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THE FINITE MEAN LIL BOUNDS ARE SHARP

By MICHAEL J. KLASS!

University of California, Berkeley

Let X, X1, X, - - - be i.i.d. nonconstant mean zero random variables and
put S, = X; + .-+ + X,. Let K(y) > 0 satisfy yE{|X/K(y) | A | X/K(y) |}
=1 (for y > 0). Then let

a, = (log log n)K(n/log log n)
and
L = lim sup,_..S,/a,.
It is known that L is finite iff P(X, > a, i.0.) = 0. When L < o, it is also

known that 1 < L < 1.5 and that it is possible for L to equal one. In this paper
we construct an example for which L = 1.5.

Let X, X, X5, - -+ be independent identically distributed (i.i.d.) nonconstant
zero-mean random variables. Let S, = X; + ... + X,,. For each y > 0 there
exists a unique positive real K(y) such that

<1 if v> K(y)

(1) EXU(|X| <v) +2 E|X|I(|X|>v)l;11t li SQKS’)K()
1 v y

Equivalently, K(y) is the unique positive real satisfying

) yE{(Kif)) A (%)lf -

Let a, = (log log n)K(n/log log n) and L = lim sup,_.»S,/a,.

In Klass (1976, 1977) it was shown that L < « iff P(X,,> a,i.0.) = 0. Moreover,
when L < o, 1 < L < 1.5. The lower bound L = 1 is achieved (for example) by
X-distributions whose positive part is bounded above and whose negative part is
regularly varying of index 1 (i.e., yP(X < —y) is slowly varying as y — ). It was
not known whether the upper- bound L = 1.5 could be achieved. In fact, since
L = V2 when X has finite variance, one could easily have suspected (and indeed
in Klass (1977) it was conjectured) that when finite, L is always between one and
2. In this paper we show by example that the upper-bound of 1.5 can be attained.
It is achieved by an X-distribution whose partial sums S, are excessive due to
the dual contributions of both conditional drift and conditional variance terms.

We require use of a lemma on tail probabilities. It is a triangular array version
of one to be found in Chow and Teicher (1978, page 341). The proof is based on
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the idea that a sum of i.i.d. variables can be abnormally large due to many runs
of “good luck,” i.e., due to many successive blocks of moderately sized summands.

LEMMA. For each k = 1 let Xy, - -+, Xpn, be i.i.d. random variables with
ng —. Let u, — © in such a way that ny/ui — . Assume that for any n,/u} <
jk = Ny,

X+ -+ Xy
(3) 5/( - ”‘) — N(0, 1).
Vlk/nh
Then for each ¢ > 0 38, > 0 and k, < » such that for k = k,
(4) PR+ -+ + Xin, > (1 — oJuy) = exp(—(1 — 6)ul/2).

PROOF. Fix0<e<1andletZ ~ N(0, 1). Take y > 1 such that
P(Z > (1 — ¢/2)Vy) = e~ (O-/2/2,

Split up the X,’s for 1 < i < n, into r, = [u}/y] consecutive blocks of lengths #;,,

ooy L, Wllere lmt -+ + L, = g and L/, — 1 as k — oo, uniform_ly in i.
Now let Skl, sy, Sk,-k satisfy ‘ghl + ... + Skj = Xkl + .- + sz{_l/h.
Then

P(Xkl + ...+ Xk"k > (1 - e)uk)
= P(NE, (S > (1 — e)un/ra})
_ ’.”_1 P(Xkl + ...+ Xk/’k; > (1 — &)upV nk//kj>
j_ Vi, Tk
(by indep and the fact that for each k, Xy, - - -, X, are i.i.d.)
>[I, P(Z> (1 - ¢/2)¥Vy) for k large
(by (3) and the fact that yry/u? — 1)

= exp(—rx(1 — ¢/2)y/2)
= exp(—(1 — ¢/4)u3/2) for k large. O

THE EXAMPLE. Let X be bounded above, have mean zero, and negative part
X~ with an absolutely continuous density of the form

®) fx-@)(x > 0) = Fiy, x%crl(x € (o, Br)),

where, among other conditions that will not be specified, 8x/a, or+1/Bk, Ch+1Be+1/
Pk, and ci log(Br/aw)/cr+1108(Br+1/ar+1) all tend to infinity as £ — . For our
purposes it suffices to take

(1) o = exp(k log log k)
(ii) Br = axVlog k
(iii) c, = exp{—(k/2)(log log k + 2 log log log k — log 4)}.

(All logarithms are taken to the base e.)
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As usual, we define K(-) as in (2), letting a, = (log log n)K(n/log log n) and
L = lim sup,_.S,/a,. Since X* is bounded above, L < 1.5. Fix 0 < e < 1. We
need but prove that P(S, > (1 — ¢)1.5 a, i.0.) = 1. By virtue of the argument used
in Section 3 of Klass (1977), it suffices to prove that

(6) Skt P(Sn, = (1 = &)15a,,) =

for some integers 1 < n, < ny, < - .- such that ny.,/n, — .
Clearly, (6) holds if

W) lim infy . kP(S,, > (1 — ¢)1.5a,) > 0.
We concentrate on establishing (7). Set
(8) ni = [(log k)(log log k) 'exp{k(*: log log k + log log log k — log 2)}],

where [x] denotes the largest integer not exceeding x.
It is routine to check that ng.,/n, — =, log log n; ~ log k, and

(nx/log R)P(X™ > o) — 0.
Also, we have
9) (ni/log log i) EX"I(X™ > ai) ~ (n/log k)crlog(Be/an) ~ 27 .
And
(10) (nx/log log n) EX?I(| X | < o) ~ (ni/log k)Br-1ck—1 ~ 27'a}.

In view of (9) and (10), (ny/log log n.)E{(X/ar)?* A | X/ax|} ~ 1. Hence there
exists e — 0 such that o, = K((1 + &)ny/log log ng). Since y 'K(y) \ and
K(y) /~ weseethatfor |e| <1,(1—|e])K(y) <= K((1—|e|)y) = K((1+¢)y) <
K((1+]e])y) =1+ |¢|)K(y). It therefore follows that

(11) ar ~ K(ng/log log n;).

When S,, is large it is likely that no X; for 1 < j < n, is terribly negative.
Thus we (somewhat loosely) associate the event {S,,, > (1 — ¢)1.5a,,} with the event
Ak N {Eyil th > (1 - e)1.5a,,k}, where Ak = n;’il {)(] > —O(k} and ij =
(X1 Xj > —or)(=(X;| X; > —Br-1)). Observe that (S, | Ax) = ¥, Xy. The Xi/’s
have positive drift. Since EX = 0 this drift equals

EX,, = EXI(X™ > o) /P(X = —ay).
Letting v, satisfy nyEXy = viay,, it is clear from (9) and (11) that
(12) Yr — ) (i.e., nkEXkl ~ 2‘1ank).

When A,, occurs, excessively large values of S, are influenced chiefly by the drift
component (n,EX,: = y:a,,) and by the fluctuation component (Y7, X4) of

2t X = e, + X7 (X — EXy) = vian, + X7, X

We now treat the fluctuation component. Observe that it has variance n,EX% ~
2
a;,/2 log k.



910 MICHAEL J. KLASS

Let ij = ij\' nkEX%. For nk/3 lOg k Sjk =< Ng,

3 o2 \3/2
JGE |2 / <jkE ——.X“>
Vir/ T el

_IPEIX I X < ) _ Bics
EXHNX| < 6l GEXT(X] = Bia)

< (3 log R)*Bp-1(nk EX?I(| X | < Bry)) ™2

-1/2
= (3 log k)wﬁk_l((log log n,) %2“ 1+ 0(1))>

=<1+o(1)>\/$_>o.

Invoke the Berry-Esseen Theorem to conclude that

;/(X’“ ha W+ X""*) — N(O, 1).
By the lemma, it follows that there exists §, > 0 such that for k large
P(Y7*, Xy < (1 — ¢)1.5a,,)
= P(Y, Xy>@1 - e)a,,) (since nyEXy ~ 27'ay,)
moX, —
- A )
[-2711 - 8)a?

W} = exp{—(1 + o(1))(1 — é,)log k}.

= exp

Lower-bounding,
P(S,, > (1 — ¢)1.5a,,)
= P(N? {X; > —an})P(TTk, Xi > (1 — ¢)1.5a,,)
= (exp{—(1 + o())nP(X~ = ap)DP(T}, Xy > (1 — ¢)15 — v,)an,)
> exp{—o(log k) — (1 + 0(1))(1 — &.)log k}
> k™ for k large,
which establishes (7) and therefore also (6).

i
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