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ON THE LAW OF LARGE NUMBERS IN 2-UNIFORMLY
SMOOTH BANACH SPACES

By BERNARD HEINKEL

Université Louis Pasteur Strasbourg and Texas A&M University

In this paper we extend the Kolmogorov strong law of large numbers to
random variables taking their values in a 2-uniformly smooth Banach space
(B, || ). In our result, the convergence of the classical series of variances is
replaced by the convergence of the series having general term

sup{Ef %(X.)/n% |f s = 1}.

Several recent papers deal with the strong law of large numbers for non-
identically distributed Banach space valued random variables. Roughly speaking,
the key idea in these papers is to mimic the scalar situation: the norms of the
random variables fulfill the same kind of assumptions as the absolute values of
the random variables in the scalar case. But in infinite dimensions, a lot of
information about a random variable is lost by making only hypotheses on its
norm; so under only “norm assumptions”, one obtains sufficient conditions for
the strong law of large numbers (the central limit theorem or the law of the
iterated logarithm) which are too restrictive. On the other hand, conditions
involving finite dimensional projections of a random variable with values in a
general Banach space are difficult to handle.

Recently there has been substantial progress on the problem of taking into
account finite dimensional assumptions on a random variable: V. Goodman, J.
Kuelbs, and J. Zinn [2] found a method of investigation for Hilbert space valued
random variables, which is strong enough to give a necessary and sufficient
condition for the law of the iterated logarithm. M. Ledoux [4] has shown that
this method extends to 2-uniformly smooth Banach spaces.

By using the same fundamental ideas as these authors, we will obtain an
analogue to Kolmogorov’s law of large numbers for 2-uniformly smooth Banach
space valued random variables. The general term of the classical series involved
in such a law of large numbers will not be “E || X, [|?/n®” but the smaller quantity
“sup y,.<1(Ef 2(X,)/n?)".

We will show in an example that our theorem is strong enough to conclude
that the strong law of large numbers holds in situations where results as smooth
as the J. Kuelbs’ and J. Zinn’s [3] extension of the Prohorov’s law of large
numbers or W. Woyczynski’s [6] law of large numbers in 2-uniformly smooth
Banach spaces don’t apply.

1. Introduction. Consider (X, k¥ € N) a sequence of independent random
variables (r.v.) with values in a real separable Banach space (B, | - [|), which is
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equipped with its Borel o-field 4. For each integer n, we put:
Sn=X1+X2+ .. +Xn

One says that the strong law of large numbers holds for the sequence (X,
k € N) if and only if
(Sn/n) 2 pnos+to 0 a.s.

A sufficient condition for the strong law of large numbers is the following
extension of the well-known Prohorov’s theorem (see [5], Theorem 5.2.4):

THEOREM 1 (J. Kuelbs and J. Zinn [3]). Let (X, k € N) be a sequence of
independent r.v. with values in a real separable Banach space (B, | - ||). Suppose
that there exists a positive constant M, such that

ViEN Xl =M(/Lj) as,
where Lyx = Log(Log(sup(x, €°))). For each integer n we define
A(n) = Ti5m E| X;]7/2200
and we suppose that the following condition holds:
(1) Ve>0 Ym=1 €xp(—e/A(n)) < +oo.

Then:
(Sp/n) =p 0 & (S,/n) 51atr0 0 as.

This result is trye in every Banach space. In the special case of a type 2 space,
the condition (1) implies that (S,/n) —p 0, so in that case the result can be
stated simply as
(1) = (Sn/n) 5naie 0 as.
In this paper we restrict our interest to a special class of type 2 spaces: the

2-uniformly smooth spaces. For the sake of completeness, we recall the definition
and main properties of such a space.

DEFINITION. A Banach space (B, ||-||) of dimension n = 2 is said to be
2-uniformly smooth if there exists a positive constant K such that

Vix,y) €EB% llx+yl?+ lx—yl*=<2]x|*+ K|yl

Let us write down some useful properties of 2-uniformly smooth spaces; the
reader will find more details and proofs in [4].

1) The norm || - || of a 2-uniformly smooth space is uniformly Fréchet differ-
entiable away from 0; so for each nonzero element x of B there exists a continuous
linear functional D(x) such that for all y in B, and all t € R, with x + ty different
from 0, one has

(d/dt) | x + ty| = D(x + ty)(y).
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2) A 2-uniformly smooth space is of type 2.

3) For each nonzero x € B we define

F(x)=|x|D <—"—)

(EF|
Then
IF)s" = llxl.
Eulr;hermore, for every sequence (x;, s, -+ -, X,) in B the following inequality
olds:

| $i x> =2 X2 F(Shah x)(x;) + C X2 1l %5117,

where C is the type 2 constant of the space B.

The law of large numbers in 2-uniformly smooth spaces has been investigated
by W. A. Woyczynski. For instance, he has obtained the following result
([6] Theorem 3.1):

THEOREM 2. Let (M,, n € N) be a martingale with values in a 2-uniformly
smooth space (B, | - ||). If there exists ¢ = 1 such that

- 2q
EIM, = Mo

nq+l

Dn= +00,

then
[ M.| = o(n) as.

This result (as Theorem 1) only involves hypotheses on the norms of the r.v.
Our goal is to prove the following result which involves properties of the finite
dimensional projections of the r.v.:

THEOREM 3. Let (X,, k € N) be a sequence of independent centered r.v. which
take their values in a 2-uniformly smooth Banach space (B, | - |). Suppose that
the following conditions hold:

1) There exists a positive constant k such that:

n
VneEN, |X.|l<k a.s.;

e .
2) My 3ot E_lljg_;ﬂ_ —o;
' - (EfuX;
3) 2 j=1 SUP |y =1 (_f]_({_})) < 40,

Then the sequence (X}, k € N) satisfies the strong law of large numbers.
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We will first prove this result; then we will build a sequence of r.v. (X,
k € N) taking values in #?, which fulfills the hypothesis of Theorem 3, but not
the ones of Theorem 1 and Theorem 2.

2. Proof of Theorem 3. By applying the property 3) of 2-uniformly smooth
spaces recalled above, we have, for all integers n:

2 X X |2
( ) 522},21?(2 nk)(X) nnjzu.

+CY¥h
So the proof of our theorem will split into 2 parts:
IX;10* II :

X
X ‘n_J

) EJ =1 2 n—+tw O a.S.,
F(2i2 X)(X;
b) T (2 = DX, .0 as

To prove a) it is clearly sufficient to show:

N2/
S, I X 11°/7 a0 as.
n
It follows easily from hypothesis 2) that
E| X;1%j
1imn—>+°° 21’;1 '—"#M = O’

and so:
X%/
s WXl o
n

Now put for each integer j:
X 0*

J
By hypothesis 1) there exists K > 0 such that:

ViEN, |Y;l=K(j/Lj) as.

Yj=

Furthermore:
- E|Y;)? , ot EIX;|?
A( )=Z,22+1'—22(—,,ﬁ7‘5K f—2+1m
So, for each ¢ > 0:
Yn=1 exp(—¢/A(n)) < +.

Property a) is therefore an easy consequence of Theorem 1 applied to the r.v.
(Y;,j EN).
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To prove b) we consider the martingale:
Zn =Y F(Zi2 X)(X)),

the stochastic basis being #, = ¢(X3, - - -, X,). We will show that it fulfills the
hypothesis of the following convergence theorem:

LEMMA (Chow [1]). Let (X;, &, 1 = 1) be a martingale difference sequence.
Let a; be ;—; measurable for each i =1 and 0 < a; 1 +% a.s. Then:
B X:|7] Finl _

a?

©
i=1

< 400 a.s.

for some 0 < p < 2 implies:

(Sn/an) —notw 0 as.

The space B being 2-uniformly smooth, one has:

E (2;‘;2 E[F*(Siz X)(X)| 7 1])

>4

J
-y E[F* (T Xu)(X))]
= Lj=2 ]4
J i E § XJ‘
=Y H SUP | f|5.=1 _f]‘(é“l

E| X:|? Ef*(X;
= C(SUD: Y k=1 —%l) Y j=2 SUP 7|5 =1 —f—](z—)
So it follows by applying hypothesis 3):

E[F* (T Xk)(X )| Fi-il
J

< +o0 a.s.

2

By Chow’s Lemma one has:
(Z"/nZ) —)n—>+oo O a.s.,

and this ends the proof of Theorem 3.

3. An example of application. Consider an independent triangular array
of independent real values r.v.: {A?,j=1, 2, - - -, [n"/?]}, the notation [ ] denoting
the integer part of a number.

For each fixed n, the A\ have the same dlstnbutlon they are Cauchy r.v.
truncated at the level n5/6/L3n,_ where the function L; is defined in a way
analogous to Ls.

Consider /2 equipped with its canonical basis (e,, n € N). It is a Hilbert space
and so it is of course a 2-uniformly smooth space. Define the following sequence
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(X,, n € N) of #%-valued r.v.:

Xn =3I Npe;
We will first check that this sequence of r.v. fulﬁlls the hypotheses of Theorem
3:

1) It is clear that there exists k> 0 such that: V n €N, | X, | < k(n/vLzn)

a.s.
2) Ell X, |2 =3 E\\})? < K(n/Lsn), s0: limy e $1 E || X;1|%/n% = 0.

3) supjs e, Ef (X)) =

nb6/Lsn
1/51 a%f 3 x? d 2 n5/6
0

n an’
TPl ) 22 1+ = n Lon
It follows:
Ef¥(X;
271 SUpP £y oy EfAX) <+

By applying Theorem 3, we conclude that the sequence (X,) satisfies the
strong law of large numbers.
We will see now that the hypothesis:

(2) Ve>0 Y exp(—e/A(n)) < 4o
of Theorem 1 is not fulfilled. To see this, notice,
E|X.l* = K’ (n/Lsn),
)
A(n) = (K"/Lsn),

and condition (2) clearly fails to hold. So Theorem 3 allows one to reach situations
in which Theorem 1 is helpless. What about Theorem 2?
Let ¢ = 1; then:

E| X,% = EE" (\)) = (T2 E(A)D? = (K')? (n/Lsn)°.
It follows that for each integer n:
E|X.|* e 1
port = (B o

so a g = 1 doesn’t exist for which the hypothesis of Theorem 2 is fulfilled.
Theorem 3 also allows us to conclude that the strong law of large numbers
holds in some situations in which Theorem 2 does not apply.
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