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A NOTE ON THE LAW OF ITERATED LOGARITHM FOR WEIGHTED
SUMS OF RANDOM VARIABLES

By ULRICH STADTMULLER

Universitdat Ulm

Sufficient conditions for the validity of the upper and lower inequality of
the law of iterated logarithm for weighted sums Y% @..X; of iid. random
variables (X;) are given.

1. Introduction and results. In this note we consider i.i.d. random variables
(X;) assuming
EX) =0, EX}) =1,

and lower triangular real matrices (@, 1 =k <=n,n=1,2, ...) to form the
weighted sums

(1.1) W, = ZZ=1 e Xe.

In case of independent Bernoulli variables (X;) with values =1 and corresponding
probabilities p = ¢ = % and the matrix a¢.. =1 - k/n, 1<k =n,n =1, Gal [6]
(1951) showed the “upper inequality”

(1.2a) lim sup,,_,w—W—n =<1 as. (log:n:=loglogn)
V% n logsn
and Stackelberg [16] (1964) the “lower inequality”
W,
(1.2b) lim suppo——— =1 as.
V% n logan

of the law of iterated logarithm (LIL).

The LIL for Bernoulli variables or in other words for Rademacher functions is
also connected with the so called “Borel Property” of summability matrices A.
(For the definition and some results see Section 3). Gaposhkin [7] generalized the
results (1.2 a, b) to the case of i.i.d. and bounded random variables (X;) and the
matrices a.x = (1 — k/n)*, 1 < k < n, for some a > 0 (and also some Abel means).
He obtained

W
(1.3) lim sup,—« =1 as.

«/(2/(20& + 1)) - nlog:n

In this case the elements of the matrix are of form: (*) a.. = f(k/n) with f(¢) =
(1 — ¢)* Tomkins (1971) [21] considered matrices of type (*) for f € C[0, 1] and
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36 ULRICH STADTMULLER

independent random variables (X;) satisfying some exponential inequalities and
proved lower and upper inequalities for a LIL. In [23] (1975) he generalized the
results to martingale difference sequences (X;).

A different type of matrices, namely @nx = cn—z, (¢x) € ko, was investigated by
Chow and Lai (1973) [2]. In this case a different limit behaviour occurs.

In (1974) again Tomkins [22] proved lower inequalities for the LIL for a class
of triangular arrays of r.v’s under some more technical conditions. (See also
Eicker [5] and results cited there for more results in this direction). In addition
he also obtained results for weighted sums W,,. But his conditions do not fit to a
situation occurring in nonparametric estimation of regression curves, based on a
fixed grid, in which we are interested (see [17]). In other words we consider the
model

Yi=m() +e¢, 1=j=<N, 0=stH=..-=sty=1

with iid. error variables (g) and some smooth regression function m(-) on
[0, 1], and a general linear estimator

mn(t) =X pin(t) Yot Yo/ #tr € L),

where I, are intervals with ¥%-0 Iin = [0, 1], n = n(N) 7 o and ¥, pjn()m(&;n),
¢n € I, is an approximation operator of interpolatory type. Hence min (to) —
E (1in(to)) is of form YV anre: and the exact rate of pointwise convergence is
connected to the LIL for the sum (1.1).

Most recently Lai and Wei [12] also have investigated weighted sums of
independent random variables, but their technique and results are different from
ours. For a further comparison of the results, see Section 3.

On the other hand P. Hall [8] has proven a LIL for a class of density estimators,
proving a LIL for normally distributed r.v.’s and then using strong approximation
results for the empirical distribution function to transfer the result to the
estimators. The basic idea can also be used in our case. Observe that W, is not a
functional of the empirical distribution function of (X,)/-1, but here strong
approximation results for sums of iid. random variables can be used. For ( 1.1)
one can describe the situation roughly as follows: To obtain an upper inequality
we need some strong dependence conditions on Wy, Wy1, «++, Wair, 'n — o,
r» = o(n), compare (1.4).

Whereas for the lower inequality we need some kind of “independence condi-
tion”, compare (1.6), which guarantees that in the step from W, to Wa., the
“new” random variables X,+1, -+ , Xn+, have a positive weight with respect to
W.,.. The lower inequality was essentially proven for normally distributed random
variables in the paper of Tomkins (Theorem 5 in [22]).

THEOREM 1. Let X1, Xz, - - beii.d. random variables with E(X:) =0, E(X 3
=1and (@, 1<=k=<n,n=12 -..) a lower triangular real matrix with
8=k /wasn— .

a) Assume furthermore that $,/s,+1 — 1 as n — o,

. . . . 2
(1.4) lim,, 1+ im inf,omin,, ;< 2 s2<, k=1 Gmk@nr/Sm = 1.
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and
(152)  (nlogan)*{Ti=s | Gnk — @ns-1]| + | @nn|}/VsTlogast = O(1).
Then
lim supn—. W,/ «/23,2.10—gz—s-,2-, =1las.
b) If (1.5a) and
(1.4a) Sn/Sn+1—> lasn— o

hold, and if for any € > 0 there exists some A, > 1 such that with n; :=
min, {s, = A*} and % large enough
, &2 9
(1.6) Snk_1 m = 272_11 ankl,
then

lim sup,_..W,/v2silog:sz = 1 ass.

COROLLARY 1.
a) Under additional moment conditions, (1.5a) can be weakened, so if
i) E(| X1|?) < « for some p > 2, then

(1.5b) nP{33 | @nk = @ng-1| + | @nn|}/Vsilogass = O(1)
ii) E (e**1) < o in a neighborhood of t = 0, then
(1.5¢) log n{Y5 | @n — @ni-1| + | @nn|}/Vsilogess = o(1)

is a sufficient condition.

b) Assume now, that the X; are only independent and satisfy the moment
conditions E(X;)) =0, EX}) =1, E(|X;|’ ) =M< fori=1,2, ., and some
p > 2, then (1.5a) has to be replaced by

(1.5d) n*(log n) 4% | @ne — @np-1| + | @nn|}/Vsilogesi = O(1).

COROLLARY 2. In case s% - o, but for some sequence (b,) /7 ®, (Gn) = (Gns-
b,) satisfy the conditions of the theorem, we obtain

lim sup,_. W,/ v2s2logz(s,b,)? {i} 1 a.s. respectively.

REMARKS.
i) In case the r.v.’s (X;) have a joint normal distribution, condition (1.5a) is
superfluous.

il) Even in case the r.v.’s (X;) are not independent a LIL can be proven.
Condition (1.5) has to be replaced by an appropriate condition depending
on the strong approximation quality. For results of this kind consult e.g.

[1].
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iii) If ane < came for 1 = B < m < n and some ¢ > 0, condition (1.6) can be
satisfied (see [22]).

iv) In many cases s,/s, — 1 is equivalent to n/m — 1, as n — o, (see Section
3), but in general this is wrong, e.g. if s, = log n or s, = exp((log n)*), p >
1 (despite Sp+1/8» — 1).

2. Proof. The proof for a) and b) contains two steps:

i) Prove the results for normally distributed r.v.’s

il) Approximate appropriate normally distributed r.v.’s by versions of the
original variables.

a)
i) Assume that Y3, Yz, - .. are iid. N(0, 1)-distributed r.v.’s
(2.1) Vo= Yk=1 @Y, Tn:=Y%=1 Yz

For 1 = m < n, (V,, V) has a joint normal distribution with covariance matrix
C:

_(2f ar, XU amkank _. o} o12
(2.2) C ( S al, = o1 o
It is well known that

012 2 ot
(2.3) P(V,=x| V=2 = X;— 2, 0i——%

g2 02

t—p?\ dt
where A" (x; u, 6°) = [%, exp ( ( 205) > —. Denote g(n) = (2sZlog:s2)'/* by
270

(1.4) we can choose for any ¢ > 0:p(e) > 1s.t.:
For n; := min{n, s%2 = p*} and all m € {nx + 1, -+., nps1} the following
inequalities hold

(2.4) g(m)(1 + 3e) = (1 + 2¢)g(ne+1)
for % large enough.
Zv-l amvankﬂv

21=1 a?nl

Following an idea of Kiefer [10], page 241, inequality (4.14), see also Hall [8],
page 50, we can conclude

P(Vn,,, = (1 +¢)-g(ne+1)| Vi
= (1 + 3¢)-g(m) for at least one m € {nx + 1, - -+ , ng+1})

(2.5) (1 + 2¢) =1+e

= infme(m,ﬂ,---,n;,+l),zz(1+3e)g(m) PV, = (1 +€)-8(nr+1)| Vi = 2)

and by (2.3)

= i0f,c (1, . ) 2= (1430) g(m){ ([(1 + €)g(ny+1) —"7 2]/\/ — 0%:/0%; 0, 1)}
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using (2.4) and (2.5) and the monotonicity in z we obtain
= 1= #([(1 + e)g(nas) — (1 + e)gnan)]/ Vol — 0%/0% 0,1) = %.
Using P(B) < P(A)/P(A | B) we have gained the following maximal inequality:
P(V,=(1+ ¢)g(n) for at leastone n € {np + 1, - -+ , np+1})
= P(Vy,,, = (1 + &)g(n+1)) /P( Vi, = (1 + €)8(ne+1)| Vin = (1 + 3e)g(m)
for at least onem € {np + 1, - -+ , ng+1})
< 2P(Vy,,, = (1 + &)g(ns1)) = 2(1 — A (1 + ¢)- V2 logzs2, , ; 0, 1)) < éR~0+9)

and by the Borel-Cantelli Lemma we obtain a) for the case i).

b)
i) part b) follows immediately from the proof of Theorem 5 in [22], observing
that by (1.6) we obtain with
U= 3045 any Yy, uk=E(UR; ti, =2log:sh,; vi=E((Sy — Un’):
€ | Ukl Snp_y Sn,
>—-8 = =€ .
P(l U.|= 3 .s,,ktnk) P( " = o -~ b,
| Ur| €
= P(-—L—t;— =1+ 20 tn,
and

2 : 2 2
(ﬁ) =1- (—lff) >1- % for % large enough,

Sn,, Sn,

which are the key inequalities for the proof in [22].
a) and b)
ii) By Abel’s partial summation method we find (S, = Y%_, X,)
Zg-l aneXp = 22;11 (@ = @nk+1) Sk + @nnSh.

Using a result of Strassen [19] we obtain for proper versions of the considered
random variables (X;) and (Y):

(2.6) maxi<k=n| Sk — Tk| = as. o (vn logzn).
Hence
Yk=1 @neXi = Y321 (@nk — @np1) (Sk — Th) + @nn(Sn — Ty)
+ Y221 (ank — @nps1) Tr + @nnTn
= Yi-10mYr + Rp.

By(2.6) and (1.5a) we find that R,/vs%logzs% B oasn— oo, which together
with part i) proves the theorem.
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For the proof of Corollary 1a), use the strong approximation results of Komloés,
Major and Tusnady [11]; then we can replace in (2.6) o (Vn logzn) by o (n'/?) or
o (log n) respectively. For Corollary 1b), Theorem 4 in [1] gives an appropriate
strong approximation quality.

3. Additional remarks.

i) Looking at the recent results of Lai and Wei [12] we find that their
assumptions are related but not quite comparable with ours. They investigate
the case of matrices (@.z) nr-1, Where the J; norms of the rows, say s,, exist for all
n € N and tend to infinity as n — o, and independent normalized random
variables with E (| X;|?) =M < x,i=1,2, ..., for some p > 2. Furthermore it is
supposed that:

3.1) supraz. = o(si(log s2)™*), forall p>0.

For the upper inequality of the LIL they demand that there exist constants =
0,d=2/ps.t.

E(S:—Sn)) = Qlmt1c)? forall n>m=m, and
(3.2)
Crme1 )= 0(s?) forall n>m= m.

We suppose instead of (3.1) and (3.2) that s,/s,+1 — 1 as n — « and that
(1.4) lim,—, 1+ lim SUPn— 0 SUP1<s,/sm=p & ((Sn — Sm)?) /8% = 0.

Condition (1.4) says that the second moments should vary smoothly whereas
(3.2) demands that the changes of the second moments in total should not be too
large. We have to assume, in addition, condition (1.5) which in a certain sense is
a more technical condition for our proof.

Considering the lower bound of the LIL, we find that condition (1.6) corre-
sponds to (1.13) in [12] with I, = {nxp—1 + 1, --- , nz}. We need (1.5) in addition
whereas in [12] the assumptions (1.14-1.15) demand that s, behaves essentially
like c* for some ¢ > 1.

Lai and Wei derive direct estimates to prove their results which leads to a
more complicated proof. A further comparison of the results will be found under
ii) where we consider special classes of weights.

ii) Special classes of weights.

a) For weighted averages an. = az, 1 < k < n, the situation is somewhat easier
since the n-dependence is separated. This case was extensively investigated, see
e.g. Chow, Teicher [3, 4] Teicher [20] or Moricz [15] for results. In case the
weights a, are positive and nondecreasing, our assumptions for the LIL are:

(14) Sn/Sn+1— 1 or equivalently a./s,—0 as n-— o
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and

2 2
(nlogan)* ——= = 0(1) or equivalently 3" =0 logsn
(1.5) (52 logss2) o Togon

(or nai/si = O(n'"*Plog,ss/logen), if E(|X:|?) < ).

Condition (1.6) is satisfied trivially (see remark iii). Compare those with the
assumptions of Theorem 3 in [20]:
Qan na?t

2
(3.3) <s—> = O((log s2)™") and = O((log s2)?) for some B<1.

n n

In [12] the condition for LIL is very simple (but more than the second moment
has to exist; see [20] for the relation between conditions like (3.3) and moment
conditions), namely

2
(?) = o((log s2)) forall p > 0.

n

Considering the basic example a; = £%(log k)?, 2 < k < n, all results contain the
cases where (ax) is nondecreasing. Without further moment conditions our
theorem fails for ~% < a < 0 since then 2| A a@.x| is dominated by a> but s3 =
o(n'?) and condition (1.5) is no longer true.

B) Another interesting class of weights is given by a.. = f(k/n), f € C[0, 1].
Condition (1.4) is true, since

1
~n f £2(0) dt = n | I3
0

and since the continuity of fis by far sufficient for:

) ) -5 - )

=(1+0(1))ZZ'=1f2(—:;) as n— o and -::;—>1.

To ensure condition (1.5a) we need in addition that f € BV[0, 1]. (In case
E (| X1|?) < o for some p > 2, we have some more freedom to choose f). Hence
we obtain for f€ (C N BV) [0, 1]

. W(n) a.s.
hm Supn—>oo )1/2 = " f"2'

(2n logan

(The same is true for bounded and monotone f). In [21, 23], fis assumed to be at
least absolutely continuous. In [12] a sufficient condition is given by f € Lip,,2[0,
1], which implies that

‘1‘27@"-1<f<é)—f<£)> SK(l—-nE>, for m=mo, Bo=—<L.
m n m n n
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For the lower bound it is sufficient to demand f2 € R[0, 1] (Riemann integrable)
and f € BV[0, 1], since in this case conditions (1.5a) and

Al
=n, | fA¢) dt

0

(}\e ¢ 8)2
4+¢

1
(1.6) Nr—1 J’ fz(t) dt
0

can be satisfied. As specical cases our theorem includes the results of Gal,
Stackelberg and Gaposhkin [8, 16, 7] mentioned in the introduction. Using Lai
and Wei’s result it is sufficient to have f> € R[0, 1] to obtain the lower inequality
of the LIL.

iii) In summability theory one says, a summability matrix A = (@, 1 <k <n,
n = 1) has the “Borel-Property” (BP) (see [9, 13] and the references given there)
if:

Yi-1 aneRr(x) 230 as n—o o

where R.(x) are the Rademacher functions on [0, 1] endowed with Lebesgue
measure. This problem can also be treated by our theorem. Observe that in all
reasonable cases we have Y1 a.. = 1 and hence in most of the cases s2 \ 0, n
— o and we have to use Corollary 2. Furthermore the r.v.’s R:(x) are bounded
and we have only to demand condition (1.5¢). Hence the Borel property is true if
there exists a suitable sequence (b,) / © s.t. G = b, - an satisfies conditions
(1.4) and (1.5¢) and

sZ2logs(s2b2) >0 as n— oo,

(Compare e.g. with Theorem 2 in [13]). It is easy to see by our results that the
Cesaro and Euler methods have the Borel property.

iv) Looking onto the regression problem mentioned in Section 1, we get e.g. for
kernel estimators with kernels of bounded support and bounded variation and
further conditions on the design (¢;) and the smoothness of m(-) that the exact
rate of pointwise convergence is given by (2 = kernel, b, = band width)

nb, 1/2
2| &||zlogzn

where b, ~ N for some a € (%, 1 — 2/p) if E(|&|?) < « for some p > %. The
exact result which needs some more technical details will be published elsewhere.

v) Recently at “the conference on limit theorems in Probability and Statistics” in
Vesprém (1982), the author has learned that P. Hall and S. Csorgo have investi-
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gated upper and lower classes for arrays of r.v.’s of the following type:
A1 (Xy)
Az (X1), A2 (Xz)
A3 (X1), As(Xz), As(Xs)

where (A;) are % measurable functions and the (X;) are ii.d. r.v.’s. But this
situation is different from ours. This work has appeared in Z. Wahrsch. verw.
Gebiete 62 (1982), 207-233.
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