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AN ALTERNATE PROOF OF A CORRELATION INEQUALITY
OF HARRIS

By J. THEODORE Cox

Syracuse University

A theorem of Harris states that a monotone Markov process on a finite
partially ordered set has positive correlations at time ¢ (assuming positive
correlations at time 0) if and only if each jump of the process is either up or
down. A new proof of the sufficiency of the jump condition is presented.

The purpose of this note is to present an elementary proof of a correlation
inequality (see [1]) of Harris. This proof may be of some value since it avoids an
auxiliary process, the FKG inequality for product measure, and an approximation
theorem of Trotter used in the original proof. We start by repeating some of the
notation and definitions of [1].

Let E be a finite set with partial ordering <. For any pair of real functions p
and f defined on E we write p(f) = Yxerp (x)f (x). A probability measure on E is
just a nonnegative function p on E such that pu(1) = 1. A real function fon E is
called increasing if f (x) < f(y) whenever x <. C; will denote the set of increasing
functions. A probability measure p on E is said to have positive correlations if
p(fg) = p(f)r(g) whenever f, g € Ci. M, will denote the set of probability
measures with positive correlations.

Let {X,, t = 0} be a Markov process with step-function paths in E and
transition function p (¢, x, y). T. and U, are the usual semigroup operators,

Tif(x) = Yyeep(t, %, ¥)f (y) and Up(y) = Yxeep(x)p (£, X, ¥)-
The generator is A,
A(x,y) =lim ot (p( x,5) — p(0, x,)).
{X.} is called monotone if T;C; C Ci.

The Harris correlation inequality is

THEOREM. Let {X,} be a monotone process in a finite partially ordered state
space E. In order that UM, C M, for each t > 0 it is necessary and sufficient
that each jump of {X,} is up or down.

We consider only the proof of the sufficiency of the jump condition; the proof
of the necessity given in [1] is short and simple. As in [1] the problem is to show
thatforallt>0,f, g€ C;, x € E,

(1) T.(fg)(x) = T.f(x)T:g (x).
The fact that U.M,, C M, follows easily from (1).
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For any real function hon E,0<u<1landx€E
©@ T.h(x) = h(x) + u ¥ ,erA(x, y)h(y) + brcru’| A

where ¢, is a finite constant independent of u, h, and x, |6,| = 1, and || =
max,cz|k(y) |. Using this expansion, and the fact that ) ,erA (x, ) = 0 we can
write

T.(fg)(x) — Tuf(x)Tug8(x) = u Y erA(x, y)[f(x) — f(»)g(x) — &(¥)]

+ Geou”|| flll 2l

where ¢, is a finite constant independent of u, f, g, and x, and | #:] < 1. Assuming
f, g € C; and using the “up or down” jump property (3) implies

() : T.(fg)(x) = Tuf(x)Tug(x) — c2u’|| f]l I &1l.
Using the standard properties of T we can iterate (4) to obtain

(5) Tuso(f8) (%) = Turof (%) Turog(x) — c2(@® + V) || fll l ]l

If t > 0 and n is a positive integer larger than ¢, (5) implies

(6) T(fg)(x) = Tuem (f8)(x) = T.f(x)T:g(x) — can(t/n)? ||fl l £]l-
Let n — o in (6) to obtain (1).

NorTE. After completing this work the author learned that Professor Thomas
Liggett had previously discovered a proof of (1) which is similar to the one
presented above. This proof will appear in Professor Liggett’s forthcoming book,
Interacting Particle Systems.
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