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A MARTINGALE APPROACH TO THE LAW OF LARGE
NUMBERS FOR WEAKLY INTERACTING
STOCHASTIC PROCESSES'

By KARL OELSCHLAGER

Universitit Heidelberg

It is shown that certain measure-valued stochastic processes describing
the time evolution of systems of weakly interacting particles converge in the
limit, when the particle number goes to infinity, to a deterministic nonlinear
process.

1. Introduction. We study two species of interacting processes, namely
diffusion processes and jump processes. In each situation we consider a system
of N particles moving in R". We assume that the characteristics of the dynamics
of one particle of the system (i.e. drift vector and diffusion matrix, resp. jump
intensities) depend both on the actual position of the particle and moreover on
the state of the whole N-particle system, i.e. on the positions of the other particles
too. This interaction among the particles is “weak”, which means, that as the
particle number N goes to infinity, the range of the interaction remains fixed,
whereas its strength is rescaled by 1/N. Having in mind this limiting behaviour,
it seems convenient to describe a particle in x € R" by (1/N)J, (i.e. the Dirac
measure with mass 1/N concentrated at x). Therefore any state of the whole
system of N particles can be identified with a probability measure of the form
(1/N) ¥X, 6., where x; is the position of particle i.

In the diffusion case the dynamics of the N-particle system can be given either
by a system of N stochastic differential equations

dX: = b(Xi, (1/N) T} éx) dt + o(Xi, (1/N) TN 6x) dWi, i=1,.--, N

(Xi is the position of particle i at time t, Wi, i =1, --., N are independent R"-
valued Brownian motions) or by the infinitesimal generator A", which is defined
in the following way: Let f(u) = g({u, h))

<g € Cy(R), h € C3(R"), p = % YX1 8y, (m, h) = f h(x)u(dx)>

and a(x, p) = o(x, p)oT(x, n). Then we have
(AM) () = 8"y B p, b(-, ) - VRY + Yo(p, TPie1 az(-, p)d;h)}
+ %28"((n, h))(A/N){u, Xi=1 a;(-, p)d;hd;h).

In the jump process case, one may describe the time evolution by the jump

Received September 1982; revised July 1983.

! This work has been supported by the Deutsche Forschungsgemeinschaft.

AMS 1980 subject classifications. Primary 60K35; secondary 60F05.

Key words and phrases. Interacting stochastic processes, law of large numbers, martingales.

458

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )20

The Annals of Probability. RIKOAN

WWw.jstor.org



LAW OF LARGE NUMBERS 459

intensities A(x;, y; (1/N) ¥, 0)vx(dy) for a jump of particle i from x; to x; + y
(if the state of the system of all N particles is u = (1/N) ¥X, 6xj), where v, is a
probability measure on R" for all x, or more conveniently by the infinitesimal
generator

1 1
(BM)(w) = N<u, [ ac» u)(f(u + 3y a-) - f(u))v-(dy)>,

(which is defined for real valued bounded measurable functions f on the space of
probability measures on R" of the form (1/N) ¥V, 4,..)

Our aim is to show that under suitable smoothness conditions on b and a
(resp. A and v) the convergence of the initial distributions & (X?) of the N-
particle process X implies the convergence of the processes X» = (XM);<r to a
deterministic probability-measure-valued process X* = (X¥).<r (as N — x),
where T is a fixed positive number. Similar results have been derived in different
contexts (see below), but it seems worthwhile to present a method, based on
martingales, which works for this sort of limit problem (sometimes called the
Vlassov-Limit; cf. [8]) for different species of interacting processes in essentially
the same way.

In [9], the author applied these methods to processes describing certain models
of populations of interacting individuals, which are characterized by their biolog-
ical age. Furthermore he proved central limit thoerems for those population
processes and the jump processes considered in the present paper.

2. Some notation.

Cy(M) space of bounded continuous functions on the topological
space M
CHE) space of all functions in C,(¥) with k bounded continuous
derivatives (E Euclidean space)
CHE) space of all functions in C£(E) with compact support
Z(X) distribution of the random variable (process) X
(u,f) = f f(x) u(dx)
S% = I’f:mm - stupr)W" I f(x) | = 1’
| f(x) — f(y) | |
SUP,, yepn |x _ y_| <1
M space of probability measures on R"
A, | - o) # equipped with the strong topology (defined by the total

variation | - ||o)
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(A, 1 - 1)

P (M)

Qi = 9([0’ T]’
(A - 1))
i=0,1)

Y= (Y

“

x A y = min{x, y}
x V y = max{x, y}

$n

OELSCHLAGER

# equipped with the metric
e —vl:=supes (b — v, f)

(It should be noted that (_#, | - ||1) is a complete metric
space, which is topologically equivalent to 2 (R"); cf. [4])

space of all probability measures on the topological space
M (2 (M) is equipped with the weak topology)

space of all right-continuous functions from [0, T'] to (.4,
|l - II:), which have left limits at each point of their domain.
These spaces are equipped with the Skorokhod topology

typical element of Q; (i =0, 1)
o-algebra generated by {Y:s < ¢t}

space of all positive definite, symmetric matrices on R"
forx e R"

positive constants < .

3. Results. Before formulating the main results, we shall make the follow-
ing assumptions on the functions b:R" X # — R", a:R" X # — 8", A:R" X R"
X # — R"and v:R" — A
(A1) b:R" X (A, | - |l1) — R"is Lipschitz continuous and satisfies | b(x, u) | <

al+ x|+ (u, ).

(A2) a:R" X (A4, | - |l1) = 8™ has a representation a = o - ¢, where each
component of the matrix-valued function (x, u) — o(x, u) is bounded and
Lipschitz continuous from R" X (., | - [|1) to R.

(B1) For each pair {x, x’} C R" there exists a probability measure p,, on R*",
such that p,, has the marginal distributions v, and v,., and

i) f (Alx, y; ) NAE, Y5 ) |y — ¥ | per(dy, dy')

< |x—x"|cll + (u, «))

1/2
ii) <f | Ax, y; 1) — A, ¥'5 1) |2 pux(dy, dy’))

(B2)

=@+ (uk))cs|x—x|.

f |y 12 v(dy) < cs.
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(B3) 0<A(x,y; p) <cl+ | x| + (n, «)).
(B4) |AGx, v 0) = AGx, y30) | S es(L+ 2] lw= vl
Typically these assumptions are satisfied, if
a(x, w) = a(x, (u, filx, ), -+, {m filx, 2))),
b(x, u) = b(x, (1, &1(x, -)), -+, (B, &(x, -))),
A(x, y; 1) = Ax, y;5 (1, ha(x, 3, ), -+, (1, ho(x, 3, +))) and
v: = v (independent of x),

where the functions o, b, A, fi"---, f,, &, -+, &, h1, ---, h, are Lipschitz
continuous and “not too rapidly” growing at infinity. Our results are summarized
in the following two theorems:

THEOREM 1 (diffusion processes). Assume that the drift vector and the
diffusion matrix satisfy (A1) and (A2). Furthermore suppose, that

supnewE o xm[( Yo, ¥)] = supNENE[(Xf)V, Y] <
LX) DN Ox; weakly in - P (M, | - ||1).

0

(6x; is the Dirac measure concentrated in X§ € #). Then we have the conver-
gence

limy_. & (XY) =6x in 2(Q),

where the deterministic process X* = (X{).<r satisfies X{ = £ () for the unique
solution ¢ = ({).<r of

dg‘t = b(.(t’ g(.(t))dt + U(.(t, ~(/(g't))dvpt, «%(fo) = Xg-

(W = (W.)i=0 n-dimensional Brownian motion).

REMARKS. Since all the processes X" have continuous trajectories, and since
the deterministic limit process X* is continuous too, it can be concluded from
the above theorem that the convergence & (XV) — 6x+ takes place also in
2(C([0, T], (A, || - 1)), where the space C([0, T], (4, || - [|1)) of continuous
functions from [0, T'] to (4, | - ||1) is equipped with the usual supremum-norm
topology. Nevertheless, for showing the analogy to Theorem 2, we formulate and
prove Theorem 1 using the space 2 ([0, T, (4, | - |1)).

Similar problems about interacting diffusion processes have been studied by
McKean [5], who proved propagation of chaos for such processes. Moreover
Marchioro and Pulvirenti [6] considered (among many other things) the same
question as in Theorem 1 for systems, in which interaction occurs only through
the drift.

THEOREM 2 (jump processes). Suppose the validity of (B1) to (B4). Moreover
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assume for the initial distributions < (XY) of the N-particle processes X":
limy o & (X0) = 6x, weakly in P (A, | - 1)
supnenE - xm[( Yo, k)] = SupNeNE[(X{)V, k)] < oo.

Then the sequence { < (X™)}nen of the distributions of the N-particle processes
XN converges weakly in @Z(2([0, T, (A4, || - 1)) to the Dirac measure 6x,
concentrated at the solution of the integral equation

(XE, ) =(X3, )
+f0 <X§‘, f A, y; XI(f(- + ¥) = (v - (dy)> ds,

f € CAR").

REMARKS. Results similar to Theorem 2 have been announced by Skorokhod
[7].

Since the proof of Theorem 1 is essentially the same as the proof of Theorem
2, we shall omit a verification of the last theorem, except the proof of the
uniqueness of the limit dynamics.

4. Proof. To prove Theorem 1, we proceed in small steps, with each step
formulated as a lemma.
LEMMA 1. For each function ¢5, € Co( A, || - ||:) (i =0, 1)

ore(w) = f((u, &), & € CHR"), f€E CHR)
and each N € N the process

t
Ef, = (Efy(O)ier, ER((Y) = ¢,(Y)) — fo AN (Y)) ds

is a martingale relative to (Q;, Fr, (F)i=r, <L (XN)). (This lemma is a conse-
quence of Dynkin’s Formula; cf. [1]).
LEMMA 2.

a) Zoxmlll Yello=1Vt=T]=1.
b) There exist positive constants c1, cs, 9, C10, SUch that the process

t — (Y, ¢) e — cgt (respect. t — (Y, ¥)e® + ciot)
is a super- (respect. sub-) martingale with respect to
(R0, Fr, (F)e=1, L (XM)).
PROOF. a) is trivial. For the proof of b) we apply Lemma 1 to the functions

f(x) = x and g(x) = Y(x). Since Lemma 1 is not formulated for those functions, a
correct application of that lemma includes the use of the stopping-times 7, =
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inf{t = 0:(Y,, ¢) >r} A T in the following way:

Let ¢, € CXR"), such that ¢,(x) = ¥(x) if |x| < VrN + 1, and », € C¥(R),
such that ,(x) = x if | x| < r + 1. Then we have (Y, ¥) = 7,((Y,, ¢,)) for all ¢
< 1Y) < (X")—a.s. Thus, by Lemma 1, for all sufficiently large r = r(Y)

E, xM[{ Yenrrnvs, ¥) | Fil
= E. a0 Yenrvnvs, ¥:)) | Fi

(tAT(Y)Vs ] ‘
= nr(( Ys, \l/r>) + E’/(X”)[J; du l ( Yu’ b(‘, Yu) * VlP)
1 l
+ - (Yu’ Z;:j=l aij(" Yu)au\l/>l ‘ -9';:|
(2.1) 2

(tAr(Y))Vs
< 9((Ys, ¥)) + Ez(x")[f duf(Yu, @ + « + (Y, «))x)
+ || Yullon®eu | -97';:|

=(Y, ) + Ey(x")[ f t duf( Yonr,mvss ¥z | ﬁ] + cislt — s).
(2.1) and Gronwall’s Lemma yield
ExM{ Yenrnvs, ¥) | Fal < (s, et + cip(t — s)e™,
and so by Fatou’s Lemma,
E, xm[(Ye, ¥) | #) = Eoxm [lim infwl Year s, ¥) | il
< (Y, Y)e ) + c5(t — s)e.
This proves the first part of Lemma 2b). In a similar way as (2.1) we can prove
E . xM[{ Yenrovpvss ¥) | Fil

t
= (Y, ¥) — Ey(xN)[f du{ Yunr,(yyvss ¥)C14 %] — ci5(t — 9).
Using Lemma 1 and the supermartingale property of ¢ — (Y;, ¢)e™ — ciot,
we can prove uniform integrability (in r > 0) for both sides of the last inequality.
Therefore

E., xm[(Y, ¥) | Fl = (Yo¥) — E'/(XN)[J; du(Y,, ¥)cus 9’1:' — c15(t—s).

Another application of Gronwall’s Lemma finishes the proof of Lemma 2.

LEMMA 3. There exists a constant ¢y, such that for all0 < A, t < T — A and
NeN

E xmll Yiea = Yl | Z] = YA(Y:, ¥) + Dcse.
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PrOOF. We choose an enumeration of the N particles. By X(¢) we denote
the position of particle i at time ¢. Then we obtain

E;/(xN)[ " Yt = Yia ”1 I %]

1
=N T E aeml | Xilt + A) — X0 || F

= ]%/ T (B xm[| Xt + A) — Xi(t) |?| F)DYV?
= % Pl (wa”)[ ft ds{2b(Xi(s), Ys) - (Xi(s) — Xi(t))
1/2
(3.1) + Th-1 a(Xi(s), Yo)} ’ 5’:])

(by Dynkin’s Formula)

=

>N, <E'/(XN)[J: ds{| Xi(s) |7 + | Xu(t) | | Xi(s) |

2|~

1/2
+ (Y, «) + DU X(®) | + | Xi(s) | + 1)} ; %D cr

=

>N, <E:/’(XN)[J: ds{| Xi(t) |2 + | Xi(s) |

2|~

1/2
(Y, ¥) + 1 ‘ 9’:]) Cis.

Using similar methods as in the proof of Lemma 2, we can show that
fors=t

E., xw[| Xds) 12| 7] = (1 Xd) 1 + (Ye, ¥) + L)cas.

Using this and Lemma 2, we obtain from (3.1)

E ov[l| Yera = Yelli| 2] = (I/N) T (AU Xt) 17 + (Y, ¥) + 1))V %en

= (I/N) ZE LX) |2 + (Y, ) + Leao A2

Since (1/N) ¥¥, | Xi(t) |2 = (Y., ¢), the proof of Lemma 3 is finished.

LEMMA 4. For each A > 0 there exists a random variable v(A) = 0, such that

E,xmlll Yora = Yilli| Zi = Exm[v(D) | F]

ZL(XN) a.s. forall N € N and s € [0, T — A). Furthermore we have

limyolimpy_ e E - xm[y(A)] = 0.
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PROOF. From the foregoing two lemmata we obtain
E. ool Yora = Yol | F] < YA(Y,, ¢ + Dess
< VAE, o[ Yr, ¥ + 1) | Flen.
Thus Lemma 4 is valid for
(&) = (Y, ¥ + 1)VAcn.
LEMMA 5. For all e > 0 there exists a compact set %, in (A, || - ||1), such that
infyewPoxmY: € # Vt=T]=1—e.
PROOF. By using the semimartingales of Lemma 2, we obtain for each set
Bi={x€R"|x|>A, A>0 and ¢>0
P, xv[supe<r || Ye|Bsllo > €] < Poxm[supe=r(Ye, ¥) > N%e]
< P, xm[supe=r{( Y:, ¥)e" + cst} > N%]
< (/NOE ool(Yr, 9™ + 6T
(by Doob’s Inequality)
< (1/N%)E o xm[({ Yo, ¥) + c1oT)e T + ¢ T.

For fixed ¢ > 0 this expression is less than a given 6 > 0, if X is sufficiently large.

Combining this result, Lemma 2a and Prohorov’s Theorem (cf. [1]), we obtain
Lemma 5.

By a theorem of Kurtz ([2], page 10, Theorem 2.7), Lemma 4 and Lemma 5
imply:

LEMMA 6. The sequence of distributions {.< (X")}nexw is relatively compact in
the space % () of all probability measures on Q,, where % (Q,) is equipped with
the weak topology.

Our next aim is to characterize the possible limit points &< of the sequence
(L (XY)new).

LEMMA 7. For each limit point <, © € R and f € CXR") the process
E} = (E4(t))r,

Eye)Y) = exp<i@<(Yu f) - J; dS{(Ys, b(-, Y;) - Vf)

1 . l
+5 (Y5, Xi=1 ai(-, Ys)aiff>l>>

s a martingale relative to (Q,, Zr, (F)i=r, -ZL).
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PROOF. Let us first give a heuristic derivation of the result of Lemma 7.
When making a formal limit in Lemma 1 we presume the martingale property of
the process

t—f(Y:, g)) — J; f (Y, g))(A%)(Y,) ds
relative to (i, Fr, (F)i<r, L) for all f € Ci(R), g € CHR"), where

(A%g) () = (u, b(-, p) - Vg) + Y(p, Xli=1 a5(-, n)d;8).

Using Theorem 4.2.1 of [3] about the equivalence of certain martingales, we infer
the martingale property of

t
t— exp<i®<(Yc, &) — f (A"g)(Y) d3>>
0
for all @ € R.
An exact proof of Lemma 7 can be given as follows: Let
ﬂe,f,t( Y)
o [ 1 ; I
= exp| —10 | dul<Yu, b(-, Y., - Vf) + 2 (Y, Zij=1 ay(-, Yu)aijf>l .

Moreover we define the process E/N = (E*N(t)),=r by

t
(%) E{;'N(t) = Eg,f(t)m,f,t = J; Eg,f(S)m,f,ds,

where gy(x) = exp(i0x), noas = ((d/ds)nss) ds and Ej s is as in Lemma 1. Then
we obtain

ELN@)(Y)

= EL®)(Y) = nes(Y) j dS{i@ exp(i8( Y, f))(A™)(Y.)

e . . |
~ 3N exp(i0( Yy, I Ys, XFa1 ay(-, Ys)aifajf>]

—j {exp(i(a(Ys,f))—I du{i(i) exp(i0( Y., f))(A7F)(Y.)

2

- %, exp(i0( Y., f))(Yu, X1 a;(-, Y.)0:f8;f >} }

- (=0)(A™F)(Y.) - ness(Y) ds.
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Using integration by parts we see that the third term in (7.1) equals

+ L dS{ZO eXp(l@( Ys’ f))(Awf)(Ys)ﬂe,f,s(Y)}

—f dsli@ exp(i0( Y, f))(A%)(Y,)
(7.2) o |

0?2 .
~ 5N exp(i0( Yy, F))(Ys, Y= aii(-, Ys)aifajf>}'ﬂe,f,s(y)

+ ne,s(Y) fo dS{iG exp(i0( Y, f))(A%f)(Y,)

& ol "o o |
- ON exp(l®< Ys, f))(Ys’ 2i,1=1 alj(" Ys)alfajf)J .
(7.1) and (7.2) yield
ESN@)(Y) = EXO(Y)
(7.3) t N @2
+ f dsENs)(Y) —= (Ys, =1 a;(-, Y)(3if)(9if))-
o 2N

Using representation (x) of E/Y, Lemma 1, Lemma 2 and Theorem 1.2.8 in [3],
we infer the martingale property of E*N relative to (), Fr, (F)ier, L (XV)).
Since | Ef(s) | < 1, we can conclude from Lemma 2 and (7.3)

(7.4) limN.,mE;/(xN)“E{,}N(t) - Eé(t) []=0, Vt=T.

The following steps are necessary since we are working in Z([0, T], (4, || - 1))
and not in a space of continuous functions. This especially implies that for fixed
f€ CXR") and t < T, the function Y — (Y,, f) is not continuous.

We define for fixed h € C,([0, T]), NE N, @ E R, f € C(R") and ¢ € Cy(21)
the realvalued functions

T
Zyi(Y) = J; hOELN(E)(Y)$(Y) dt

and

. T
Z5:n(Y) =f0 R EL)(Y)p(Y) dt on Q.

Obviously Z¢,, € Cy(%:), and so we have for each subsequence (- (X™))nercw,
which converges to ¢ in £ (Q,)

limywEexm[Zh] = ELZ);)
and by (7.4)

(7.5) limNr_.mEy<xN'>[Z«$\,lf:f] = E<[Z})-

This is valid for each h € Cy([0, T]). Moreover, Lemma 3 implies the equicontin-
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uity of the functions
{t = Eam[EFN(8)¢]inen,
Therefore (7.5) yields
limy —wE o[ EFY (8)8] = E«[EN)¢), Vi=T.
Now let ¢ be &,-measurable. Then for t = s
EJ[Ei(t)¢] = limy —wE o x[EFY (£)¢] = limy —wE o [ESY (5)¢)
(by the martingale property of E}"" with respect to (21, Zr, (Fdi=r, & XMy
= E[E/(s)9)).

This completes the proof of Lemma 7.

LEMMA 8. The process 1 = (1.).<r defined by
nt(ﬂ Y) = (Yty f)

- J; ds{(Yw b(" Ys) : Vf) + % (Ys’ 22f=1 aij(” Ys)aljf)};
t<T, f€CARY
satisfies

nlf, Y) = no(f, Y) = (X&,f), V¢=T, VfECIR") L—as.

PrROOF. Using the foregoing lemma, we may compute the characteristic
function of the random variable #,(f, -) (¢, f fixed)

E[exp(ibnf, Y))] = E<[exp(ibno(f, Y))] ‘
= exp(i0(X%, f)), ie. n(f,Y)=(X§,f) L—as.
Consequently we have:
(8.1) nlf, Y)=(X%,f) Vt€ 9 and Vf€ I ZL—as,

where 7 (resp. 9) is any countable subset of [0, T] (resp. CX(R")).

Since CZ(RR") is a separable space if equipped with the norm defined by the
supremum of the function and its first two derivatives and since t — 7,(f, -) is
right-continuous, which is a consequence of the right-continuity of t — Y, (8.1)
implies the conclusion of Lemma 8.

At this stage the following remark should be made: From Lemma 8, we know
that .& is concentrated on that subset M of Q;, which consists of solutions Y=
(Y)i=r of

t

(8.2) (Y, f)=«(X&f)+ J; (Y,, L(Y)f)ds, 0<t=<T, f€CIR",
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with
(L()f)(x) = Y1 bilx, w)dif (x) + Y2 ¥ijm1 ay(x, w)dsf(x).

If we would impose in addition the assumption that the partial derivatives of
bi(x, u) and oy .(x, u) of first and second order with respect to x exist, are
continuous and uniformly bounded in (x, u), then we could argue as in Lemma
10 below, show uniqueness of the solution of (Y,);<r of (8.2), and Y, = < (;) for
the process ¢ defined in (9.2), and the proof of Theorem 1 would be finished. If
the above differentiability assumptions are not satisfied, we can introduce smooth
modifications b*(x, p) and o¢°(x, u) of b(x, u) and o(x, ), and processes X,
controlled by those coefficients, and finally make the limit ¢ — 0. This is done
in the following lemma.

LEMMA 9. For any limit point . of the sequence {.< (X")}nex we have

9.1) Y= <) Vi=sT L —as,
where < ($,) is the distribution of the unique solution of
9.2) df = b(&,, L()dt + o(8, L(5))dW,,
(9.3) L (%) = X§.

(W = (W,) =0 n-dimensional Brownian motion).

PROOF. We~have forany YEM apd any ¥, € CAR") with ¥i(x) = Y(x) = x2
for lxl =r |at‘//r(x)| $2|x| and lat]‘l/r(x)l =2 (i)]= 1’ 2’ ""n;xERn)

(Yty Jr)

= (Xg’ '&r) + J; (Ysy L(Ys)‘;r) dS
= (X5, 9 + J; (Y, 1+ &+ (Y, k))2c + 1)cnn ds  (by (A1) and (A2))

= (X3, ¢) + 012J; (Y, ¢) + 1) ds.
Fatou’s Lemma yields
(Yt’ \[/) = lim infr—>°°< Yt’ ¢~r> = (Xg, ¢) + Ci2 J(; ((Ys, \0) + 1) ds.

Therefore we obtain by Gronwall’s Lemma
(9.4) supe<r( Ys, ¥) = ((XT, ¥) + c12T)exp(ciT) == c13 < ®
uniformly in Y € M.
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From (9.4) we obtain for any Y € M and f € C}(R")
l(Yt’f> - (Ys’f)l

- ‘ [ v sevan au

< cu f (Y, (1 + k + (Yu, k))SUPi=1,... e = | 9if(x) |
(9.5) + SUPijo, . mrere | 95f(0) |) du
= c(f) f (Yu, ¥) +1) du

(the constant c(f) depends on the first and second partial
derivatives of f)
< |t —s|(as + e(f) (by (9.4)),

i.e. the functions t — (Y., f) (Y € M, f € CAR")) are Lipschitz continuous. This
implies that for each t € [0, T the left and right limits Y- = lim, », Y; (resp. Y+
= lim,. Y,) coincide with Y,. We have obtained:

(9.6) For any Y € M the function t — Y, is a continuous function from
[0, T] to (A, | - ).

Let us define now the functions

(x, u) — Jﬂ; b(x =, wely) dy =: b*(x, p)

and

9.7 (x, u) = J}; o(x — y, wEy) dy = o“(x, b) -

with g.(y) = (2me) ™ ?exp(—(y*/2¢)).

Using b° and ¢° as drift vector (resp. diffusion matrix) we may define N-
particle-processes X™* in exactly the same way as we have introduced the
processes X". When we assume X5* = X', we obtain all the results proved so
far for the sequence {X"}nen for the sequence {X™*}yex too. In particular we
have the tightness of the sequence {.<(X™*)}nen and

ni(f, Y) = (Y, f) — J; (Yo, L(Y)f ) du = (X3, f)

(9.8)
VteET, Vf€ECAR") <L*—as.

for all limit points &* of {.Z(X™*)}nen. Here we set
9.9 - (LX) = Tk bix, paif (x) + Y2 Xijmr afi(x, p)dyf(x)
With ac(x’ [l,) = Uc(x’ [l,) ‘ UCT(x, M')'
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Using Lemma 10 below, we obtain
(910) &= 5x*w,

where X** = (X**) <, X¥* = (%) for the uniquely existing nonlinear diffusion
process {*, which solves the stochastic differential equation

(9.11)  dgi = b5t L) dt + o°(§i, L(§D) AW, L($5) = X3

Let us assume now that particles i in both processes X" and X Ne¢ are driven by
the same Brownian motion Wi, i.e.

dXM(t) = bXN(t), (1/N) T oxjo) dt

(9.12) .
+ o(XN(t), (1/N) T, dxpe) AW
and
dXM(t) = bA(XM(t), (1/N) T dxpen) dt
(9.13)

+ o*(XN(t), (1/N) 3y dxpee) AW, (i=1,2, -+, n).

This assumption is allowed because by the Lipschitz continuity of the functions
(x, p) = b(x, w), (x, p) = o(x, p), (x, p) = b°(x, ) and (x, u) — o°(x, u) both
systems of equations (9.12) and (9.13) have a unique strong solution. Moreover
we assume

XMe0) = XN0), i=1,2,---,n as.
Then Ito’s Formula yields
E[(XN(t) — XM(1))*]

_ E[ f {z(va(s> — XPe(s))

(9.14) 1 1 I
: <b<XfV(S), N Z,Ir\;l 5x,N(s)> - bc<X§N‘c(S), N Efil 5xf’»’(s)>> l ds]

t
. 1 1
+E f Yy diel XN (s), XVe(s), = Tt 0xMes o Die1 OxMee) | ds
o N 7N
with @(x, y, u, v) = (a(x, p) — o°(y, »))(o(x, p) — o°(, »))". From (A1) we obtain

Ibe(x, ”') - b(x, ”') I = ’ L" (b(y’ ”') - b(x, I-‘f))ge(x - y) dy ’
(9.15) = f 100y, W) = blx, w) | &x = ¥) dy

5014L lx — ylg(x — ) dyl S‘—'14‘/;-
Z,I
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Similarly we have

(9.16) | o%(x, u) — o3i(x, p) | < cr5Ve.
Using (9.14), (9.15), (9.16), (A1) and (A2) we obtain

E[(XT(t) — X{(8)]

=< cw{EU; | XN(s) — XM(s) |

9.17) { | XN(s) — XM<(s)| + H %zfil dxNew — % Y1 xpe ||+ JE} ds]

+ EU; {IX;N(S) = X (s) |?

ol

1 1
+ H '1\7 Zf’=1 5X}"(s) - N Ef’=1 5x,Nw(s)

Summing over i = 1, - - -, N, noting that

I (1/N) 25‘21 5X,N(s) - (1/N) EIJV=1 6Xf"‘(s) [l1

supres; | (1/N) T {f(XN)) — FXT ()} |
(9.18)

IA

(1/N) T | X[ (s) = X7¥“(s) |
= (1I/N) TX1 1 XN(s) — XM () 1D,

and using the inequality | uv | < u? + v? we get from (9.17)

E[Z%, N XN — XN |2]

< ‘ I [l N N, — N, 2] I
_017£ IEN i=1|Xi(3) Xi (S)I +el dS,

and therefore by Gronwall’s Lemma

(9.19) E[(1/N) T, | XN(t) — XM(t) |?] = (crreT)exp(errT).
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Furthermore we have by (9.12) and (9.13)

E[SuptsT z N1 XN - XM() I2]

N
¢ 1
J; (b(X?’(s), N ¥ 5xf’(s)>

- b‘(Xf“(S), % P 5X}V"(s)>> ds

‘ 1
+ J; <U<X?'(S), NE% 0xMNs)

1 .
- 0°<va’°(8), N ¥ 5x}"»¢(s)>> dWs

1 T
SCIS:E[N f\ilj;

1
- b°<X§""’(3), N P 5x}“«'(s>)

1
= E[SuptsT N >N,

]
b(xﬁv(s), L, axu(s))
N J
2
J
1 gn f t Ny Lo
(9.20) + E[SuptsT N Yis1 < A <0'<Xi (s), N 2 6X_,N(s)>

1 \
- U“<va‘°(3), N P 5Xf’*‘(s)>> dW§> ]}

2

<c lEl ¥ le‘X“’(S)—XN'“(S)
- 19[ N i=1 o l 3 i

+ % LI XNGs) XNe(s) |2 + e} ds]
1 T
+ E{N N J; Vi1 dik<va(S), XNe(s),

1 1
N Y1 dxNes N Py 5X,Nv°(s>> ds]}
(by (A1), (9.15), (9.18) and Doob’s Inequality)

T
= 020% N J; {E[| XN(s) — XN(s) |*] + ¢} ds

(by (A2), (9.16) and (9.18))
< cne (by (9.19)).
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Consequently by (9.18) and (9.20):
Elsupe<r | X¥ — X [11] = Elsupi<r (1/N) T | XN (®) — X(0) []
(9.21) < (Elsup.=r (1/N) TiL | X}(&) — X (e) |*DV*
< Ve Ve (uniformly in N € N).

In the same way as uniqueness of the solution of (9.11) (cf. Lemma 10) we
may show uniqueness of the solution of (9.2), (9.3). Moreover, by similar argu-
ments that lead to (9.21), we may prove that

(9.22) im0 2 () = £ in 2(2([0, T], R")).
Using (9.10), (9.21) and (9.22) we finish the proof of Lemma 9.

LEMMA 10. Let L’ be defined as in (9.9). Then the system of integral equations

t N
(10.1) (Y, f) = f (Y, L(Y)f)y ds + (X%, f), 0=t=<T, f€CAR"
0

has a unique solution in ([0, T}, (A4, || - |1)) = Q.. Moreover this solution equals
(&) for all t = T, where ¢ = ({{):<r is the unique solution of
(10.2) des = b(¢, Z(59) dt + o°(§5, L(59) aW,,
(10.3) Z(§0) = X8
(W, n-dimensional Brownian motion).

PrOOF. The existence of a solution of (10.1) follows from (9.8). Each limit
point .~* of the sequence { < (X"*)}new is concentrated at solutions of (10.1).
Now let t — Y, be any solution of (10.1). Using an estimate analogous to (9.4),

we obtain the validity of (10.1) for all f € C#(R"). Conditions (A1) and (A2),
which hold for b° and ¢° too, imply uniqueness of the solution £° = (£5).<7 of

(10.4) dg; = be(&:, V) dt + o°(&2, Vo) dW,, Z(&) = X3.

Dynkin’s Formula implies that P, = < (¢{) satisfies
t
(10.5) (P, f) = J; (P, L'(YJ)f) ds + (Xo, f), 0=<t=<T, f€C}R".

Our aim now is to show that < (£5) is the only solution in ([0, T, (4, || - ||1))
of the linear equation (10.5). Let f(¢, x) be any function in C,([0, T] X R") with
one bounded continuous partial derivative with respect to ¢ and bounded contin-
uous partial derivatives of first and second order with respect to the spatial
variable x. Then we obtain for any solution (P;);<r € Z ([0, T), (A, || - ||1)) of
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(10.5):
(P, f(t, -)) — (Po, f(O, -))
= (P, f(t, -)) — (X3, f(0, -))
= Y420 {(Pwsvss f((k + 1)8, -)) — (Pus, f(RS, )} (6 =1¢/2)

= Y4 :(P(k+1)67 f((B + 1)s, -))

(k+1)6 F) l
- <Pk6’f((k+1)5’ )_fb —f(sy )ds>f
(k+1)6
= Y4 l < P, <L (Y, + )f(s )> ds
(k+1)6 9
_f <Ps_Pk6’_f(s’ ')>ds
kb ds

(k+1)é :
+ L (P, L'(Y)(f((k + 1)5, -) — f(s, -))) ds .

[E—

(Note that by (10.5) we have

(Pu, 8) — (P, 8) = f (Py, L°(Y.)8) dw,

O<sv=u=T,geCir)

= f <Ps, <L£(Ys) + 2)f(s, )> ds + r(6)
ds

with lim;_or(6) = 0, since t —» P, € 2([0, T), (A4, || - ||1)). Consequently we have
in the limit 6 — 0

(10.6) (P, f(t, -)) = (XT, f(0, -)) + f <Ps, (LC(YS) + 2)f(s, -)> ds

Let &%t = (£%%(s))sep, 1 be the solution of (10.4) with initial condition £%%4(t) =
x. By (9.6), (A1), (A2) and the definition of b° and ¢* the assumptions of Theorem
6.1 [10], page 124 are satisfied and we may conclude that the function

(t, x) = E[fE(TN] = fT(t,x), 0<t=<T, f€CIRY

has continuous partial derivatives
2

9
0x;0x;

9 7 9 .7 T
atf (t, x), axif (t, %), i, %),

which satisfy Kolmogoroff’s equation

9

i Lf(m)ff(t, x) =0, (T, 2 = f().

(10.7) <
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By Theorem 5.3 and 5.4 [10] page 120-122, we know that the partial derivatives

82
L Eext
8x, £746), 0x;0x;

£54(s)

exist in L? and satisfy stochastic differential equations obtained by applying
formally /dx; (resp. 9%/dx;0x;) to the equation for £*‘(s). Writing down these
equations, and using the fact that x — b°(x, Y,) and x — ¢“(x, Y;) have uniformly
bounded partial derivatives of first and second order, we see that (8/dx,)£*(s)
and (8?/dx;9x;)£%**(s) have moments of all orders which are bounded uniformly
in s, t, x. Since (3/3x)f (¢, x) = E[Vf(£=*(T)) - (9/6x)¢>>"(T)] (cf. (5.12), [10],
page 122), we see that for f € CZ(R") (9/3x,)f (¢, x) is bounded uniformly in T, ¢
and x.

Similarly (9%/3x;0x;)f 7 (t, x) is bounded uniformly too. Therefore we may apply
(10.6) to the function (t, x) — f(¢, x):

(10.8)  (Ps, fI(T, ) = (Ps, f) = (X&, 10, -)) = (L), f)-

Thus P; = £(¢%5) = Yifor all T < T, since t — Y, solves (10.5) too..
We have shown so far that to any solution (Y,).<r of (10.1), there corresponds
a solution of

(1O~9) d{t = bc({t, —g(ft)) dt + Ut({t, —g({t)) th, ~C/(fo) = XO

with Y, = <({).

Therefore to finish the proof of Lemma 10 we have to show unique solubility
of (10.9). Suppose {* = ({F)=r and {2 = ({3).<r with {§ = {3 a.s. are solutions of
(10.9). We can assume that both processes are “driven” by the same Brownian
motion W,, which implies the existence of a common distribution. Then we have:

t 2
E[(§i — D] = 2E[<J; (b°($3, p3) — b°(53, 1) d8> }

t 2
+ 2E[<J; (o°(¢F, ws) — o°(83, 1d) dWs) ]

(wi= £, i=12)

= (TE[J; | (L, ui) — b°(£2, wd) |? ds]
+ E[J; Shicr | 0553, ms) — oi(53, ud) |2 dSDCn

t
SJ; dstE[| &5 — 5171 + | us — ndlIHexs
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(since the functions x — b°(x, u) and x — ¢°(x, ) are smooth). Since

lps — n2li= (Sque.é/l f f L&, $)(dx, dy)(f(x) — f(y))>

2
s(ff L, B)ds, dy)lx—y|) = (E[15 - 212

< E[l & - 817

we obtain

Bl - g1 = [ Bl s - g1

Gronwall’s Lemma shows: { = {? almost surely (¢ fixed). This and the right-
continuity of both processes imply that {} = {7 for all ¢ < T with probability 1.

Therefore the stochastic differential equation (10.9) and, moreover, the deter-
ministic equation (10.1), has a unique solution. .

As announced above, we now present the proof of the unique existence of the
limit dynamics for Theorem 2.

LEMMA 11. The system of integral equations

Y. f)=J d <Ys, AC, 33 Y)(FC + 3) = f(-)y-(d >
ary P f s f ¥ YO(F(- + 3) = F(-))y-(dy)
+ (X§,f), fECHRY, t=T

has a unique solution t — Y., such that Y, is a probability measure on R" for all t
=<T.

PROOF. As in the proof of Lemma 10, we may assume that existence is
already proved and as there we may conclude that uniqueness of (11.1) is related
to uniqueness of a certain stochastic process. So we only need to show the
uniqueness of a (nonlinear) jump process Z = (Z,);<r on R" with jump intensities
A(x, y; <£(Z,) for a jump from x to x + y at time ¢, and with initial distribution
L(Zy) = X&. Let Z' and Z? be two such processes. A coupling Z = (Z,);<r of
these processes is a process with state space R" X R", which consists of two
components Z' and Z2, which have the same distribution as Z' and Z? respec-
tively.

We shall prove Lemma 11 by constructing a coupling Z with

E @llnt —nil] =0
forallt < T. (n = (n)e=r, 0. = (n}, n?) is a typical element of Z([0, T], R*")). Z
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is defined by its (time dependent) infinitesimal generator o/ = (%)<
(Aif )21, 22)

= ff (f(z1 + y1, 22 + y2) — f(21, 22))

- (A2, y15 ki) N Az, Y2; K?))le,zz(dylv dys)

+ ff (f(z1 + y1, 22) — f(21, 22))
- ((A(z1, y15 k1) — A2z, ¥2; k7)) V 0)ps, z,(dy1, dy.)

+ ff (f(z1, 22 + y2) — f(21, 22))
- ((Alzz, 25 8) — Alz1, y15 1) V 0)p,,5(dy1, dys),
ki= L(Z),i=1,2)
and its initial distribution
P, @nt =9l =1, <L (Z}) = X§.

It is easy to see that this definition indeed describes a coupling of the processes
Z! and Z2 The dynamics of Z was defined in such a way that both components
jump with an intensity as large as possible in nearly the same direction.

Let £(21, 22) = | 21 — 22| . Dynkin’s Formula implies

Ey'(z)“ 77:1 - 17?”
t
= Ey(Z)[ J(: ZL(n.) du]

t
= Ey(Z)[J; { f f | ¥1 = yo | (A(nl, ¥ ki) N A, ya; k2))paia2(dy:, dye)
+ ff Uyl + 1y21) | A(niy ¥15 k2)
= A(mZ, y2; «2) | parnz(dy1, dyz)} du]

. .
(11.2) = E:./(Z)[J; {ff | y1 = ¥2| (A(ni, y15 k) A Az, Y2, Klll))pmlp'?ﬁ(dyly dys)

+ 2 ff (Ul + 1y21) | AZ, o3 k2) — AL, Yo3 ki) | pataz(dyy, dye)
+ ff Uyl + 1y21) | A(ni, 315 k3)
= A2, ¥25 ki) | paraz(dyr, dyz)} du]

t
= E.sf(Z)[J; duf|ne — 92| (1 + (ki, k) + & — £21.(1 + |773|)1]C25-
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Since supe=r,i=1,2(k}, k) <o and | ki — k7 |1 < Eo@l| n: —n?|], Vt < T, Gronwall’s
Lemma and (11.2) imply

E;/(z)“ ?7} - ?7? []=0.
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