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DISCUSSION OF THE PAPER OF PROFESSORS
GINE AND ZINN

PROFESSOR KENNETH S. ALEXANDER (University of Washington). The most
important idea in this paper, perhaps, is the comparison to a Gaussian process
of a process (here an empirical process) involving sdimmation of random variables,
conditionally on the values of those variables. This technique will no doubt find
broader application; in fact, Ronald Pyke and I are already attempting to use it
to obtain central limit theorems for partial sum processes. These are processes
of the form

Z,(A) =n"%" Y cutnna Xj, AEA

where A is a collection of subsets of [0, 1]¢, Z. denotes the nonnegative integers,
nAis {nx: x € A}, and {X;:j € Z%} is an array of i.i.d. random variables. We
hope to reduce the moment condition required on X; for the CLT in Bass and
Pyke (1984) toward the minimal condition EX? < oo, under metric entropy
conditions on A. Z, can be represented as a weighted sum of processes each of
which is qualitatively like an empirical process, and this sum may be compared
conditionally to a weighted sum of Gaussian processes.

The “square root trick” (Lemma 5.2 in the paper) gives a convenient and
ingenious method of bounding

Pr*[sup;se s r)<emi2 | va(f — 8) | > 7€)

in (3.2) in the paper (see Remark 5.3). The bound is not sharp, however—a factor
of 2 is lost, for example, when (2.3) of Lemma 2.7 is used. For the CLT sharpness
is of course not needed, but it becomes important for other asymptotic results,
including laws of the iterated logarithm (Alexander, 1984, Kiefer, 1961) and
minimax properties of the empirical distribution function as an estimator of the
true d.f. (Dvoretzky, Kiefer, and Wolfowitz, 1956, Kiefer and Wolfowitz, 1959).
For sharp bounds, rather than randomize through use of Rademacher variables
¢; and the square root trick, the idea is to take N > n i.i.d. variables X, - -+, Xx,
then randomly select n of the N and construct P, from these; P, — Py is then
studied. This technique is used in Alexander (1984), Devroye (1982), and Massart
(1983).

Finally, it would be of interest to know whether (5.1), (5.14), and (5.15) are
actually equivalent statements.

REFERENCES

ALEXANDER, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated
logarithm. Ann. Probab. 12 1041-1067.

Bass, R. and PYKE, R. (1984). Functional law of the iterated logarithm and uniform central limit
theorem for partial-sum processes indexed by sets. Ann. Probab. 12 13-34.

DEVROYE, L. (1982). Bounds for the uniform deviation of empirical measures. J. Multivariate Anal.
12 72-79.

DVORETZKY, A., KIEFER, J., and WOLFOWITZ, J. (1956). Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27
642-669.

990

&
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @3]:/-‘1
The Annals of Probability. RIKOIN

WWW.jstor.o

g



LIMIT THEOREMS FOR EMPIRICALS 991 -

KIEFER, J. (1961). On large deviations of the empiric d.f. of vector chance variables and a law of the
iterated logarithm. Pacific J. Math. 11 649-660.

KIEFER, J. and WOLFOWITZ, J. (1959). Asymptotic minimax character of the sample d.f. for vector
chance variables. Ann. Math. Statist. 30 463-489.

MASSART, P. (1983). Vitesse de convergence dans le théoréme de la limite centrale pour le processus
empirique. Thesis, Université de Paris-Sud, Centre d’Orsay.

DEPARTMENT OF MATHEMATICS, GN-50
UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

PROFESSOR R. M. DUDLEY (Massachusetts Institute of Technology). For
central limit theorems (CLT) on empirical measures uniformly over classes of
sets, there had been, roughly, one criterion (asymptotic equicontinuity) and at
least three disparate sufficient conditions: 1) an integral condition on metric
entropy with inclusion, 2) the Vapnik-Cervonenkis combinatorial condition with
some measurability, and 3) to have a sequence of sets converging fast enough to
the empty set and/or whole space. Now Giné and Zinn have illuminated much
more of the surrounding landscape, providing additional criteria,” and further
sufficient conditions which are at least close to necessary.

Limit theorems for empirical measures uniformly over classes of functions are
equivalent to limit theorems in general Banach spaces (Dudley, 1984) (the former
are not only special cases of the latter). For example, E. Mourier’s classical strong
law of large numbers in separable Banach spaces can be subsumed by an extension
of the Blum-DeHardt strong law for empiricals (Dudley, 1984, Sec. 6.1), although
the already short proof is not thereby shortened.

There have also been disparate conditions for the CLT in separable Banach
spaces: the Jain-Marcus (1975) theorem and results depending on the geometry
of the space, notably Hoffman-Jgrgensen and Pisier’s (1976) result that the
classical conditions EX, = 0, E | X; |2 < o imply the CLT in Type 2 spaces. See
also Giné (1981). Zinn (1977) deduced the Jain-Marcus theorem from the Type
2 theorem, but one can still ask for a more general result including both, of the
kind in the paper under discussion. Giné and Zinn deduce, from their CLT (8.11)
for unbounded classes %, the theorem of Pollard (1982). This, in turn, implies
(Dudley, 1984, Sec. 11.3) the Jain-Marcus (1975) theorem. What about the Type
2 theorem?

For metric entropy of functions with bracketing, as far as I know, there is a
substantial gap between the conditions proved sufficient for the CLT and counter-
examples (Yukich, 1982). We also do not know whether the entropy is being
taken in the “right” metric for sharp results.

Relations between the geometry of Banach spaces and combinatorics of
Vapnik-Cervonenkis classes, not necessarily by way of probability, are also being
studied, e.g., Milman (1982) and Pajor (1983).

Pisier (1984) has shown the following. Let .#(X, o) be the set of all finite
signed measures on a measurable space (X, /), with total variation norm | - |.
For ¥ C o let | u|l « :=supsew|u(A)|, u € #(X, o7). Then the identity map
from #(X, &) to itself is a type 2 operator from | - || to | - || «, if and only if &
is a Vapnik-Cervonenkis class.
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PROFESSOR PETER GAENSSLER (University of Munich). This is a master-
piece in the spirit of Dudley’s recent contributions to the asymptotic theory of
empirical measures on arbitrary sample spaces.

The present paper incorporates, in addition, some fundamental and—as the
main results (especially Theorem 3.2 and Theorem 5.7) show—powerful ideas
and results from the theory of Gaussian and sub-Gaussian processes into the
present framework which is mainly concerned with central limit theorems
(CLT’s) for empirical processes indexed by classes % of sets or, more generally,
classes # of functions defined on the sample spaces under consideration. Here,
by CLT it is meant an invariance principle in probability (as explained in the
Introduction) which implies a functional CLT in a certain sense of weak conver-
gence of laws of the corresponding processes as presented in the monograph
(Gaenssler, 1984). So, the representation of Dudley’s (1978) work in the revisited
sense of weak convergence of laws in nonseparable metric spaces (named as -
convergence in Gaenssler, 1984) may (and this was one of the main intentions)
serve to round off and to link additionally the present paper with classical results
whose starting point was Donsker’s famous functional CLT for the uniform
empirical process as presented in Billingsley’s (1968) book.

Since the appearance of Billingsley’s (1968) book one knows about the sig-
nificant impact it had on certain important fields of nonparametric statistics
(based on Kolmogorov-Smirnov- or Cramér-von Mises-type statistics). Concern-
ing the present and now really most advanced shape of the probabilistic theory
on empirical processes on arbitrary sample spaces the question naturally arises
about the possible effects on statistical inference based on spatial data.
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There is an interesting paper by Thomas W. Sager in the Annals of Statistics
(1982) on “Nonparametric Maximum Likelihood Estimation of Spatial Patterns”
where general Glivenko-Cantelli-type theorems are used in proving consistency
results. Further results on asymptotic normality should be possible within the
context of the present paper.

On the other hand, when looking into the theory of functional CLT’s for
empirical Z-processes together with the concept of .4, -convergence in the sense
of Gaenssler (1984) one realizes that the metric spaces, on which the laws (of the
empirical Z-processes and the limiting Gaussian processes) can be defined in an
appropriate way, depend on the underlying distribution P of the random obser-
vations. But in spite of this one can show (i.e. in the case when P is unknown)
that the sufficient entropy—and measurability—conditions of Gaenssler, 1984
based on a dominating measure A (for a class of possible P’s) imply functional
CLT’s for the empirical Z-processes based on random observations with distri-
bution P admitting a bounded density w.r.t. A.

Finally, the results of the present paper on LLN’s (Glivenko-Cantelli-type
results) in the spirit of the Vapnik-Cervonenkis theory are very substantial as
well.

It would be interesting to compare these results with recent contributions by
Michel Talagrand (personal communication) prepared for the Annals of Mathe-
matics where a general (in terms of nonasymptotic conditions) description of the
GC-classes (i.e. classes £ of sets or classes ¥ of functions on which the empirical
processes P, (f), f € & converge uniformly to P(f), f € &%) is given.
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PROFESSOR WALTER PHILIPP (University of Illinois). 1. Although the main
theme of this beautiful paper is the central limit theorem and the strong law
of large numbers, it is perhaps nevertheless worth mentioning that all the
results of this paper dealing with the central limit theorem also imply under
a sharp moment condition an almost sure invariance principle with rate
o((n log log n)*?) and as a consequence a functional as well as a compact law of
the iterated logarithm. This can be viewed as an extension of the well-known
fact that if a sequence of independent identically distributed random variables
with values in a separable Banach space satisfies the central limit theorem and
a moment condition then the law of the iterated logarithm and even an almost
sure invariance principle with error term o((n log log n)'/?) holds (see Philipp,
1978 and the remarks before Theorem 1.2 of Dudley and Philipp, 1983.) For
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instance in the case of Theorems 3.1 and 3.2 of the paper under discussion the
formal argument goes like this: Since the functions f € # are uniformly bounded
the moment condition in Dudley and Philipp, 1983, Theorem 1.3 holds with
F = 1. The proofs of Theorems 3.1 and 3.2 show that conditions (a) and (b) of
Theorem 2.12 hold, and thus the above claim follows from Dudley and Philipp,
1983, Theorem 1.3, (1.19) with e, replaced by p,. (The proof as given on pages
513-514 does not depend on the particular choice of the pseudometric.)

2. For similar theorems frequently the question is raised whether a generali-
zation to weakly dependent random variables is possible. Undoubtedly this
question will also be asked in connection with the present paper. Except for a
more stringent moment condition, Theorem 1.1 of Dudley and Philipp (1983),
and thus the sufficiency part of Theorem 2.12 continue to hold for stationary
sequences of mixing random elements. (See Philipp, 1982.) (The necessity part
also holds by the proof of Dudley, 1984, Theorem 4.1.1.) But in order to establish
condition (b) of Theorem 2.12 and thus applying Theorem 2.12 to special classes
of functions, such as indicators of convex sets, a proof based on the chaining
argument, as given in Dudley, 1979, Theorem 5.1, requires sharp exponential
bounds a la Bernstein. But such bounds are not yet available for mixing random
variables. Only much weaker bounds (Philipp, 1982, Theorem 4) have been
proved thus far. These bounds permit the metric entropy with inclusion to grow
only logarithmically instead of polynomially, as it is permitted to grow for
independent random variables. Since the proofs of the paper under discussion
also require Bernstein’s inequality, (see (2.18) and the proof of Theorem 3.1)
there does not appear to be much hope for a generalization of many of these
results to mixing random variables.

The only thing I can say about the nonstationary case is: Good luck!

3. This paper deals with empirical processes for classes of functions indexed
by (linear) sets C N. In a forthcoming paper (Morrow and Philipp, 1984) it is
shown that the results of the paper under discussion on the central limit theorem
and on the law of the iterated logarithm mentioned in Dudley (1979) continue to
hold for empirical processes for classes of functions indexed by classes o7 of
subsets in N7 satisfying an entropy condition and having not too much mass on
the boundary. Although the following example is perhaps a curiosity, it is a good
illustration of what I am writing about since it requires the least amount of
notation: Let {£;, j € N?} be independent identically distributed random variables
with values in R? and having uniform distribution over [0, 1]>. Let £ denote the
class of convex sets contained in [0, 1]%. Then with probability 1

s H, := sup{| ¥ jenc (Ip(&;) = MD) — Y;(1p))| : C, D € £}
= o(n(log log n)?)
and
n"'H, -0 in L*S, & Pr).

Here \ denotes Lebesgue measure and Y;(1p) are Gaussian random variables.
Thanks to the papers by Dudley and to the paper under discussion, the theory
of empirical processes indexed by linear sets is now very well developed. I believe
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it is important to develop the theory of empirical processes for classes of functions
indexed by more general sets to the same level by establishing sharp conditions
on the classes & mentioned above.
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PROFESSOR DAVID POLLARD (Yale University). The proof of Theorem 3.2

is beautiful. The reduction to the mixture of Gaussian processes Gp, =

n™2 ¥, g:f(X:) will be a much-copied technique in future. It suggests that

there may be some way of coupling Gaussian processes G, and G,: perhaps G,

can be written as G, plus an independent, centered Gaussian process if u is bigger
than A in some appropriate sense. That would give

P{sup -;GA(f) > t} < 2P{sup »,G.(f) >t} for all ¢t

The details concerning the bounding of Pr(A°) could then be interpreted as a
proof that P, concentrates increasingly in the set of A where this inequality holds,
with 4 = 4P.

For the chaining argument, as in Theorem 3.1, the sub-Gaussian property
enters through the exponential bound on the tail probabilities of empirical
processes. The Bernstein inequality provides such a bound only when the variance
contribution stays bigger than en™"/? that is why the chaining has to stop when
p*(f, &) gets down near en~/% The Hoeffding inequality gives the sub-Gaussian
tails for all pairs of functions; that is why the chaining underlying (8.20) can
continue forever.

The fancy definition of 6% (f, g) in (8.22) turns out to be unnecessary: Pollard
(1984, Section VII.4).

The inequality (5.3) can be interpreted as an assertion that

sup(P.f*)* < 8 sup(Pf?'? with high probability

if the covering numbers N, do not increase too rapidly. The proof can be
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rewritten as an application of the symmetrization inequality (2.1) to the L?
seminorms: Pollard (1984, Section I1.6).
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PROFESSOR RONALD PYKE (University of Washington). The authors are to
be commended for their comprehensive unification and extension of recent
developments for empirical processes. The thoroughness of their exposition
makes discussion difficult.

As one that was involved with the formulation and first proof of the weak
convergence result for set-indexed uniform empirical processes, I have watched
with considerable interest the rapid development of the subject during the past
decade. This paper together with some lecture notes and monographs about to
be published shows the excellent state of the literature. There should now be a
thrust toward the application of these theoretical advances, as encouraged in my
1978 IMS Special Invited Lecture on “Empirical Processes and Inference”. For
example, Kolmogorov-type statistics of the form D,(C) := || P, — P| ¢ which
have been defined for many years, can now be considered for tests of hypotheses
(cf. Pyke, 1984). The asymptotic distributions of many such statistics are now
known in theory. Practically, however, two important problems remain; (i)
accurate simulations are needed to estimate the limiting (and so why not the
exact?) distributions, and (ii) computational procedures are needed to facilitate
the evaluation of the statistic. In the latter case some interesting theoretical
problems involving random sets arise. For example, envisage an interactive work
station where the data X;, X, ..., X, is entered into a smart graphics computer
which can compute P,(A) — P(A) for any specified A € C. Assume for simplicity
that C is the class of convex sets. If an operator is able to manipulate these sets
on a screen, then after a finite number of sets have been sampled, say C, C C,
the computer will have calculated D,(Co). Here C, is a random, data dependent
and finite subfamily of C. When the problem is more clearly defined, will it be
possible to give probability bounds for D,(C) — D,(C) in terms of card(C,)? By
contrast, if Cy is a fixed pre-specified family (such as a é-net for C) the above
paper reviews some of the bounds on this difference that are available in terms
of the entropy, card(C,). For applications of course V-C classes should be large
enough.

A second problem that brings random sets A € C, into the discussion of
empirical processes is that of finding a set, A, say, of minimal area among all
sets with a specified coverage, say P,(A) = %. How does the weak convergence
of A, to A the minimal area member of C for which Z (A) = 1, follow best from
the results of this paper?
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Empirical processes form a special case of random set functions that arise in
many real life situations. Data often is of the form (X, M) where X is a location
and M is a measurement taken at X. Such data determine in the obvious way a
random signed measure

(1) S(A) = ¥xeaM;, AEC.

If the locations are random but the masses are constant, one is led to empirical
processes. If on the other hand, the locations are fixed (such as at equally spaced
lattice points of a cube) but the masses are random, one obtains the other
important special case of partial-sum processes (cf. Pyke, 1984, Bass and Pyke,
1984, and references therein). The ties between partial-sum and empirical proc-
esses are well known, particularly in the one-dimensional case. However, it is
possible to develop this relationship much further, and this work is in progress.

By introducing Y; = (X;, M;) and f(x, m) = ml4(x), (1) can be written as
Y f(Y;) which is in the form central to this paper provided the Y;’s are independ-
ent and the X;’s are bounded. Extensions to the unbounded case are considered
in a forthcoming dissertation by Mina Ossiander. (Notice that the “unbounded
case” referred to in this paper is the case of non-uniformly bounded classes of
bounded functions.) The need for a CLT in the unbounded case has also arisen
in Ossiander and Pyke (1984) where a set-indexed context for Lévy’s Brownian
process is given.
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PROFESSOR WINFRIED STUTE (Universitit Giessen). The paper under dis-
cussion is a further development of the theory of invariance principles for
empirical processes as initiated by Professor Dudley. The motivation for Dudley’s
work seems to have been:

(1) the need for extending the theory of weak convergence (appropriately modi-
fied) so as to apply it to distributional results for stochastic processes indexed
by quite arbitrary parameter sets.

(2) the observation that tightness, the crucial part in proving weak convergence,
is closely connected with the realizability of stochastic processes in certain
function sub-spaces, e.g. in classes of continuous functions.

In working out this program it turns out at an already early stage that, when
applying some standard exponential bounds, one has to have control over the
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size of the parameter set. This leads to the notion of metric entropy as introduced
below (2.19). Theorem 3.1 stresses the importance of the role played by the
metric entropy for # to be a Donsker class. (3.1) is the familiar boundedness
condition on the size of % The same condition also occurs when proving % to
be pre-Gaussian. Theorem 3.2, which is a major result of the paper, is a real gain
on Theorem 3.1. Under no condition on the metric entropy, it reveals the way
how the properties of being pre-Gaussian and Donsker are connected.

As mentioned by Professors Giné and Zinn, the results of this paper do not
yield a direct approach to the invariance principle for the empirical characteristic
function process, i.e. for & = {f.}, with f,(x) = exp [itx], x € R. This is amazing,
especially since . is a uniformly bounded family of nice functions of any
desirable degree of smoothness. That the general approach does not lead to any
result seems to be due to the fact that even for bounded % ’s the invariance
principle may be valid only under moment assumptions on P. Such conditions
do not have any simple counterpart in the abstract set-up of Theorems 3.1 and
3.2. Similar problems occur when considering & = {f:|f| =< 1, f is Lipschitz of
order 1}. This class appears when studying the dual-bounded Lipschitz distance
between P, and P. Moreover, Huber (1981), page 40, also points out-the curse of
dimensionality (of the underlying sample space) when dealing with this &

The paper Stute (1983) has been written mainly to offer an alternative concept
of weak convergence, within which such % ’s can be easily handled under simple
conditions only involving the tails of P.
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