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In [4] Rosenthal proved the following generalization of Khintchine’s
inequality:
max{|| X% Xillz, (T 1| X:ll5)7)
B) < IS5 Xillp < Bmax{ | S Xila, (S I Xi19)
for all independent symmetric random variables X;, X, - - -, with

finite pth moment, 2 <p < o,

Rosenthal’s proof of (B) as well as later proofs of more general results by
Burkholder [1] yielded only exponential of p estimates for the growth rate of
B, as p — «. The main result of this paper is that the actual growth rate of
B, as p — « is p/Log p, as compared with a growth rate of Vp in Khintchine’s
inequality.

1. Introduction. In what follows the expression || X |, for a random vari-
able X and for 0 < s < o always denotes (E | X |*)%. || X || denotes ess sup | X |.

In [4] Rosenthal proved the following fundamental generalization of Khin-
tchine’s inequality:

max{|| &1 Xill2, (T | X: [l 5P}
< | 31 Xill, = Bymax{| Ty Xill2, (T | X: |15}

for all independent symmetric random variables X;, X, - - -, with finite
pth moment, 2 < p < oo,

(B)

Rosenthal’s proof of (B) as well as.later proofs of more general results by
Burkholder [1] yielded only exponential of p estimates for the growth rate of B,
as p — . The main result of this paper is that the actual growth rate of B, as

Received May 1983; revised June 1984.

! Supported in part by NSF MCS-79-03042.

% Supported in part by NSF MCS-82-13743.

3 Part of the research of these authors was done while they were in residence at the Workshop on
Banach Space Theory at the University of Iowa in July, 1981.

AMS 1980 subject classification. 60E15, 60G50, 60G42.

Key words and phrases. Rosenthal X,-inequality, exchangeable.

234

@]&2
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ' g@

The Annals of Probability. STORS
Www.jstor.org




MOMENT INEQUALITIES 235

p — « is p/Log p. This is JEerhaps a little surprising since the growth rate in
Khintchine’s inequality is vp (see [2] for the best constants).

We also show that the constants A,, C,, and D, in the following inequalities
grow like p/Log p as p — ® ((A) is contained in [4] while (C) and (D) were
proved in Chapter 1 of [3]).

((max{|| 2t X;ll1, (T | X l15)77)
< | 2% Xill, = Apmax{|| T8 Xill1, (T | X: 1157}

for all independent nonnegative random variables X;, X,, -- -, X, with
L finite pth moment, 1 < p < o.

(max{Cn™2 ¥, a;, (X a?)VP} < | 32 a:Yill,
< C,max{Cn™2 Y%, a;, (T, a?)?}
(©)A (where C = || X1 Yill,)

for all nonnegative exchangeable random variables Yi, Y3, - - -, Y, with
L EY? =1, 1 < p < = and all nonnegative scalars ay, as, - - -, @,.

(max{Cn™"2(Zky | @), (T | a:| )P

(A)

< | X% aYill,
(D)4 =< Dpymax{Cn™"A(Z1 | a;|*)"?, (Ti | @il P)P
(where C = || (T%1 | Yi 152 l,)
for all symmetrically exchangeable random variables Y;, Y, ---, Y,
{ with EY? = 1; 2 < p < « and all scalars a,, as, - - -, an.

We recall that (Y;, ---, Y,) is exchangeable (respectively, symmetrically
exchangeable) provided (Y., - -+, Yxm) (respectively, (1 Yra), - -+, & Yrm)) has
the same joint distribution as (Y3, - - -, Y,) for every permutation = of {1, -- -, n}

(and every choice ¢; = *1).

To prove (A) and (C) with the best order of A, and C, we incorporate an
elementary unbalanced scalar inequality (Lemma 2.1) into the arguments in [3]
and [4]. The further arguments of [3] and [4] then yields that

B,, D, = Kp/vLog p

for some absolute constant K. To check that B, and D, are of order p/Log p we
apply (A) and (C) to the “peaky parts” or large values of the individual random
variables and use an exponential integrability argument on the truncated vari-
ables. The main technical tool is Prokhorov’s “arcsinh” inequality ([5], Theorem
5.22(ii)) (to prove (D) we need to generalize this inequality to the appropriate
martingale setting). We also useé a formalization of the relationship, already
known in special cases, between an exponential norm of a random variable and
the absolute pth moments of the variable.
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Since the discussed inequalities may have some applications in statistical
work, we have tried to obtain estimates on numerical constants. For example, we
check in Theorem 2.5 and Proposition 2.9 (see also Proposition 4.3) that for all
l=p<owm

p/e Logp = A, =< 2p/Log p

and in Corollary 2.6 that for all 2 < p < o,
B, =< p/vLog p.

This last inequality is easier to obtain and better, for real-life values of p, than
the estimate
B, < 7.35p/Log p

obtained in Theorem 4.1.

The paper is arranged as follows: Section 2 contains proofs of the easier
inequalities (A) and (C). Section 3 contains preliminary material needed for
Section 4. In particular, we prove some relations between pth moments and
exponential moments of random variables as well as a martingale version of
Prokhorov’s “arcsinh” inequality. Section 4 is devoted to inequalities (B) and
(D). It ends with a fifth inequality of a similar type.

Section 2.

LEMMA 2.1. Leta,b,c,s>0. Then
(a + b)* <= max{(1 + 1/cs)’a®, (cs + 1)°b*} < max{ea®, (cs + 1)°b%}.

PROOF. Assume, without loss of generality, that b = 1. The inequalities are
obvious if a < cs; otherwise

(@+1ya*< 1+ 1/cs)*<e'c. 0O

REMARK. The choice ¢ = s™! in the first inequality gives the commonly used
inequality
(a + b)* < 2°max{a’, b%}.

Here and through the whole paper we use the following:

CONVENTION. Log ¢t = max{l, In ¢}, where “In” is the natural logarithm
function.

PROPOSITION 2.2. Let X;, - - -, X, be nonnegative random variables with finite
rth moment for some 1 < r < . Then

r 5 r Y i )
6(2521 X)) = max{K Log 25:;1 E(Z;LI;i;éj X)) IX,', <K Tod ,.) Zj=1 EXj]r .

where K is an absolute constant. (In fact, K < 2.)
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PROOF. Applying Lemma 2.1 with s = r — 1, we obtain for every ¢ > 0:
E(TL X)) = T} E(S X)7'X;
< €¥° Doy BBy X)X + [e(r = 1) + 117 S EX]
< max{2e"* Yoy E(Shri X)X, 2lc(r — 1) + 177 Ty EXJ).
The conclusion follows by setting ’

el/c=_fr/Log r, if r=2
|2, if 1=sr=<2. 0

That the above choice for ¢ yields that K < 2 in the range r = 2 is an obvious
consequence of the following (the proof of which is left to the reader):

SUBLEMMA 2.3. Forallr =2,
r—1 2r

=

In[r/Log r] Logr’

To check that K < 2 in Proposition 2.2 where r < 2, we use the inequality
(@ + b)* < (2a)° + (2b)* in the argument for Proposition 2.2. (This is just
Rosenthal’s original argument [4].) This gives

E(3r X)" < max{2" Y} E(Thyiw X)X, 2" T} EXG
Since 2" < 2r = 2(r/Log r) for 1 < r < 2, we get that K < 2 in therange 1 < r
=2
THEOREM 2.5. If Xi, - - -, X, are nonnegative, independent random variables
. with finite rth moments (1 = r < ), then
max{ || X1 Xill1, (T | Xl v
< 241 X:ll, < K (r/Log rymax{|| X1 Xill1, (T | X: 19"}
where K < 2 is an absolute constant.
PrOOF. The left inequality is evident, so we prove the right one. Since the
X;’s are independent, we have
Yi1 (T X0 X;
= Y E(Xhws X) HEX) < E(T X) (2w EX).
So from Proposition 2.2 we have
E(T% X)) < max{K(r/T.og NE(TL: X)) ¥ EX;, (k(r/LOg r)" Y EXi.
If this maximum in the preceding expression occurs in the second term we get
I 2% Xill» < K(r/Log r)(Zii EXDY.
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Otherwise we have
E(¥%: Xi)" = K(r/Log nE(3i, X)) Y&, EX;
=< K(r/Log r)[E(X%, X;)' 1"V 3%, EX;
so that
[E(C% X)NY" < K(r/Log r) ¥y EX;. O
The following corollary is a weaker form of Theorem 4.1 below.
COROLLARY 2.6. Suppose that X, - - -, X,, are independent, symmetric random
variables with finite pth moments (2 < p < »). Then
max{ || ¥y X; |2, (T || X: 157}
= 1 2% Xill, = (p/(Log p)*)max{|| X1 X;ll2, (X% 1| X:15)7}.
PrOOF. The left inequality is known and easy; cf. e.g. [4]. The right one

follows just as in [4]: For any choice ¢; = +1 we have by the symmetry and
independence of the X;’s that

I 2 Xillp = Il 2 e:Xi |l 5.

Averaging over all choices ¢; = +1 and using Khintchine’s inequality in L, (with
constant || N(0, 1) |, < (p/2)"/?; cf. [2]) we obtain

I 2t Xillp = (/2211 (Thy XDV2 N, = (p/2)2 1| Tt XE 1133
Since p/2 = 1, we get from Theorem 2.5

— p/2 o
| By X llpe < 2 —— = Tog(p/2) max{|| Y1 XP 1, [ZE | XF 153177

2
< Topp Mot T Xil3, (B 1 Xu5)¥h

Thus
I 21 Xill, = (p/2)"2(2p/Log p)*max{|| T X;ll2, (T | X:12)¥7). O
THEOREM 2.7. Let Y1, ---, Y, be a sequence of nonnegative exchangeable

random variables with || Y;||, = 1 (1 =r<w)andset C= | Y% Yi|,. Then for
all nonnegative scalars {a;},,

max{(C/n) Y%y a;, (3 a)))
< || 2% aY; |, < (6r/Log rimax{(C/n) Tk a;, (Ti a)¥"}.

ProOOF. We first note that
(YL, = {CY:.(X%, V) n,
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is exchangeable with respect to
dv = C7"(3L, Y)) dP.
Furthermore Y%, Y;= C and for any {b;}%,

f | 35, b,V dv = f | ¥y ;Y| dP.

Hence without loss of generality we may assume that Y%, Y; = C. With this
normalization we can rewrite (x) in a form which looks more like the inequality

in Theorem 2.5:
max{ " Z:l=1 aiYi " 1y (El—l ar)l/r} = " Zt-l alY "r
< (6r/Log N{ll &1 a:Y:ll1, (T aDM7}.

The left inequality is now evident, so we prove the right inequality.
Set m = [n/2] + 1 and suppose for a moment that

I 21 a;Y: |l > (2r/Log r)(Z2: a)*".
Proposition 2.2 then implies that
E(TE) a;Y)) < (2r/(Log r)) Y7 g E(Tlym Y)Y,

From the exchangeability of (Y;)Z,, we get foreachm <k<nandalll<sj<m
that

EQluyw a.Y) 'Y, = E(Ql1iw a;Y) 'Y,

and hence by averaging over the set {j, m + 1, ..., n} (which has cardinality at
least n/2) that

E(Xlie Y)Y < (2/R)E(CRuisg aiY) Y + Themer Yil
< (2C/n)E(X21 a;Yy)

Thus,
2C 2
(S aY) <77 o — SR GBS oY)
4C r
= n LOg (zl—l al) " Zt-l alY "
so that
4C r

I 321 a:Yill, = — (Z =1 az)
Dropping now the assumption on || 372, a,-Y,- Il -, we have:

4C
| Y2 a.Yill, < #gr max-{; X2y @), 2(32, af)l/r}’-
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Similarly we have:

[4C |

r
| ¥me a;Yi|l, < Fgr maX‘l7 Yhmt1 Uiy 2(X e al)M" j .
Thus:

r 4C .
|25 &Y, < Tog T maX{7 Y1 ai, 2(T20 a)V" 4+ 2Tk e @l

4
2 Sr1 e+ 2o, af)”’}

< ér max-{c > a, (I8, a,‘)l/’}. O

Log r n
The deduction of Corollary 2.6 from Theorem 2.5 now gives:
COROLLARY 2.8. Let Y1, ---, Y, be a symmetrically exchangeable sequence of

random variables with || Y|, =1 (2 < p <) and set C = | (3%, Y)¥2|,. Then
for all scalars {a;}%,,

max{—% (T a)?, (3r, Iail")l/pf

= | X% aiYill, =

3p { C
maxy— (21 a)? (Th || D)7y
\/Tgp \/ﬁ i=1 ’ =1 i
We conclude this section with an example showing that, up to a universal

constant, p/Log p is best possible in Theorems 2.5 and 2.7.

PROPOSITION 2.9. For 1 <p < » let C = C, be the smallest constant so that
for all nonnegative, independent, identically distributed random variables and all
m=1,2, ... we have:

ISmll, = C maxi{m || Xill1, m* || Xy ll,} (where Sm = (T2; X)).
Then C=p/(e Logp) forall1 < p < o,

PROOF. Since p/Log p = p for p < e, the statement is obvious when p < e, so

we assume p = e.
For e = p < 6 we consider the {0, 1}-valued i.i.d. sequence (X;)Z; with

P[X; = 1] = %. Then
20Xl =1=2"" X |, ,

while

. 2¢ + 2\* 6 p
= I~ = .
IS2llp = ISzl ( 1 ) =132 = 1.23( o Log 6) ¢ Logp

For 6 < p < «, we consider the {0, 1)-valued i.i.d. sequence (X;)Z,, where
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P[X; =1] = Log p/p. Then

m/p
ISnll, = mP[S, = m]? = m(ch p> ,
S0
L m/p o
m(_gg_p) =C maxIm Lng’ <m LOgP) 1
p 1 p p f
or
. m/p (m—1)/p
C= minJ P (_Log p) , ml—l/p<L0g p) } .
|Logp\ p D

Choosing m so that m — 1 < p/Log p < m, we see that

C - mlnj p <L0g p)l/Logp+l/p ( p )1—1/p<]-_‘0g p)l/Logp]f
[Logp \ p *\Log p P

p (Log p)l/Long/p
"~ Logp\ p
. _p (Logp)t**  p (Logp)t

“Logp pl/Logppllp T e Log p pl/p

Now the function f(x) = x'/* is increasing for 1 < x < e and decreasing for
e<x<o,so0 forp = e’

(Log p)l/Logp

/P =1

and

(Log p)/™°¢»  (Log 6)"/"°#¢

i = ai/o >1. 0O

minﬁspse"’

REMARK. To see that r/Log r is the best possible rate of growth in Theorem
2.7, consider (for the Y/s) the random variables {X;}%, from the proof of
Proposition 2.9 (6 < p < «). Take

p=r s =[r/Logr], nlarge
and
=I]- i=1’2""’s
' 10 1>s.
Then from the above proof (for n = s) || X% a:Xill, = | 31 Xill» = d(r/log r)
for some positive constant d.
{On the other hand,

C_NXa Xl | vmx . = 1X0,
n n

Q
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as n — . Hence,

Ig n n rlrl fLogr r r v
maxln T i, (B @)Y f g maxl r |Logr| |Logr

which is “essentially” a constant.

Section 3. This section contains some inequalities needed for the proofs of
Theorems 4.1 and 4.2 below. We begin with a martingale version of the “arc
sinh” inequality of Prokhorov.

Let #C %4 C ... C %, C Z be an increasing sequence of o-fields on some
probability space (?, & P). We denote by Ei(-) = E(- | #),i=1, ---, n the
conditional expectation operators with respect to this sequence. We also put
E, = E the expectation operator.

PROPOSITION 3.1. Let (d;)%; be a mean zero bounded martingale difference
sequence with respect to (F)ky; e, Eidi=0,i=1, .-+, n. Let 6; = || di ||,
M = max, i<, 6; and n? = | Ei.1d? |w, i =1, - - -, n. Then, for each t = 0,

PSE, di| =t <2 exp{— 5;—4 arc sinh<éz—nﬂ_4f—11—2>}.

ProOOF. Using the two numerical inequalities e* — x — 1 < e* + e * — 2 and
cosh x — 1 < % x sinh x which hold for all x, we get for all A\ >0 and all i = 1,

s, n
Ei_le)\di -1
1) = E;_(e™ — Md; — 1) = E;,(\d;sinh \d)
. sinh \ | d; Y
= E.1(\| d;| sinh) | di]) = E,-_1<>\2d? lTlle_l> < ﬁ sinh AM.

Since x < e*™* for all x, we get from (1)
E exp(\ Y- d;) = EE,_;exp(A Yk d)
= E exp(\ Y d)E,_exp(7d,)
< E exp(A Y3 d)exp(E,_e’ — 1)
< E exp(A 3% d))exp(An2/M)sinh \M.
Iterating the above argument, we obtain

(2) Eexp(\ 3%, dy) < exp()\ S g2 sm}]xw AM) .

Therefore, for all A, t > 0 we have

P{Y¥, d; = t} = Plexp(A Y% d; — At) = 1}

< E exp(A ¥ di — M) < exp x(z;.;l n? §th>‘M - t>.
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Let Ao = (1/M)arc sinh(Mt/(2 %, 1?)). Then 3%, n?(sinh \oM/M) = t/2 so

that
)\ot> [ —t . M Mt |

P, di=t} = exp(— o = exp~1—2—1\—4 arc smh Sn f

and

P{| >k, d;| = t} <2exp{—arcs1nh22]wlt 11} ]

When specialized to mean zero, independent random variables, Theorem 3.1
becomes Prokhorov’s inequality:

COROLLARY 3.2. Let {X{%: be independent, mean zero random variables,
S =Y X;, N = sup;| X;| and assume that | N ||« < . Then

—t o TNt
PSS =t) = exp(2 iNI- arc sinh 2 S"2>

and

—t arc sinh —-———-——||N||°°t>
2Nl 201813

The next three results give estimates for the pth norm of a random variable
in terms of some exponential norms. We begin with some notation.
Fix 0 < vy < . We denote by C, the class of all functions with the following

two properties:
(a) y: (=, ©) — [0, )
¥(0) = 0; y is continuous and even.

¥(t)

(b) e is increasing on [0, ).

P(|S] >t)<2exp<

For a random variable X and ¢ € C, we denote
I X1y = inf{A > 0; E exp(y(X/N)) < ¢}.

Note that if y is convex || - ||, is actually a norm.

LEMMA 33. Let0<+y<wandy € C,. Then

(77 = e

forallt =0,p>0.

+“PROOF. We first consider the case v = 1. If t < y~!(p), then (¢/(¥ "}(p)))* <
1 < exp(¥(t)). If t > ¢~(p), then, by (b) of the definition of C,

P _vWTi(p) _¥(@) .

v p) ¢ Up) ¢
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Since (x/p)? < (ex/p)? < e*for all x = 0,
t p (t) p
(uﬁ“(p)) = <%—> =< exp(¥(t)).
For general v we consider ¢(t) = (| t|/?) and note that ¢ € C;.0

PROPOSITION 3.4. Let0 <y <o,y EC,, p, A, to >0 and X a random variable
which satisfies

P(| X| =t) < pexp(—y(t/N\) for t=1t>0.

- _[<2p + e>‘/’ to
Xl =X max) \===) ey [ -

Then,

PrROOF. We first assume A =1.ForanyA=1,a>1

E exp ¢<§>
<A+ fA ) P<exp<¢<§)> = s) ds w

=A+ fA P(|X|=ay'(Ins)ds<A+p J; exp(—y¥(ay'(In s))) ds

if ey 1(In A) = ¢,. From (b) of the definition of C, we get
X f i . o
E exp \0<a> <A+op ; exp(—a’ln s) ds = A + @ — DA

Now take

ol ] e am el
a—maxl - » I Ine/2) and A = exp ¢ mE

Then A < e/2 and

p __p
(@ — DA " a"—1

=

Hence

- _[<2p+e>”7 to |
I X0y = max) (72— ) U=tnerzn [ -

For the general case consider X/A. 0

The next corollary hints at the way we are going to apply Prokhorov’s
inequality.
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COROLLARY 3.5. Set y(t) =t In(1 + t). If for all u = 0 and some M, K > 0 we
have

M
- X arc sinh u_)

P{|Y]| 2u}$2exp< M 5K?

then
| Yll, = 2((4 + e)/e)max{M, K}.

PROOF. Since arc sinh s = In(1 + s) for all s = 0, we get, putting L =
max{M, K}

PllY|zul =2 eXp(- 2%lln<1 + ;—%)) =2 exp<— 5% ln(l + 2“—;2))

oo ol 2) ool

Applying Proposition 3.4, we get

4+e=24:emax{M,K}. O

Iyl = 2L

The last proposition of this section gives a relation between the pth norms
and the exponential norms. Only the left hand side of the following inequality is
going to be used in the next section.

PROPOSITION 3.6. Let 0 <+, r<w andy € C,. Then for any random variable
X

X
sup,ar e <y x,

v (p/v) T )
- el/vmax.{<2 + e)”7 v (r/v) } 1X1,
- v /%)

e—l/r

“(n e/2) | > """ 4~ p/y)

ProoOF. By Lemma 3.3,if A > || X ||,
E\-——/———) =Ee —J)=<e
(Vl(p/v) P Y

1 X1, =e ™ (/M I X1y

and the left-hand side inequality follows.
Assume now sup,>-(|| X || ,/¥"(p/v)) < 1. Then for any ¢ = 0,

P(|X|=1t) = (ﬂ%)” < (%'l(p/v)f

Hence,

t
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If t is such that yy(t/e'/”) = r, then for p = yy(t/e'/"), we get
P(| X| = t) < exp{—y(t/e')}
for all t = e y~(r/v). Now apply Proposition 3.4.0

Section 4.

THEOREM 4.1. Let X, ---, X, be independent, symmetric random variables
with finite pth moment for some p > 2. Then

max{ || X% Xill2, (i | X: [15)Y7)

= | &1 Xill, = K(p/Log p)max{|| I&: X;llz, (T | X 197}

where K < 7.35 is an absolute constant.

PrROOF. The left-hand side inequality is easy; cf. [4]. For the right-hand side
inequality set

A= Xi| 2 1 2= Xills} =1, --+,n

then
(1) | 25 Xillp = | 28 Xilag llp + 1| 2 Xida, |l s

and the summands in each of the two terms on the right are independent. Now
apply Proposition 3.8 and Corollaries 3.2 and 3.5, with y(¢) = ¢t In(1 + £) to get

I 28 Xilacllp < Py (p) | iy Xilaslly
< 2((4 + e)/e)e™Py " (p)max{maxi<i=n | Xilag llw, I| Die1 XiLas |

< 2((4 + e)/e)ey 7 (p) || Tt X |2

(Note that X;I,; are symmetric and thus orthogonal so that | ¥ir; Xilall2 <
| X Xill2.)

To estimate the second term on the right of (1) we use Theorem 2.5
| 2 Xidallp = | 281 | Xa| Ll
< (2p/Log p)max{|| X1 | Xi | Iall1, (Ti1 | Xida, I15)"P).

But,
I E | Xl Lol = I 25 [ X 1 Xl /1 o Xill2 Wl = I Ei Xl 2.
Hence,
I 2 Xila,ll» =< (2p/Log p)max{|| Ti: X;ll2, (T || X 15)7}
and :

I 2 Xillp =< Kp(p/Log p)max{|| i Xill2, (T Il X: 7))
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with

4+e “1(p) Logp+2.

K,=2

el/p‘l/

Asp — o, K, — 2(4 + e)/e + 2 < 17, so this proves the theorem with some
absolute K To show that K < 7.35 for all p = 2, notlce that by Corollary 2.6,
K = 17.35 as long as vLog p < 7.35, in particular if p < e®*

For p > e* we first check that

(%) exp(e/®)(1.08)2((4 + e)/e) < 5.35
so that it is enough to check that

¥ 7(p) = 1.08(p/Logp) for p=e®*,
or

1.08; 1.08;
p= P ln<1 + ~—£> = e®,

Log p Log p -
But, as can be easily checked, even the stronger inequality

Inp<108In(p/Inp) p=e*
holds. O

REMARK. A simple symmetrization argument shows that Theorem 4.1 re-
mains true if we replace the symmetry assumption by merely requiring that
EX;=0,i=1, --., n and changing the bound on K to 2 . 7.35 = 14.7.

We now turn to the symmetrically exchangeable case.

, THEOREM 4.2. Let Yy, ---, Y, be a symmetrically exchangeable sequence of
~ random variables with || Y; |, = 1 for some 2 = p <. Set C = | (T YHV?| 3
then, for all scalars ay, - - -, a,,

max{(C/Vn)(Zk1 a})%, (T | @] P))
< | 2% a:Yill, = K(p/Log p)max{(C/vn)(Zk: a})™2, (3 | a:|?)"7}
where K < 21.2 is an absolute constant.
PROOF. As in the proof of Theorém 2.7, we may assume without loss of
generality that Y%, Y? = C2 With this normalization
125 aYillz = (C/Vn)(Ziy a})™?

and the left-hand side inequality follows easily (cf. [3]).
Fori=1, ..-,n,let

A= {la;Y:| 2 | Xjz a;Yj ]2}

and set d; = a;Y;I4;. Notice that since the Y/’s are symmetrically exchangeable
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{di}i=; is a martingale difference sequence relative to {a(Y;, ---, Y)}%, with
Edl =0 and

ldille = | X} ¢Yjll2 i=1,---,n

In order to apply Proposition 3.1 it is enough to evaluate || E;_1d? |, where E; is
the conditional expectation operator with respect to o(Yy, ---, Y}),j=1, ---, n.
By the exchangeability of Yi, - - -, Y, we have that

E_ . Y?=E,_,Y? for i<k=<n.
Thus,

Cz

1
i— 12 o = =i l— Y2 S Yhe Y2=—..
| Ea Y I Skt BiaYElo < ——— Tt Y= ————

n—i+1
Setting m = [(n + 1)/2] we get

|E 1Yo =C?/m for1<i=<m
and
| E-1d? |l < a?C%*m for 1<i=<m.

Proposition 3.1 now yields

—t o I 3R &Y ||2t>
P 2.d;| =t} <2 expl ——=————— arc sinh —=———=
H2Fdl =4 p(z Al 2D

where D = (C? 32, a?)/m, so that by Corollary 3.5,

+e C
" Zt— d "W = 2( )max{ " Zz—l azY "2: \/—,Z (Zl—l al)1/2]’,
4+e\ C
3/2 — n 2 1/2.
52 < e )&(Zl—l at)
Since a similar inequality holds for || ¥ .+ d; || 4, we conclude from Proposition
3.6 that
1/p,),~1 s (4t e) C 2)1/2,

(2) " Zl—l atYIA‘ "p " 2 d "p =e ¢ (p)z e «/— (Zl—l a; )

We turn now to the estimate of | ¥, a;Y:l4, || ,. Set again m = [(n + 1)/2]; then
by Proposition 2.2

E| Y% a;Yily|?
< E(XZ: |a:Yila|)P

3) | 2p

= maxl

2]—1 E[(Z =1;i#j 'alYIA ')p_l I aJYIA I]y

2 p
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Assume for a minute that the maximum in (3) occurs in the first term. Then by
the exchangeability of Y3, - - -, Y, we can write

E(T2: | a;Yils))?

2, 2
= F:p Y lal E[(zﬁl;i¢j | @:Yila, )P n (1 Y| Lay + Zhemr | Yk|I[|qu,|znzg_la,Y,u31)]

Yra la | (B(ZE | @;Yily, |)P) e P (E(Tha IYklI[la;Yklzlz‘:'.la.Y,lpj)p)llp-

<
nLo

Thus by dividing by the first expectation on the right and then applying Holder’s
inequality to the remaining integrand, we have

I 221 la:Yida | o
4p

= n_I—,o_— S || (B(Zhe Y3 221 Ty izizzaya) ™)™

Now,
alY;
I[Ia,-YkIZIIZL'-na.Y II2 = " Z . a Y "2
s=1 Us
Thus,

I Z2: |a:Yila, | |l

4p . ) < Y% )p/2)1/p
= Logp €L 1ol <E<a’ 2 S Y I

_4p c?ym, 1 4p C _a
=nLogp =7 || Yt @Y I Logp vn (X1 a)?”

Dropping now the assumption that the maximum in (3) occurs in the first term,
we get

211

4C i= i
" 2:11 aiYiIAi "P s Lp {\/— (22 ! ‘:)1/2 ’ 2(2;11 'ai Ip)l/p} .

Since a similar estimate holds for | X% m+1 @:Y:il4, |l 5, we get, by checking cases,

| X aiYilall

= LOg maX{ (Zl—l az)1/2 4(2 -t |ailp)l/p,

7—' (T ad)V? + 2(Zka | ail )‘/"}

maX{ (Xr1 @)V, (T Iail”)l/”}.

__6p
Log p
Combining this with (2) we have

| Xrn a:Yill, = L P max{% (X 02)1/2 (X | |p)1/p}
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with

K, = e'Py~1(p)2°%(4 + e)/e + 6.
This shows that the theorem holds with some absolute constant K (<20.2 for
large p). To see that K =< 21.2 we use the estimate (*) at the latter part of the
proof of Theorem 4.1 to show that K, < 21.2 for p = e%. For p < * we use
Corollary 2.8 to get .

J_—*_J—J__;<212i—0_g-_ O

Next we give an example showing that, up to a universal constant, p/Log p is
the best possible constant in Theorems 4.1 and 4.2.

PROPOSITION 4.3. For 2 < p < w let C = C, be the smallest constant so that
for all symmetric, independent, identically distributed random variables X;, X,,
-,andallm=1,2, ... we have

ISm ll» = C max{m'? | Xy ||z, m*? || X, || p}.
Then C = p/(2"%e Log p).
PROOF. For 2 < p < e this is clear. For e < p < 6 consider the Rademacher
sequence P(X; = 1) = P(X; = —1) = Y. Then ‘
I Xille=0Xill,=1 and [ S:ll,= || Szlle=2""e
So
C = 2'"Vemin{2-2 2-VP} = 1

while p/(2/% Log p) < 1. For p = 6 we consider the iid. {~1, 0, 1}-valued
sequence X;, X;, - - - where

P(X;=1) = P(X; = ~1) = Log p/p.

Then
| Smll » =2 mP{S,, = m}*? = m(Log p/p)™".
So ‘
m/| /
m(___Log P ) ’ =C maxJ m1/221/2<——-——-L°g P )1 2, m,/pzl/p<_L0g__p)l/p}
p | p p
or

I p 1/2-m/p ‘ D 1/p—m/p
C > min‘ 2-1/2ml/2< , 2—l/pm1—1/p X
| Logp Log p

Chi;osing m so that
m-—1=sp/Logp<m
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we get
’ -m/p —m/p
C= minJ g2 _P__ (__p ,o-vp P P ) }
|© Logp\Logp Log p \Log p
1/Logp+1/,
> 2_1/2 p <L0g p) gp+1/p
Logp\ p

and the conclusion follows from the computation at the end of the proof of
Proposition 2.9.0

We conclude this section with an inequality similar in nature to the main
results of this paper. Recall that a sequence Y;, .-, Y, in L, is said to be
K-unconditional if

| 2% a:Yill, < K| I eiaiYillp
for all scalars a,, - - -, a, and all signs ¢;, - - -, €.
THEOREM 4.4. ForallK,L=1,p=2,if X, ---, X, is K-unconditional in L,
and X} - EX3, -+, X2 — EX? is L-unconditional in L, then,
| 2% Xill, = 2KLp max{(X7- | X; 197, (i1 | X; 133},
PROOF. From the version of Khintchine’s inequality which is found in [2]

we have
(E| X aief | = ((r V 2)/2)Y%(F a)V?,

where {¢}} are i.i.d. with P(¢} = 1) = P(¢} = —1) = %. Hence,
| 21 Xillp = K(E. || -1 e} X5 1577 < K(p/2)2 | (1 XDV |

where E, is the expectation with respect to {¢}}. Applying this to X? — EX? with
p/2 we get

I(ZE XD 1,
= IS X} < | S (XF = EXDIME + (S EXPP
< L*(p/2)"* | (Sr (X} = EXH) I3 + (Eh EXH
< L¥3(p/2)" | (S XV 1% + LV(p/2) (s (EXDN + (S EXI
< 2 max(LY(p/2)* | (S XDV 1, (LV(p/2P™ + 1)(Z EXI.

Forp >4 wewrited =0p + (1 — 0)2 ie.,; 0 = 2/(p — 2). Then, by Holder’s
inequality

(4)

pN X} =Xk X |p)a(2j=l Xzz)l—n-
Hence g
E(Sh X)) = BU(E | X17)4(Z X009/

< (E 301 | X; | P) P E(R, X3)P/2)a-072,
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Thus,
(S X138 = (B Bjea | X519 (B(S XDPo)0-0r,
If the maximum in (4) is attained in the first term then
(5 XPV2 N 5407 < 2LY*(p/2)V4(E T | X;17)7*
and
(5 XDV2 N, = CLY*(p/2)VH*P2P(E Ty | X;|P)VP.
Thus, dropping the last assumption
I XDV
= max{(2L"*(p/2) )P D/P(E T34 | X;|P)P, 2LV (p/2)* + 1)1 EXF)2)
and
I 251 Xillp
< p max{K(2L2)**2ep1=1P(Fh, || X;||5)'P,
(2KL'*(p/2)¥* + 2K(p/2)"*)(Z}=1 || X; 1133

= 2KLp max{(Z}: | X; 197, (T 1 X 19V, since K, L= 1
If p <4,
E(X} X)P* < E T | X;1P
and we get
I 27 X1l
= 2K(p/2)"*max{L"*(p/2)""(Z}= | X; 15)"%, (L*(p/2)""* + 1)(Tj= 1 X; 192}, O

REMARK. A similar result may be obtained if we replace the assumption
X? - EX2, ..., X2 — EX2 L-unconditional
by
X2 - X{% ..., X2 - X,? L-unconditional,
where {X{, - -, X/} is an independent coi)y of {Xi, -+, X.}.
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