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URN MODELS FOR MARKOV EXCHANGEABILITY!

BY ARIF ZAMAN
Florida State University

Markov exchangeability, a generalization of exchangeability that was
proposed by de Finetti, requires that a probability on a string of letters be
constant on all strings which have the same initial letter and the same
transition counts. The set of Markov exchangeable measures forms a convex
set. A graph theoretic and an urn interpretation of the extreme points of this
convex set is given.

1. Introduction. Let V be a finite set and {U(u)}.ev be a collection of
urns. Each urn U(u) contains a total of ¥ ,cv a,, balls, with a,, of them labeled
v. Choose a fixed X; € V and construct a random sequence X;, Xs, - -+, X, by
letting X;.; be the label on a ball drawn from the urn U(X;). It is clear that the
resulting sequence is a Markov chain if the draws are done at random with
replacement. When the draws are done without replacement, after some draw X,
the urn U(X,,) will be empty, so that the ball X,,.; can’t be drawn. The probability
distribution on these finite random sequences, with some modification (namely
conditioning on the event that n =1 + Y a,,, i.e. all balls from all urns are used),
is an example of a Markov exchangeable distribution.

A probability on finite strings of letters is said to be Markov exchangeable if
it assigns the same probability to strings which have the same initial letter and
the same transition counts (e.g. abbaab, abaabb, aabbab, or aababb). Diaconis
and Freedman (1980) consider the problem of expressing the extreme points of
the set of Markov exchangeable probability measures. The general solution was
posed as an unsolved problem, though they gave an urn model for a two letter
alphabet. A solution to the general alphabet was given in Zaman (1981) in terms
of the urn models mentioned in the previous paragraph. The proof in that paper
can be simplified considerably by using a well known identification between
strings of letters and paths on a graph. The original solution can then be seen as
a restatement of the BEST theorem of graph theory, named after the initials of
de Bruijn and Ehrenfest (1951) and Smith and Tutte (1948). The BEST theorem
has been used before to get results for Markov chains, e.g. Dawson and Good
(1957), Goodman (1958), as well as the survey paper by Billingsley (1961).

Sections 2 and 3 review Markov exchangeability and the finite form of
de Finetti’s theorem. Sections 4 and 5 review the basics of graph theory and the
BEST theorem. In Section 6, these are combined so that the BEST theorem can
be applied to draws from urns. The urn model for the extremal Markov exchange-
able measures is given in Section 7. Section 7 may be read by itself, even though
the previous sections develop the necessary background.
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2. Partial exchangeability. For the assignment of subjective probabili-
ties, exchangeability has been proposed by de Finetti (1975) as a simplifying
assumption reflecting a symmetric type of ignorance. Given random variables
Xy, -+, X, if a priori “each random variable is like every other one,” then a
prior should reflect this ignorance by being unchanged under a reordering of the
X’s. For example, whatever probability is assigned to the event (X; =1, X; =1,
X5 = 2) must also be assigned to the two other rearrangements with one X = 2
and the other two X’s = 1. Some enthusiasts have found exchangeability a
complete replacement for the classical i.i.d. assumption for the reasons that (1)
it is an understandable assumption, (2) it is the correct Bayesian counterpart to
the classical concept of repeated trials and (3) by using de Finetti’s theorem for
finite or infinite sequences of exchangeable random variables it is possible to act
as if a sequence is i.i.d. with some unknown distribution, starting from the
“weaker” assumption of only exchangeability.

In a Markov chain, Xj, - - -, X,, the state X; can only affect the probabilities
of its immediate successor X;;;. In the spirit of exchangeability, if “every
transition (X;, X;.1) is like every other transition (Xj;, X;.+1),” then two sequences
with the same transition counts and the same initial state should be assigned the
same prior probability. For example, the probability assigned to the sequence 1,
2,1,3,3,2,3, 2 must also be givento 1, 2,1,3,2,3,3,20r1,3,3,2,3,2,1, 2.
Any measure satisfying this property is called Markov exchangeable.

Defining things formally, let V" denote all the sequences of length n taking
values in a finite set V and let “~” be some equivalence relation on V. Variables
which are sequences are shown in bold print. A measure P on V" is called
partially exchangeable with respect to “~” iff

Vx,yEV"” x~y= P(x)=P(y).

For example, define “~” by x = y iff the sequence x is some permutation of
y. Ordinary exchangeability is easily seen to be partial exchangeability with
respect to “=”. As another example, let ¢,,(x) = #{i: x; = u, xi+1 = v} which is
the number of u — v transitions in x. Define “=” by x = y iff x; = y; and ¢t,,(X)
= t,,(y) for every u, v € V. A measure is Markov exchangeable iff it is partially

€

exchangeable with respect to “=”.

3. De Finetti’s theorem. Given a relation “~”, it is of interest to describe
the set of all probability measures which are partially exchangeable with respect
to it. Theorem 1, sometimes referred to as the finite form of de Finetti’s theorem,
provides a simple description of this set.

Let [x, ~] denote the equivalence class of x under the relation ~. For any set
A C V" let P, denote the uniform probability measure on A.

THEOREM 1 (de Finetti). The set of all probability measures partially ex-
changeable with respect to ~ is a simplex with extreme points of the form P -;for
xevn
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A nice discussion of this theorem is given in Diaconis and Freedman (1980).
In the form given above, the theorem follows almost directly from the definition
of partial exchangeability. Its power comes when the extremal measures Py -,
can be given a simple interpretation. As an example, for exchangeability let x =
(1, 1, 2). Then P4~ picks one of (1, 1, 2), (1, 2, 1), or (2, 1, 1) each with
probability 1/3. In general any extremal measure Px~; can be seen to be a
random sequence drawn without replacement from an urn containing the rn items
X1y ** 0y Xn.

For Markov exchangeability [x, =] is the set {y € V": y; = %1, Vu, v € Vi, (x)
= tu(y)}. Although this does completely characterize the equivalence classes,
and hence Py ~j, it has very little intuitive content. The next section considers
sequences generated by walks on graphs, which will be used to provide an “urn
interpretation” for [x, =] and Px ;.

4. Graphs. Let (V, E) be a finite directed graph. For u, v € V let E(u, v)
be the set of all edges in E directed from u to v. Let E*(u) = U,evE (u, v); d*(v)
= #E™*(v) is known as the outdegree of the vertex v. Similarly E~(v) = U,evE (v,
v), and d~(v) = #E~(v) is known as the indegree of v. A sequence of n vertices x
€ V"andn — 1edgese € E" ' is called a walk if e; € E(x;, x;41) fori=1, ---,n
— 1. The walk is closed if it uses each edge exactly once. A graph is called a tree
if it has no closed walks. A graph (V, F) is called a subtree of (V, E) towards v
€ Viff (V,F) is atree, F C E, and for each u € V, u # v there is a unique edge
f(u) € E*(u) such that F = {f(u): u # v}. Graphically, this is the situation
when from each vertex other than v there is exactly one edge leading out,
eventually leading to v.

5. The BEST theorem. Define an exit order of a graph as a choice of a
special vertex v, and for each vertex v € V an edge sequence r(v) € E%*(v) which
contains all the edges in E*(v) in some order. Note that an exit order assigns an
order to the edges which lead out from any given vertex. Given an exit order
(vo, {r(v)}vev), a unique walk (x, e) can be constructed by letting x, = v,, and
continuing from any x; by picking the first edge (in the order specified by r(x;))
that is unused to proceed to the next vertex. When the walk reaches some x,
where all the exit edges have been used, it will be terminated.

It is clear that only walks which do not reuse edges can be constructed by the
above method. Two different exit orders may give rise to the same walk as is
shown in Figure 1. On the other hand, every Eulerian walk can be constructed
by an exit order, and that order is unique. For an Eulerian walk (x, e) the unique
exit order corresponding to it is given by vo = x; and r(v) is the subsequence of
e containing all the elements of E*(v). The exit orders which correspond to
Eulerian walks are identified in the following theorem.

THEOREM 2 (BEST). An exit order (vo, {r(v)},ev) corresponds to an Eulerian
walk iff ‘

(i) v, € Vsuch that Vv € V. d*(v) + 8,,(v) = d™(v) + 8,,(v).
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(ii) Let F = {rg+w)(v): v # v1}. Then (V, F) is a subtree towards vy of (V, E).

Note that condition (i) is only based on d*, D~ and v,, which refer only to the
structure of the graph; and so if it is not satisfied, there are no Eulerian walks
on that graph starting from v,. If the graph permits Eulerian walks from v, (i.e.
(i) holds), (ii) identifies the exit orders which produce Eulerian walks. When (i)
is satisfied, the vertex v, is unique and all Eulerian walks from v, end on v;.

A very clear proof of this theorem, as well as further results on the number of
subtrees or the number of Eulerian walks possible on a graph, can be found in
Kastelyn (1967).

6. Walks and urns. We shall make a correspondence between the urn
model proposed in the introduction and walks on a graph. Let the vertex set of
the graph be V and identify each urn U(v) with the vertex v. Each of the a,,
balls in U(u) labeled v is to be identified with an edge from u to v, so that U(u)
contains all the balls (edges) corresponding to E*(v). Thus the edge set corre-
sponds to the set of all balls in all the urns. A walk corresponds to choosing an
initial vertex (urn) x;, and then at each step picking an edge (ball) e; from the
set E*(x;)(urn U(x;)), and moving on to the vertex (urn) x;4; given by the out
direction of the edge (by the label on the ball). Notice that since each edge is
considered distinguishable from every other, we shall treat by each ball as
distinguishable from every other ball, even if two balls have the same label and
are in the same urn.

f f

e g e g
d h d h

C (¢

a Iy
(x,e) withx=1(2,3,2,3,1,2,1,1, 3) and (x,e) withx=1(2,3,2,3,1,3) and e =
e=(b,ca,ged,f h)is an Eulerian walk (b, ¢, a, g, h) is generated by the exit order v,
generated by the exit order vo = 2 and r(1) = =2and r(1) = (h, e, f), r(2) = (b, a, d), r(3)
(e, f, h), r(2) = (b, a, d), r(3) = (c, 8). = (c, &). If r(1) is changed to (h, f, e) the

same walk is generated.

Fic. 1. Examples of exit orders and their associated walks on the graph (V, E) where V = {1, 2, 3}
and E = (a, b, ---, h). The vertices are shown as circles, and the edges as arrows. The dotted lines
within the circles show the walks.
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In order to get an Eulerian walk, a ball once drawn should be discarded (no
edge is used more than once) and all urns should be empty at the end of the walk
(each edge is used). For an Eulerian walk (x, e) with exit order (x,, {r(v)}), for
any fixed v € V the sequence r(v) corresponds to the order in which the balls
are drawn from the urn U(v).

To introduce probability in this setting, completely sample each of the urns
U(v) at random without replacement to get sequences r(v) for each v € V. Select
a fixed vy € Vto get a random exit order (vo, {r(v)}) with its associated probability
measure P. By the BEST theorem, either there exists some unique final vertex
v; satisfying condition (i) of the theorem, or no Eulerian walks are possible. We
assume the former, and define two other random variables based on this random
exit order just defined. Let F = {ry+y)(v): v # v;} be the random set of last balls
from urns other than U(v,). Let (X, e) be the walk associated with the random
- exit order, if there is one. As further notation let ¢(vo) denote the set of all
Eulerian walks on (V, E) starting from vy, and 7(v;) denote all subtrees of
(V, E) towards v;. Then the BEST theorem implies that {(X, e) € &(vo)}
={(V, F) € 7(v1)}, and so P(- | (X, e) € e(vo)) = P(-|(V, F) € 7(v1)) when &(vo)
is not empty. We are nearly done because P(- | (X, €) € ¢(vo)) is very close to
the elusive measure P ~;that we want, while P(- | (V, F) € 7(v;)) has a relatively
simple interpretation.

To see the relationship between P4 ~; and P(- | (X, e) € &(vo)) we will show
that the random variable X has the same distribution under the two probability
measures. Because P is an urn measure, it is uniform on all exit orders, and
hence P(- | (X, e) € ¢(vo)) is uniform on all exit orders corresponding to Eulerian
walks. Looking only at the distribution of X the random vertex sequence under
P(-|(X, e) € ¢(vo)), the number of edge sequences e which combine with X to
make an Eulerian walk is a constant independent of X, so P is a uniform
probability measure on all Eulerian vertex sequences, i.e. on {X:(X, €) € ¢(v,) for
some e}. Since all Eulerian walks have the same transition count, this last set
{x:(x, e) € ¢(vo) for some e} = [y, =] for some y € V. To summarize, we simply
have that there is somey € V" such that forall A C V"P(X € A | (X, e) € (vo))
= P[y,z](X (S A)

A simple urn model for P(-|(V, F) € 7(v;)) is obtained by first considering
P(-| F=F,) for some given (V, F) € 7(v;), with P(F = F,,) > 0. By the definition
of a tree towards v; there is a set of edges f(v) for v # v, so that Fy = {f(v):
v # ;). The random set F = F, if and only if for every urn U(v) with v # vy,
the last draw from U(v) is f(v). A simple way to accomplish this is for each v #
v; to take one ball labeled f(v) from U(v), and “glue” it to the bottom of that
urn. The draws from such a “glued ball urn” will be assumed to be just like
random draws from an urn, with the glued ball impossible to draw until all others
have been removed.

We have now established the equivalence of

Py~ () =P(-|XE¢)=P(-|(V,F) € 7(v1))
= Y herwy) P(Fo| F € 7(v1))P(- | F = F,).
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It only remains to combine the various steps into one full procedure. The next
section gives the complete description of an urn method to get the extremal
Markov exchangeable measures.

7. The glued balls method. We first give a description of a method using
urns to generate the extremal Markov exchangeable measures. This is followed
up by some comments at the end, which while necessary to be precise, make the
description long.

0 For a finite set V, select the parameters vo € V, v; € V, and a,, = 0 for all u,
v € V, satisfying

zuEV Ay, + Bvl(v) = ZuEV Quy + 5vo(v)

forallve V.
1 Construct urns U(u) for u € V such that U(u) contains a total of Y ,ev au,
balls with a,, balls labeled v for each v € V.
For each v # vy, let f(v) be the label of a ball selected at random from U(v).
If (V, {f(v)}) is not a tree to v, (see comments) return to the previous step.
Glue the ball f(v) at the bottom of U(v) for each v # v, so that it does not
interfere with random drawings of other balls, but itself can only be drawn
after all others have been removed.
5 Let X; = vy, and let X, be the label of a ball drawn from urn U(X;), until
after some X, the urn U(X,) is empty.

LY V]

The final sequence X € V " is a single sample from some extremal distribution
P4 ~, the particular distribution determined by the choice of parameters in step
0. For a specific x € V, the appropriate choice of parameters to get Pix,~ is Vo =
%1, U1 = %, and a,, = t,,(x) the transition counts of x.

In the third step, the notation (V, {f(v)}) refers to the graph that would be if
the f(v) are thought of as edges from the vertex v to the vertex f(v). In fact all
references to graph theory can be dropped by replacing that step with “If there
is some v # v; and k > 0 for which f*(v) = v then return to the previous step,”
where f* is understood to be the composition of f (considered as a function
f: V— v, — V) with itself k times.

Finally, the repetition possible between steps 2 and 3 can be avoided by
replacing the two steps with:

Let % represent all trees to v;, or in the language of the preceeding comment,
let & ={f(-): Vv # vy, VE>0f*(v) # v}. Select f(-) € & at random according
to the probabilities

Hv#v avf(v)
Pif()} = L— .
| Yere 7 Horo, Qew

This probability is simply P(F = Fy| F € 7(v,)) for Fo = {f (v): v # v,} as defined
in the previous section. '

8. Conclusion. The urn model given for Markov exchangeability seems
like a rather contorted construction. Intuitively, the different urns correspond to
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the different probability distributions corresponding to each state. The glued
balls represent only a minor modification necessary to ensure a full length
sequence of draws. Viewed in this way, the model seems a bit more natural.

In the case of exchangeability, a claim was that exchangeability was the
fundamental intuitive concept, and that the i.i.d. condition was a mathematical
luxury which is not needed. On the other hand, in this case it seems as if the
intuition derives from Markov chains with independent transitions; and Markov
exchangeability seems to be a nonintuitive concept which can be justified or
understood in the light of the more reasonable Markov chains. Furthermore,
Diaconis and Freedman (1980a) show that even an infinite Markov exchangeable
sequence is not necessarily a mixture of Markov chains, so that further conditions
are needed before a result like de Finetti’s theorem for infinite sequences can be
established in this case.

It appears that Markov chains and Markov exchangeability are both funda-
mental and different concepts. There may be times when a prior belief may
satisfy a symmetry condition, and times when the full independence of each
Markov transition may more closely reflect a true prior belief. Carrying this
analogy further, it appears that the classical ii.d. condition cannot be replaced
by exchangeability, even though it probably is overused in cases where exchange-
ability is a more natural condition.
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