X,(), and where B, is a new Brownian
motion. Now, since A; is the maximum eigenvalue of (£*f), and since dr/dy* is a vector of
length 1, we have | a(X,())| = 1. The lower bound follows from the K-quasiconformal
condition. Repeating the same argument in the context of Lemma 2, we find that

1
E = |a‘”(Xo(t)) | =1.

Fix a point x € M, and let (2”) be a set of normal geodesic coordinates with origin F(x),
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such that (z7) corresponds to the eigenvectors of (£%f), under the map F. For these
coordinates, "', (F(x)) = 0, and we may write

2
£5(x) [ ayia’yB - ”rzﬁ% ] (F(x)) = $ro1 A (%)

d’r(z°(s))
ds?

§=0.

Hence,

1 Aa d?
b(Xow) = 3 Ya-1 X (Xo) s r(z%(s))

§=0.

In the case of Lemma 2, let H be the hyperbolic space of dimension n and constant
curvature —L% A standard computation shows, that if (r, @) are polar coordinates in H,
and if 2(s) is a geodesic, then (d®/ds®)r(z(s)) |s=0 = L coth(Lr(2(0))). Then, the Hessian
comparison theorem of Greene and Wu [5], together with condition (i), implies that

2

% r(z%(s)) = L coth(Lr(X,()).

§=0

This inequality, together with the formula for dp,, implies the bound on 5 stated in
Lemma 2. The proof of Lemma 2 is thus complete.

As for Lemma 1, we again use the Hessian comparison theorem, where P is the manifold
with the following metric )

ds* =dr® + g(r) Yrzl df?,

where (dfl.) is a set of normal tangents perpendicular to dr, and g(r) is defined below.
First, note that we can find a C* function K (r) > K(r) such that for some R > 0,r>R
implies

L 5/2—2=d_2 e/2
K(r)—2<2 l)r a2

In addition, we may require that a C* solution g(r) of i” = Kii, g(0) = 0, g’(0) = 1 exists
for all » > 0 and has strictly positive first derivative. Now, choose 0 < ¢; < ¢, such that
2 ae"w

oe*”
/2 e/
e’ =g(R) = e?”, o Fr

ox

< 9g (x)
ax

=C
x=R

x=R-
It is easy to see from the equation for g that c;e”” and cze”” are lower and upper bounds,
respectively, for g(r), r > R, and that g’(r) is likewise bounded below and above by
(cre”™”) and (cze””), r>R. A computation shows that, for z a geodesic perpendicular to
dr,
d*r(z(s))
ds*

= g’(r) C1 € e/2—1
g(r) 2 ’

= =——r r>R.

§=0
Thus, by the Hessian comparison theorem, we have for the manifold N,
d’r(z%(s))

7 =Cr’*!, r>R.

§=0

This, together with the formula for dp,, completes the proof of Lemma 1.
Now we will find the speed at which p, goes to co.

LEmMA 3. lim inf, . t2—f3_—£, >c3>0.

Proor. The event

{lim iIlft_,oo tT/’()‘it—_e) > 03}
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belongs to the tail o-field of Brownian motion on M, which is trivial by assumption.
Therefore this event has probability 0 or 1, and it suffices to show that it holds with
positive probability.

Consider the process M, defined by

dM, = a(X.«) dB:, Mo = po,

and note that M, is p, with drift subtracted. By the law of the iterated logarithm, there
exists a random time T' < o such that ¢ > T implies

| M,| < 2t log log £ < t¥/¢479),
Let D, = p, — M,, so that dD, = b(X, ) dt. D, is the drift of p,.
We wish to compare D, with D/ (¢t = T), where D} is defined by

dD} = C[D¥ + (t — T)Y“ 911 dt, D¥=0

for ¢ = T. Note that, for the appropriate constant c;,
F=c(t =TV,

For t = T and p, > R, we have by Lemma 1 that

bX,w) = CL¥ = C[D, + (¢ — T)Y9]721, )
Let T* = T be a function of 7, and let A7+ be the set of paths for which T'< T* and for
which p; > R provided T = ¢t < T*. Clearly, P(Ar+) > 0. From the above inequality on

b(X, ), we see that on A7+, Df < D, for T < t < T*. Therefore, if p;, > Rfor T<s <1,
then

pr=D,+M;=D} +M,=ci(t — T)¥** — 2+tlog log .

Now let T* be the supremum of the times ¢ for which the above expression is < R. Then,
on the set A7+,

pe = c1t¥%™9 — 24t log log t > cat¥*™®

for an appropriate constant c; and all sufficiently large ¢. Since P (A7+) > 0, this establishes
Lemma 3.

LEMMA 4. Let 7q be the first time that p, = Q. Then, for h sufficiently large, there is
a q € (0, 1) and a constant C; such that

Plpts.,> Ci(t + h)¥4® fort>0 | Xoirg)} > q
uniformly in Xoirg)-

Proor. Since lim sup,..(|B(¢)|/2(¢ log log t)/?) = 1 with probability 1, it easily
follows that given of < 1, we can find 4 so large that
P{|B(t)|=2(t+ h)loglog(t + h),all t >0} = q.
Let dM; = a(Xo(,QH)) dB; ¢, Mo = Q. Recall that |a(Xs) | = 1, so that if A is the event
that | M(¢)| = 2V(¢ + h) log log(t + A), all ¢ > 0, then P(A) = q. Choose @ so large that
for p. > Q/2, b(X, () = Cp’*™". Let D; = pt+., — M,, 50 Do = 0. Then, for p, .. > @ on the
set A,

b Xorgrn) = C[D: + (¢ + 2h) ¥ @=e/2

Now, we repeat the reasoning of Lemma 3. Let dD, = C[D, + (¢ + 2R)¥“ 912714z,
Then, one solution is D, = Ci(t + h)¥4-9, Let @ be so large that 2(C; + 4)p¥49 < @,
Then, by the formula for dD; it follows that D, < D,. Thus, on the set A

pt+7Q = Dl + Mg = D~1 + Mt
= Ci(t + 2h) Y79 — 2J(t + h)log log(¢ + k) = % Ci(t + h)¥“™
if & is large enough. Since P(A) = ¢, this proves the lemma.
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LEmMA 5. Let r = inf(r(x), r(y)) for x, y € N. If |O(x, y)| denotes the angular
distance between 0(x) and 6(y), then for some constants C and R,r > R

Nd(x, y)
exp(r¥?)’

where Vd denotes the distance in the manifold N.

@, y)|=C

Proor. We use the Rauch comparison theorem, for the same manifold P as used in
the proof of Lemma 1. An easy computation shows that the formula holds for P, so it must
hold for N.

LEMMA 6. There exists a random time T such that for all m > T,

Supo(m)sts«;(m+1)Nd(F(Xl)’ FX;m))) = m.

ProoF. Using the language of Lemma 2, we must show, for m > T, that
Supmstsm+1Pgn) =m.

The argument is similar to an idea of Prat [13], and is also used by Kendall [9] and Pinsky
[12]. We note by Lemma 2, for | p;| > 1, say, that the drift of p{™ is bounded above by a
constant K. Also, in order that p{™ hit m, it must first hit 2m/3. Let = be the first time after
m that it does so. Then,

P{Supm<t<m+1P¢”‘) = m} = P{Supf<t<m+lp {m) > m}
m) m
=< P{sup.=t=m+10{™ = m, inf,<jzms1pi™ < 3 ([
Note that the total drift [}, 5™ (X, () df of p{™ is bounded by a constant Cif r < ¢ <

m + 1 and if p{™ = m/3. Thus, by Lemma 2, | a™(X,(;)| < 1, and the above probability
is bounded by

2
1 .
P{sup()s,sl | Be| = %} = 4P{B(1) = % - Co} = Cexp(— 5(% - C(,) )

for some constants, C, Co. This probability sums over m, so by the Borel-Cantelli lemma,
SUPm=s=m+10s™ = m occurs only finitely often.

LEMMA 7. Fix §> 0. If 7 is a stopping time, we may choose an integer J so large that

P{sup.<t-m=+1p{™™ =m + J,forallm=1} =1 - 4.

ProOF. Let A, be the event that sup,<(-m=.+10{"™ = m + J. By the strong Markov
property, {A.} are independent events, and so using the same estimate as in Lemma 6,

P{An) < Cexp(—%(m_'-J—K) )

3
If J is large enough, ¥ P(A,.) < 8. Then, by Kroenecker’s lemma,
P{no A, occurs} =[] (1 — P(An)) = 1- 4.
We now show that

0(w)=lim,..0 (F(X:))
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exists. First, we show that lim,_,.0(F (X, )) exists. Lemmas 2, 3 and 5 show that for %
large enough
k

O(F(X, X+ =C————.
| O(F(X,m), F(X, 0 1)))I<Cexp((c’k)‘/“_‘))

This sums over %, so the limit must exist. By Lemmas 6 and 3,

k
(@R

for sufficiently large %. Thus, (w) exists. Now, we need to show that 6(w) is not trivial.
This argument is due to Kendall. By a theorem of Stroock and Varadhan [15, Theorem
3.1}, 6(F(X,(-,))) has positive probability of hitting any open set in the parameter space of
6. Choose g, 6 in Lemmas 4 and 7 such that ¢ — § > 0. Fix A, and choose 4 so large that

m+dJ
m=1C <A.
2 € eatm + AT
Lemmas 4, 5, and 7 show that, conditioned on X, (1> With probability at least g — &, all of
the following inequalities hold:

Supr=e=z+1| O (F (Xo ), FX,»))|=C

m+J .
exp((co(t + h)VE)/%)”

m =1,2, .... Thus, conditioned on X (), With probability at least ¢ — §, IG)(F(XO(TQ)),
F(X;))| < Aforall ¢ > 6(rq). Now, fix 6o, and let p = P{| O (F (X)), 60)] < A}. From what
we have said, p > 0 and P{| 6 — 0(w)| < 2A} = p(g — &) > 0. Since 6, and A are arbitrary,
it follows that 6 (w) is nontrivial. However, 6 (w) is the tail o-field of X;, which was assumed
to be trivial. This is a contradiction, so F must be constant.

SUP, e metzrgrms| O (F (X cgim)y F(Xo))| < C

Part I1

3. Definitions and statement of the theorem. Let M and N be compact Riemann
surfaces with a finite number of points deleted. It is a standard fact that any such surface
N is homeomorphic to a sphere with #(N) tori attached and p (N) points deleted. Let n (V)
= 2t(N) + p(N).

THEOREM 2. Let F:M — N be a holomorphic map. If t(M) >0, p(M) > 0,p(N) > 1,
and n(N) — n(M) > 0, then F is constant.

4. Proof of Theorem 2. The proof uses Brownian motion on Riemann surfaces,
which can be defined modulo time changes as follows. Let {m,} be coordinate patches
exhausting M, and for each i, let ¢;: m;— C, where C is the complex plane, be a holomorphic
map. For p € M, choose a patch m, containing p. Let W (¢) be Brownian motion in C, and
let o, be the first time that p + W(¢) hits the boundary of c;u) (m:q)). For 0 < ¢ < gy, let
B(t) = cidy(p + W(¢)). Next, let m,) be a patch containing B(o;), and let o5 be the first
time that ci) (B (01)) + W(¢) — W(o1) hits the boundary of m;z. For o; < ¢t < 0y, let

B(t) = ci (e (B(01)) + W(t) — Wi(a1)),

and note that we have defined B(¢) to be continuous at o,. For k£ > 2, define o, and B (¢),
or <t < or+1, analogously.

Note that B(¢) is defined only modulo time changes; different coordinate patches lead
to different time scales.

We shall require the following theorem by Lévy [2].

THEOREM 3. If fis a holomorphic function with domain , then, until W(t) leaves
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§, the process f(W(t)) has the same distribution as W(p(t)) + f(0), where

t
p(t) =j [ (W(s))|* ds
0
is a new time scale.

CoROLLARY. If h is a holomorphic function on M, then the process h(B(t)) has the
same distribution as W(p(t)) + h(B(0)), where p(t) is a new time scale.

Proor oF THE COROLLARY. Using the definition of B (t), it follows that on each time
interval o < ¢ < 03+1, A (B(t)) is a holomorphic function of W(¢). This allows us to apply
Lévy’s theorem.

We wish to study the winding properties of Brownian motion on M and N. To this end,
we compute the fundamental groups of M and N.

LEmMMA 8. Let p(N) > 0. Then the fundamental group of N is the free group with
n(N) — 1 generators. The generators may be taken to be the cycles around single points
(except one) and the canonical generators of the tori.

Proor. Easy topology shows that a torus with one point deleted is homotopic to a
sphere with 3 points deleted, and the generators of the torus correspond, under the
homotopy, to cycles around 2 of the points. Therefore, a sphere N with ¢ () tori attached
and p (N)> 0 points deleted is homotopic to a sphere N’ with ¢(IN) — 1 tori attached and
p(N) + 2 points deleted. If the original generators {a;} were the canonical generators of
the tori plus cycles around every point except one, then {«;} corresponds, under the
homotopy, to a similar set of generators {a/} on N’. Thus, by induction, N is homotopic to
a sphere N” with 2t(N) + p(N) points deleted, and {«;)} corresponds to a set {a/}
consisting of cycles around every point except one. In this case, it is standard that the
fundamental group of N” is the free group with 2¢(N) + p(N) — 1 generators {«/}. This
proves the lemma.

Now assume the conditions of Theorem 2, and suppose that F is not constant. Let
G (M) be the fundamental group of M with respect to the base point p, and let G(N) be
the fundamental group of N with respect to the base point F(p). Let {a¥}, {a]'} be the
generators of G (M), G(N), respectively, as described in Lemma 8.

Choose 2 generators a, a¥ of G(M) which are generators of a torus, and let o/,
oo, a¥in—1 be the remaining generators Let H(M) be the smallest normal subgroup of
G (M) containing ¥, ..., angm 1 and the commutator [G (M), G(M)]. Let GM) =
G(M)/H (M), and note that G (M ) is isomorphic to Z X Z.

We will now use Brownian motion on M to construct a recurrent process X; taking
values in G (M). After constructing a homomorphic image G (N) of the fundamental group
of N, we will define a transient process Y; taking values in G(N ). We will show, however,
that the converse of Theorem 2 implies that Y; is a function of X;. This leads to a
contradiction which establishes the theorem.

Recall that p is contained in the patch m;. Let 0, ¢,, O be neighborhoods of p,
contained in m;), whose images under c;) are discs of radii ¢, 2¢, 3, respectively. We need
the following theorem of Harris [8] which deals with Markov chains x, with state space X.

THEOREM 4. Suppose the following conditions hold:
(1) There exists a o-finite measure m on X such that if m(E) > 0, then for all x, € X,
P{x, € E infinitely often |x,} = 1;
(2) We can find A C X such that 0 < m(A) < o, and a constant C > 0 for which

P{x, €Edy|xo = x} = Cm(dy)

for all x, y € A. Assume also, that if p is the recurrence time to A, that E (p | xo = x)
is bounded independently of x.
Then, x, has a unique invariant probability measure.
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Now, let B2(¢) be the Brownian motion on M whose initial distribution B9(0) is the
measure @, concentrated on the boundry of ¢. Let 7o = 0; given 7;, let 7,+1 be the first time
after 7, for which B(7;+1) €90, and {B(t):7; < t < 7,1} corresponds to a nontrivial element
of G(M). Note that since M is compact except for deleted points, all 7; are finite.

Next, let x, = B9r,), and note that x, is a Markov process with respect to the fields
% =0o{B(t):t = ,}. @ is said to be an invariant measure for x, if, for all E € 90,

Q) = Q(dx)P{x: € E|xo = x}.

xXE0

Let m be the measure on 40 induced by Lebesgue measure on the circle c;q) (00).

We will show that x, = B9(r,) satisfies the conditions of Theorem 4 for all Q. Let {2
be the first time after r; that B9(¢) hits 3¢,, and {B9(¢):7; = t =72;} corresponds to a
nontrivial element of G (M); let 72, be the first time after 72, that B9(¢) hits 80 or 3 0s.
Then, for any x, € 80,

P{B9,) € E|BQ(O) =x)}=P{B%APY) e E|BQ(O) =X}
= inf.co, P(B9r¥) € E|B(r?) = x)
= infreqp@m P{W(EP) € ciy (E) | W(T}LZ)} =x}.

Recalling that c;q)(¢;) are discs with radii in the ratios 1:2:3, it follows from standard
probability theory that the above infimum is bounded below by dm (E), say. Thus, by the
strong Markov property,

P{BUm) g Eforn=K}=<][" sup:esoP {B%1,) € E|B?(1n-1) = x}

n=K+1

=Ir (1-46m(E)) =0.

n=K+1

Thus, condition (1) holds.
As for condition 2, let A = 30, and note that by the previous reasoning

P{B®(r1) € dy| Bg(0) = x} = inf.c;0, P{B%r{®) € dy|B9(+?) = x}
=dm(dy).

Now, by definition, the recurrence time to A is 1, and so condition (2) is satisfied. Therefore,
x, has an invariant measure, so we may set @ equal to this measure.

Let X; be the element of G (M) corresponding to {B?(£):0 < t < r;}. Since G(M) = Z
X Z, we may regard X asa process on Z X Z.

LEMMA 9. Let A, = X; — Xi_1. Then {A:} is a stationary process with E | Ai]* < 0.
Furthermore, the process is symmetric, so that A; and —A; have the same distribution.

Proor. We first prove symmetry. Let 7; be the last time between 7; and 7;.1, properly,
that B9(t) € 90. By a standard time reversal argument, {B9(7;x; — £):0 < t < T — 73}
has the same distribution {B9(r; + t):0 < ¢t < 7,41 — 7;}. However, these two paths
correspond to elements of G (M) which are inverses of each other. This verifies symmetry.

We now prove that EA} < o by using the fact that the generators of G (M) derive from
a torus. Let Z;, l; be smooth paths representing af, a3, respectively. Note that, since
{B®(t):7;< t = 7,41} is not homotopic to 0, it must cross I; or ; at least once, transversally.
Define a sequence of stopping times 7{ such that 7{’ = 7;, and 7{**? is the first time after
7™ that a = {B(t):7™ < t < #{"*V} intersects either /; or J; twice, transversally. As can be
easily seen from the fact that 4, I, correspond to the generators of a torus, P{7{"*" <
7i+1| ™ < 7,41} is bounded above by a constant, say 1 — §, which is less than 1. Therefore,
by the strong Markov property, P {7#{” < 7,41} = (1 — 8)". Let n; be the first integer such
that 7{ > 7:41, and note that | X;+; — Xi| < 2n;. By the above inequality, P{n; > K} =<
(1—8)% s0 E|A;]* < oo
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It remains to show that {A;} is stationary. But this follows from the strong Markov
property of Brownian motion, and the fact that B9(r;) has the same distribution @ for
all i.

We say that X; is recurrent if it returns to 0 infinitely often, with probability 1.

LeEmMA 10. X, is recurrent.

ProOOF. If the variables A; were independent, it would easily follow that X; was
recurrent. In our case, we need a central limit theorem for stationary processes, such as
Theorem 9 of Phillip [11]. Although his theorem is not stated in terms of vector-valued
processes, inspection shows that his arguments carry through without change in this case,
yielding the following theorem.

THEOREM 5. Let My, k, 1 € Z U {0} be the o-field generated by {A;:k < i < 1}.
Suppose that {A,} is a stationary process with EA; = 0 and E | A;|* < «. Assume that the
following mixing condition holds:

SUPLSUPAe. #101.| P{A | Mor} — P{A}| = @(1)
and ¥, '*(1) < ». Then
o}y = E(A{A)) + Y1 E(A{A) . + A{ALL)

exists, where the superscripts on A refer to vector components. Moreover, if o® is positive
definite, then

1
y(w E/{Ll Ak) b d N(O, 02).

By Lemma 9, E | A;|* < » and the variables A; are symmetric, so it also follows that EA;
=0.

Let us verify the mixing condition. We will use the notation of Theorem 4, so that ¢
C O, are circular neighborhoods of p (with respect to some coordinate patch). Let ¢, be
fixed and choose O to be small, as required in what follows. Let o be the first time that B
hits ¢;. Recall that the 7; are the stopping times used to define X;, and note that ¢ < 7,
almost surely. If S is the initial distribution of B on a0, let S be the distribution of B(c) on
30,. Thus, B9(¢) has distribution Q Standard estimates using the Poisson kernel show
that if e > 0, we may choose ¢ so small that for all initial distributions S on 90,

S(dx) = (1 — )@ (dx).

Now let S™ be the distribution of B(r,), given that B (0) has distribution S. Since § leads
to the stationary distribution @, we have shown that, for all S,

SMdx) = (1 — €)@ (dx)
and, therefore, by the strong Markov property,
S™(dx) = (1 — ™) Q (dx).

Also, if A € Mr+1,»,, then by the strong Markov property, P(A |.4o,) depends only on the
distribution of B(7x+;) given B(7:-1). By the above, this distribution is greater than or
equal to (1 — ¢/)@. Thus, the mixing condition holds with ¢ () = £’.

Next, we must show that

o =E(ALA]) + Y01 E(ALAL + A{AL)

is positive definite. Let @ % be the distribution of B(r:) conditioned on X;. We claim that
for each £ > 0, ¢ can be chosen so small that

(+) QY = (1-¢"Q + QY
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where @ is a probability distribution depending on X;. This would follow as in the
previous argument, if we could establish the equality for 2 = 1. Let O C ¢, C (; as before,
with @, Os fixed and 0O to be chosen sufficiently small. Let 6§ = 6§ = 0, lets{?; be the
first time after o!¥ that B(t) hits 80:. Let 02 be the first time after o that B(¢) hits
30 or 0. By standard probability theory, if O is a sufficiently small disc, and if S¥ is the
distribution of B(r{) given that B(r{’) = x and B(r{) € 40, then
* _ _£ £ &m
st - (1-)o 48

where U is the uniform distribution on 90 and S is a probability distribution depending
on x. Since both @ and @* are mixtures of the distributions S%, equation (+) follows for
k =1, and thus for all .

Using (*), we may define events A, such that, conditioned on X, the distribution of
B(7:)1(Az) is (1 — €*)Q and the distribution of B(r)1(Af) is *Q*. The choice of A, may
require the use of auxiliary random variables independent of {B(t)}. We also require that
A;, be independent of {A;:i > k}. This insures that, conditioned on A; and A.(Af,
respectively), Ax+1 has the same distribution as if B(r:) had the distribution @ (@,
respectively). Now let

Yie1 = Drs1 1(Ak), Zps1 = Ak+11(A?e)-

By the above, E[Yi+1| Al = (EAx+1)P(A) = 0. We also wish to show that EZ}.,; < Ce* for
some constant C. Since P(A§) = ¢*, this would follow if we could show, in particular, that

E[Afui|B(n) =x]<C

uniformly in x. But in Lemma 9, the proof that EA] < o did not depend on the starting
point B(0), so the inequality holds. Now | EA{A%+1 | < E | AL Y| + E | AL Z441 | where the
superscripts refer to vector components. The first term on the right is 0, so applying the
Cauchy-Schwartz inequality to the second term we get

E|A Zs1| = (E|AYPE | Yhar|D2 = Ce™2
Thus, in the equation
0} = EAIAL + Y1 E(A1A) 1 + ATALL),
the second term is bounded in absolute value by a constant times /2. o
It is easy to see that A, is not restricted to a subspace of R? and thus EA}A/ is a
positive definite matrix. A simple but tedious calculation of the characteristic equation
then shows that if ¢ is small enough, 6%, must be positive definite.
Next, let u, = P{A; +---+ A, = 0}. We intend to show that u, > Ck ™', so that the u,
sum to infinity. First, we need the following estimate. Let @ ® be the distribution of B ()

given that X, = x. Then by previous arguments, @* > (1 — €)@ for all x, so by the strong
Markov property,

P{Xy = 0| X, = x} = P{X, = —x| B(0) has distribution @ ¥
=(1-gPXr=—-x)=(1—-ePXi=x)
since X is symmetric. Thus,
Uk = Yeer P(Xn=0|X = x}P{Xr =2} = (1 — &) Toez P(Xi = x)2
Now by Theorem 5, we know that for some constant C, and for % large enough,
(*%) P{| X <k =C.

By a well-known argument, the sum of the squares ), P{Xk = x}? is minimized subject to
the constraint (++) when each point {x € Z*:| x| < £'/*} has equal probability, proportional
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to 1/k. Therefore, for some constant C,

1
— =

E*T

use=C EJ\:EZZ,|J\:|<kV2 ’

Bt

so the u; sum to infinity. .

Let fi_1|» denote the probability, given that X, =0, that Y; = Xp.: returns to 0 for the
first time at i = [ — k. Thus, fi-sjs = P{Xss1#0, - -+, Xi=1 % 0, X; = 0| X = 0). Since X,
= 0, there must be a last time 2 < [ such that X = 0, and so

u = 2;;10 ukfz_k|k for I=1, w=1
Adding these equations, we obtain
(##%) Stotwr= Yl Sico unfi—rip + 1= koo e Yicksr frorjn + 1.

Suppose that X; were not recurrent, so that if A is the event that X; ever returns to 0,
P{A} <1 — & for some § > 0. We claim that P{A|B(0)} < (1 — ¢)(1 — 8) + £ < 1. Indeed,
if ¢ is the time (with respect to B(t)) that X, first returns to 0, familiar arguments show
that the distribution of B (o) is greater than (1 — €) . The assertion then follows, and from
the strong Markov property, we conclude that for all &

Yk finr <1 —e)(1—8) +e<1.

But since Y 5—o ux = o, this contradicts equation (*#+*). Thus X is recurrent, and Lemma
10 is proven.

Unfortunately, X; is not suited to our purposes since it is induced by B and not B. Let
X, be the process induced on G(M ) by B(t).

LEMMA 11. X, is recurrent.

PrOOF. Let A, A be the event of recurrence of X, X, respectively. By Lemma 3.1 of [2],
given ¢ > 0, we can choose ¢ so small that

|P(A) — P(A)| =¢ P(A),

and so P(A) =1 — &. Since ¢ was arbitrary, P(4) = 0, and X; is recurrent.

Recall that H(M) is the smallest normal subgroup of G (M) containing a¥, - - -, a¥an_1
and [G(M), G(M)]. Now, F induces a map Fy from H/[H, H] to G(N)/[G(N), G(N)].
Since these are commutative groups with difference in dimension at least 3, it follows that
there must be at least 3 generators af, a, a¥ of G(N) which generate a subgroup of
G(N)/[G(N), G(N)] modulo Fy(H/[H, H]) isomorphic to Z X Z X Z.

Let H(N) be the smallest normal subgroup of G(N) containing af, ..., a¥x) _: and
[G(N), G(N)], and let G(N) = G(N)/H(N). From what we have said, F induces a map ¥
from G (M) to G(N).

Following the steps of the previous case, we could now construct a process ¥: from
F(B(t)), and obtain an invariant measure @ on F((). Note that by Lévy’s theorem,
F(B(t)) is Brownian motion on N with a new time scale.

LemMA 12. Y is transient. That is, ¥i=0 only finitely often with probability 1.

ProoF. LetA;=Y;— ¥i_.. Now consider a path of length 2. We will define events A,,
fori=0, .. -, k by induction. First, let A, be the entire sample space. Now suppose that we
have defined Ao, - - -, Ax_1. As before, it is easily shown that if @ is sufficiently small, then,
conditioned on Ao, -+, Az—; and 17'1, cee, ﬁ, the distribution of B(7:) is always greater
than (1 — ¢)@. Expanding the probability space if necessary, we can choose A; to be
independent of Ao, ---, Ar—1 and Yl, cee, Y. such that
(i) P(Ar) =1—¢
(ii) The distribution of F(B(r:)) given Ao, -+ -, Ay and ¥y, .-+, ¥ is Q.
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We define further random variables as follows. Our strategy is to single out those A, for
which both A,;_; and A;; occur. By construction, these A;; will then be independent of all
other steps, given 4,1 N A,;. Let

Sk = Yizhiodd Ai + Dizhieven Ail((Aim1 N A})°),
T, = Yiskieven Dil(Aim1 N Ay), and Nip = Yizpieven 1(Aic1 N Ay).
Thus, N; is the number of events A;_; N A; which occur. We claim that conditioned on N,
S;. and T} are independent. Indeed, conditioned on N, and S;, the distribution of T} is the
N,-fold convolution of the distribution of A; given Ao N A;. Since this distribution does not
depend on S;, independence follows. It is easy to see that this distribution is not restricted
to a 2-dimensional subspace of Z°. Therefore, by a theorem in Spitzer [14], page 72,

supzez*P{T) = x| N} = C N;** for some constant C independent of N;. Since Sy and T’
are independent given N;, and since Y, = S, + T}, it follows that

P{¥,=0|N,} = C N;*2.
We show that Y5-o P{¥, = 0} < co. Note that P{N, = i} = (})(1 — &)'¢*~", so that
P(9.=0,Ny=i) = P(Yys=0|N; = i}P(N, = i}

=C i_3/2<]:)(1 — )

k! o

1:1/2 - i k—i
R T R
E+2 o
”y,—3/2 — +2_k—i
=C"k (i + 2)(1 g)i Tk

Summing over i = ..., k’ we Obtain, after r elabeling C,
P{¥,=0} < CE % (1 —¢) + &)**? = Ck~¥2.

Thus, ¥7-o P{l?k = 0} < . By the Borel-Cantelli lemma, ¥, is transient. This verifies
Lemma 12.

Davis’s agrument, as in Lemma 11, then shows that if Y; is the process induced by
F(B(t)) with B(0) = p, then Y is also transient. But then FX) = Y;, and X, is recurrent.
This contradiction shows that F must be constant.

Added in proof. T. J. Lyons has communicated to us a short classical proof of
Theorem 2.
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