THE FINITE MEAN LIL BOUNDS ARE SHARP

By Michael J. Klass¹

University of California, Berkeley

Let X, X_1, X_2, \cdots be i.i.d. nonconstant mean zero random variables and put $S_n = X_1 + \cdots + X_n$. Let K(y) > 0 satisfy $yE\{|X/K(y)|^2 \wedge |X/K(y)|\}$ = 1 (for y > 0). Then let

 $a_n = (\log \log n) K(n/\log \log n)$

and

$$L = \lim \sup_{n \to \infty} S_n/a_n$$
.

It is known that L is finite iff $P(X_n > a_n \text{ i.o.}) = 0$. When $L < \infty$, it is also known that $1 \le L \le 1.5$ and that it is possible for L to equal one. In this paper we construct an example for which L = 1.5.

Let X, X_1, X_2, \cdots be independent identically distributed (i.i.d.) nonconstant zero-mean random variables. Let $S_n = X_1 + \cdots + X_n$. For each y > 0 there exists a unique positive real K(y) such that

(1)
$$\frac{y}{v^2} EX^2 I(|X| \le v) + \frac{y}{v} E|X|I(|X| > v) \begin{cases} < 1 & \text{if } v > K(y) \\ = 1 & \text{if } v = K(y) \\ > 1 & \text{if } 0 < v < K(y). \end{cases}$$

Equivalently, K(y) is the unique positive real satisfying

(2)
$$yE\left\{\left(\frac{X}{K(y)}\right)^2 \wedge \left(\frac{|X|}{K(y)}\right)\right\} = 1.$$

Let $a_n = (\log \log n)K(n/\log \log n)$ and $L = \lim \sup_{n\to\infty} S_n/a_n$.

In Klass (1976, 1977) it was shown that $L < \infty$ iff $P(X_n > a_n \text{ i.o.}) = 0$. Moreover, when $L < \infty$, $1 \le L \le 1.5$. The lower bound L = 1 is achieved (for example) by X-distributions whose positive part is bounded above and whose negative part is regularly varying of index 1 (i.e., yP(X < -y) is slowly varying as $y \to \infty$). It was not known whether the upper-bound L = 1.5 could be achieved. In fact, since $L = \sqrt{2}$ when X has finite variance, one could easily have suspected (and indeed in Klass (1977) it was conjectured) that when finite, L is always between one and $\sqrt{2}$. In this paper we show by example that the upper-bound of 1.5 can be attained. It is achieved by an X-distribution whose partial sums S_n are excessive due to the dual contributions of both conditional drift and conditional variance terms.

We require use of a lemma on tail probabilities. It is a triangular array version of one to be found in Chow and Teicher (1978, page 341). The proof is based on

Received March 1983; revised September 1983.

¹ This research was supported in part by National Science Foundation Grant No. MCS-80-64022. AMS 1980 subject classifications. Primary 60F15; secondary, 60G50.

Key words and phrases. Generalized or universal law of the iterated logarithm, sums of i.i.d. random variables.

907

the idea that a sum of i.i.d. variables can be abnormally large due to many runs of "good luck," i.e., due to many successive blocks of moderately sized summands.

LEMMA. For each $k \geq 1$ let $\overline{X}_{k1}, \dots, \overline{X}_{kn_k}$ be i.i.d. random variables with $n_k \to \infty$. Let $u_k \to \infty$ in such a way that $n_k/u_k^2 \to \infty$. Assume that for any $n_k/u_k^2 \leq j_k \leq n_k$,

(3)
$$\mathscr{L}\left(\frac{\bar{X}_{k1} + \dots + \bar{X}_{kj_k}}{\sqrt{j_k/n_k}}\right) \to N(0, 1).$$

Then for each $\varepsilon > 0$ $\exists \delta_{\varepsilon} > 0$ and $k_{\varepsilon} < \infty$ such that for $k \geq k_{\varepsilon}$

(4)
$$P(\bar{X}_{k1} + \cdots + \bar{X}_{kn_k} > (1 - \varepsilon)u_k) \ge \exp(-(1 - \delta_{\varepsilon})u_k^2/2).$$

PROOF. Fix $0 < \varepsilon \ll 1$ and let $Z \sim N(0, 1)$. Take $y \gg 1$ such that

$$P(Z > (1 - \varepsilon/2)\sqrt{y}) \ge e^{-(1-\varepsilon/2)y/2}$$

Split up the X_{ki} 's for $1 \le i \le n_k$ into $r_k = [u_k^2/y]$ consecutive blocks of lengths ℓ_{k1} , \cdots , ℓ_{kr_k} where $\ell_{k1} + \cdots + \ell_{kr_k} = n_k$ and $\ell_{ki}r_k/n_k \to 1$ as $k \to \infty$, uniformly in i. Now let \overline{S}_{k1} , \cdots , \overline{S}_{kr_k} satisfy $\overline{S}_{k1} + \cdots + \overline{S}_{kj} = \overline{X}_{k1} + \cdots + \overline{X}_{k\sum_{i=1}^{l} \ell_{ik}}$. Then

$$\begin{split} P(\overline{X}_{k1} + \cdots + \overline{X}_{kn_k} &> (1 - \varepsilon)u_k) \\ &\geq P(\cap_{j=1}^{r_k} \left\{ \overline{S}_{kj} > (1 - \varepsilon)u_k/r_k \right\}) \\ &= \prod_{j=1}^{r_k} P\left(\frac{\overline{X}_{k1} + \cdots + \overline{X}_{k\ell_k}}{\sqrt{\ell_{kj}/n_k}} > \frac{(1 - \varepsilon)u_k\sqrt{n_k/\ell_{kj}}}{r_k} \right) \\ &\qquad \qquad \text{(by indep and the fact that for each } k, \, \overline{X}_{k1}, \, \cdots, \, \overline{X}_{kn_k} \text{ are i.i.d.)} \\ &\geq \prod_{j=1}^{r_k} P(Z > (1 - \varepsilon/2)\sqrt{y}) \quad \text{for } k \quad \text{large} \\ &\qquad \qquad \qquad \text{(by (3) and the fact that } yr_k/u_k^2 \to 1)} \\ &\geq \exp(-r_k(1 - \varepsilon/2)y/2) \\ &\geq \exp(-(1 - \varepsilon/4)u_k^2/2) \quad \text{for } k \quad \text{large.} \quad \Box \end{split}$$

THE Example. Let X be bounded above, have mean zero, and negative part X^- with an absolutely continuous density of the form

(5)
$$f_{X^{-}}(x)I(x > 0) = \sum_{k=k_0}^{\infty} x^{-2}c_kI(x \in (\alpha_k, \beta_k)),$$

where, among other conditions that will not be specified, β_k/α_k , α_{k+1}/β_k , $c_{k+1}\beta_{k+1}/c_k\beta_k$, and $c_k \log(\beta_k/\alpha_k)/c_{k+1}\log(\beta_{k+1}/\alpha_{k+1})$ all tend to infinity as $k \to \infty$. For our purposes it suffices to take

- (i) $\alpha_k = \exp(k \log \log k)$
- (ii) $\beta_k = \alpha_k \sqrt{\log k}$
- (iii) $c_k = \exp\{-(k/2)(\log \log k + 2 \log \log \log k \log 4)\}.$

(All logarithms are taken to the base e.)

LIL BOUNDS 909

As usual, we define $K(\cdot)$ as in (2), letting $a_n = (\log \log n)K(n/\log \log n)$ and $L \equiv \lim \sup_{n\to\infty} S_n/a_n$. Since X^+ is bounded above, $L \le 1.5$. Fix $0 < \varepsilon \ll 1$. We need but prove that $P(S_n > (1 - \varepsilon)1.5 \ a_n \ \text{i.o.}) = 1$. By virtue of the argument used in Section 3 of Klass (1977), it suffices to prove that

(6)
$$\sum_{k \ge k_0} P(S_{n_k} \ge (1 - \varepsilon) 1.5 a_{n_k}) = \infty$$

for some integers $1 \le n_1 < n_2 < \cdots$ such that $n_{k+1}/n_k \to \infty$. Clearly, (6) holds if

(7)
$$\lim \inf_{k\to\infty} kP(S_{n_k} > (1-\varepsilon)1.5a_{n_k}) > 0.$$

We concentrate on establishing (7). Set

(8)
$$n_k = [(\log k)(\log \log k)^{-1} \exp\{k(\sqrt[3]{2} \log \log k + \log \log \log k - \log 2)\}],$$

where [x] denotes the largest integer not exceeding x.

It is routine to check that $n_{k+1}/n_k \to \infty$, $\log \log n_k \sim \log k$, and

$$(n_k/\log k)P(X^- > \alpha_k) \to 0.$$

Also, we have

(9)
$$(n_k/\log\log n_k)EX^-I(X^- > \alpha_k) \sim (n_k/\log k)c_k\log(\beta_k/\alpha_k) \sim 2^{-1}\alpha_k$$
.
And

$$(10) (n_k/\log\log n_k)EX^2I(|X| \le \alpha_k) \sim (n_k/\log k)\beta_{k-1}c_{k-1} \sim 2^{-1}\alpha_k^2.$$

In view of (9) and (10), $(n_k/\log \log n_k)E\{(X/\alpha_k)^2 \land |X/\alpha_k|\} \sim 1$. Hence there exists $\varepsilon_k \to 0$ such that $\alpha_k = K((1 + \varepsilon_k)n_k/\log \log n_k)$. Since $y^{-1}K(y) \searrow$ and $K(y) \nearrow$ we see that for $|\varepsilon| < 1$, $(1 - |\varepsilon|)K(y) \le K((1 - |\varepsilon|)y) \le K((1 + \varepsilon)y) \le K((1 + |\varepsilon|)y) \le K((1 + |\varepsilon|)y)$. It therefore follows that

(11)
$$\alpha_k \sim K(n_k/\log\log n_k).$$

When S_{n_k} is large it is likely that no X_j for $1 \leq j \leq n_k$ is terribly negative. Thus we (somewhat loosely) associate the event $\{S_{n_k} > (1-\varepsilon)1.5a_{n_k}\}$ with the event $A_k \cap \{\sum_{j=1}^{n_k} X_{kj} > (1-\varepsilon)1.5a_{n_k}\}$, where $A_k = \bigcap_{j=1}^{n_k} \{X_j > -\alpha_k\}$ and $X_{kj} = (X_j \mid X_j > -\alpha_k)(=(X_j \mid X_j > -\beta_{k-1}))$. Observe that $(S_{n_k} \mid A_k) = \sum_{j=1}^{n_k} X_{kj}$. The X_{kj} 's have positive drift. Since EX = 0 this drift equals

$$EX_{k1} = EX^{-}I(X^{-} > \alpha_k)/P(X \ge -\alpha_k).$$

Letting γ_k satisfy $n_k E X_{k1} = \gamma_k a_{n_k}$, it is clear from (9) and (11) that

(12)
$$\gamma_k \to \frac{1}{2}$$
 (i.e., $n_k E X_{k1} \sim 2^{-1} a_{n_k}$).

When A_k occurs, excessively large values of S_{n_k} are influenced chiefly by the drift component $(n_k E X_{k1} = \gamma_k a_{n_k})$ and by the fluctuation component $(\sum_{i=1}^{n_k} \tilde{X}_{ki})$ of

$$\sum_{j=1}^{n_k} X_{kj} = \gamma_k a_{n_k} + \sum_{j=1}^{n_k} (X_{kj} - EX_{kj}) \equiv \gamma_k a_{n_k} + \sum_{j=1}^{n_k} \tilde{X}_{kj}.$$

We now treat the fluctuation component. Observe that it has variance $n_k E \tilde{X}_{k1}^2 \sim a_{n_k}^2/2 \log k$.

Let
$$\bar{X}_{kj} = \hat{X}_{kj} \sqrt{n_k E \hat{X}_{kj}^2}$$
. For $n_k/3 \log k \le j_k \le n_k$,
$$j_k E \left| \frac{\bar{X}_{k1}}{\sqrt{j_k/n_k}} \right|^3 / \left(j_k E \frac{\bar{X}_{k1}^2}{j_k/n_k} \right)^{3/2}$$

$$\sim \frac{j_k^{-1/2} E |X|^3 I(|X| \le \beta_{k-1})}{(EX^2 I(|X| \le \beta_{k-1}))^{3/2}} \le \frac{\beta_{k-1}}{(j_k EX^2 I(|X| \le \beta_{k-1}))^{1/2}}$$

$$\le (3 \log k)^{1/2} \beta_{k-1} (n_k EX^2 I(|X| \le \beta_{k-1}))^{-1/2}$$

$$= (3 \log k)^{1/2} \beta_{k-1} \left((\log \log n_k) \frac{\alpha_k^2}{2} (1 + o(1)) \right)^{-1/2}$$

$$= (1 + o(1)) \sqrt{\frac{6}{\log k}} \to 0.$$

Invoke the Berry-Esseen Theorem to conclude that

$$\mathscr{L}\left(\frac{\bar{X}_{k1}+\cdots+\bar{X}_{kj_k}}{\sqrt{j_k/n_k}}\right)\to N(0,\ 1).$$

By the lemma, it follows that there exists $\delta_{\epsilon} > 0$ such that for k large

$$\begin{split} P(\sum_{j=1}^{n_k} X_{kj} < (1 - \varepsilon) 1.5 a_{n_k}) \\ & \geq P(\sum_{j=1}^{n_k} \tilde{X}_{kj} > (1 - \varepsilon) a_{n_k}) \quad (\text{since } n_k E X_{k1} \sim 2^{-1} a_{n_k}) \\ & = P\bigg(\frac{\sum_{j=1}^{n_k} \tilde{X}_{kj}}{\sqrt{n_k E \tilde{X}_{k1}^2}} > \frac{(1 - \varepsilon) a_{n_k}}{\sqrt{n_k E \tilde{X}_{k1}^2}}\bigg) \\ & \geq \exp\bigg\{\frac{-2^{-1} (1 - \delta_{\varepsilon}) a_{n_k}^2}{n_k E \tilde{X}_{k1}^2}\bigg\} = \exp\{-(1 + o(1))(1 - \delta_{\varepsilon})\log k\}. \end{split}$$

Lower-bounding,

$$\begin{split} P(S_{n_k} > (1-\varepsilon)1.5a_{n_k}) \\ & \geq P(\cap_{j=1}^{n_k} \{X_j > -\alpha_k\})P(\sum_{j=1}^{n_k} X_{kj} > (1-\varepsilon)1.5a_{n_k}) \\ & = (\exp\{-(1+o(1))n_k P(X^- \geq \alpha_k)\})P(\sum_{j=1}^{n_k} \hat{X}_{kj} > ((1-\varepsilon)1.5 - \gamma_k)a_{n_k}) \\ & > \exp\{-o(\log k) - (1+o(1))(1-\delta_{\varepsilon})\log k\} \\ & > k^{-1} \quad \text{for} \quad k \quad \text{large,} \end{split}$$

which establishes (7) and therefore also (6).

REFERENCES

CHOW, Y. S. and TEICHER, H. (1978). Probability Theory. Springer, New York.
KLASS, M. J. (1976). Toward a universal law of the iterated logarithm, Part I. Z. Wahrsch. verw.
Gebiete 36 165-178.

LIL BOUNDS 911

- KLASS, M. J. (1977). Toward a universal law of the iterated logarithm, Part II. Z. Wahrsch. verw. Gebiete 39 151-165.
- KLASS, M. J. and TEICHER, H. (1977). Iterated logarithm laws for asymmetric random variables barely with or without finite mean. *Ann. Probab.* **5** 861–874.

DEPARTMENT OF STATISTICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720