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A Cramér type large deviation theorem is proved under alternatives as °
well as under hypothesis for the generalized linear rank statistic which
includes as special cases (unsigned) linear rank statistics, signed linear rank
statistics, linear combination of functions of order statistics, and a rank
combinatorial statistic.

1. Introduction. Let Xyi, Xng, - -+, Xnn be independent r.v.’s (random
variables) and let g be a real valued measurable function such that X%, = g(Xx;),
1 =<j =< N, has a c.d.f. (cumulative distribution function) Gn;. We introduce the
generalized linear rank statistic

1.1) Tn = X1 enjanes, (Xn;)

where {cy;: 1 =j < N} is an array of regression constants; {an;(-): 1 =j < N}is
an array of known real functions (called scores); and R%; = Y1 u(X%; — X%)
is a generalized rank of X%; among {X%,: 1 < k < N} where u(x) =1ifx =0
and u(x) = 0 otherwise. We assume that the scores anj(-), 1 <j < N are
generated by a nonconstant score generating function ¢(s, t),0 <s <1, —0 <{¢
< o, in either of the following two ways;

(1.2) anj(t) = ¢(EUn;, t), j=1,2, ---, N (approximate scores)
(1.3) anj(t) = E¢(Unj, t) j=1,2,---, N (exact scores)

where Ul.; is the jth order statistic in a random sample of size N from the
uniform distribution over (0, 1). To avoid the trivialities, we assume that
I lenil > 0. .

When g(x) = x and ¢ (x, ¥) = ¢(x), the statistic (1.1) reduces to the (unsigned)
linear rank statistic

(1.4) Ty = 2L cnjdngy,

where Ryj, 1 <j < N, is the rank of XNj among {Xn:: 1 < k < N} and dy;j’s are
gsual scores of constants. On the other hand, when g(x) = | x| and ¢(x, y) =
#(x)sgn y, where sgn y = 2u(y) — 1, the statistic (1.1) reduces to the signed linear
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rank statistic
(1.5) Tn = 311 cnjdnggsgn Xu;

where Ry;, 1 <j < N, is the rank of | X ;| among {| Xn:|: 1 < k< N}.

Also note that whency; = - - =cyv= N1, g(x) = x, (%, y) = ¢(x)¢¥(y), and
the underlying c.d.f.’s Gy; are continuous, the statistic (1.1) reduces to the linear
combination of functions of order statistics

(1.6) Tn = (1/N) TN, anry ¥ (Xn;) = (1/N) T anjp(Xny)

where Xy.; is the jth order statistic among {Xnz, 1 = k& = N}. Furthermore,
denoting Y. = cnjane(Xn;j), 1 <j, k < N, we can rewrite (1.1) as

(L.7) Ty = S Yim,

which is a rank combinatorial statistic. For these four different types of statistics,
several authors have investigated problems concerning asymptotic normality,
rate of convergence to normality and higher order expansions. For a review, the
reader is reférred to Hajek (1962, 1968), Huskova (1970, 1977, 1979), Jureckova
and Puri (1975), Bergstrom and Puri (1977), Puri and Seoh (19844, b, c), Does
(1982), Puri and Wu (1983) (for statistics of the type (1.4) and (1.5)); Shorack
(1969, 1972), Stigler (1974), Bjerve (1977) and Helmers (1977, 1980, 1981) -(for
statistics of the type (1.6)); Hoeffding (1951), Motoo (1956), von Bahr (1976)
and Ho and Chen (1978) (for the statistics of the type (1.7)) and the papers cited
therein, among others.

i In recent years, there has been a great upsurge of activity in the theory of

large deviations initiated by Cramér (1938) and studied in detail by Petrov (1975)
for the case of independent summands. Large deviation probabilities for
U-statistics were obtained by Malevich and Abdalimov (1979) while the corre-
sponding results for the case of the statistic (1.4) were studied by Kallenberg
(1982). But these results are restrictive in the sense that the observations Xy, Xy,
-+, Xnn are identically distributed and the underlying distribution function is
continuous (Kallenberg, 1982). In addition, Robinson (1977) has dealt with the
case of large deviations for samples from finite populations.

In this paper we shall be concerned with the relative error of the normal
approximation to the distribution of the (properly normalized) generalized linear
rank statistic (1.1) under general alternatives, i.e., assuming only that the
observations are independent (not necessarily identically distributed) and without
assuming the continuity of the underlying distribution functions. The results
obtained not only include the results of Kallenberg (1982) as a special case, but
alsq provide the large deviation theory for the statistics of the type (1.5), (1.6),
and (1.7) which to the best of our knowledge has not been considered in the
generality of the present paper.
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2. Assumptions and main theorem. Throughout this paper we make the
following assumptions.

ASSUMPTION (A). The variance of Ty satisfy

lim inf 7% = lim inf Var Ty > 0.

AsSUMPTION (B). The regression constants ¢, Cng, - - -, cyn satisfy’
Yhickj =1, maxigi=nlen;| = AINT, TN |enj|® < ANTYA

where A, and A, are absolute constants.

ASSUMPTION (C). The score generating function ¢ (s, t) is differentiable with
respect to its first argument s such that its first partial derivatives ¢.(s, t) =
d¢(s, t)/ds satisfy Lipschitz’s condition of order one with respect to s, i.e., there
is a constant A such that for any x, y € (0, 1)

(21) Sup—oo<t<oo| ¢1(x9 t) - ¢l(y, t)l =A I X = yl'

(Note that the normal scores statistic does not satisfy this assumption).

We now introduce some notations. Let S° denote a r.v. S centered at its
expectation, i.e. S° = S — ES. Denote
(2.2) on; = R%;/(N + 1),  pn;; = E(onj| X;).
Furthermore, we shall use the r.v. Sy (Hajek’s projection), as an approximation
of the statistic T, defined by
(2.3) Sy = S, E(Sy|X,) — (N - 1)ESy
where Sy is the first two terms of Taylor’s expansion of Ty with approximate
scores, i.e.,
(2.4) Sy = X1 enjfd(onii, Xng) + (on; — pavgi) d1(pnis, Xni)}-

Let &(-) denote the standard normal c.d.f. and put 6% = var Sy. Then

THEOREM 2.1. Under assumptions (A), (B) and (C), uniformly in the region
0<x<pnNY8 pn=0(1), we have as N — o

(2.5) P(Ty — ETn > 7yx)[1 — ()] =1 + 0(1)

which remains true if we replace Ty by on.

REMARK 2.1. Note that the result of Kallenberg (1982) which deals with the
statistic (1.4) and holds for the case of iid r.v.’s is a special case of our result, but
we impose somewhat stronger assumption on the score generating function. This
is due to our generalized statistic (1.1) and weaker assumptions on underlying
distributions. However, for the case of iid r.v.’s, the results of the above theorem
hold under relatively weaker assumptions (see Remark 4.1).
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From now on, we shall suppress the subscript N in cw;, an;, R%;, Xnj, onj,
pnjj, etc., whenever it causes no confusion.

3. Preliminaries. In this section, we derive bounds on the 2rth moments
(r is any positive integer) for statistics defined in Lemma 3.1-3.5. These bounds
play an important role in this paper and, since the method of their derivation
depends heavily on that of Bickel (1974), we will give only the brief outline of

the proofs.
Let {Y;}j=: be a sequence of r.v.’s and {d;};~; a sequence of real numbers.

Then we have the following lemmas.

LEMMA 3.1. LetZ;,j =1, ber.v’s of the form Z; = gj(Y1, Y, ---, Y;) such
that for j = 2, E(Z;| Y1, Ya, -+, Y;-1) = 0. If the sequence {d;} is nonincreasing
in absolute values, then for any positive integers r and Z,

E(Yic1 d;Z)* < (4e) (X1 dF) r" max;<j< EZ}.

LEMMA 3.2. Let Y;, j = 1, be independent r.v.’s and let V,k be r.v.’s of the
form V,k = gix(Y}, Y), 1 < j, k <, such that for any j and k, j # k, E(Vjx| Y;)
= E(Vjx| Yz) = 0. Then, for any positive integers 7 and r,

E[(1/2) $ia1 Thei & Vil < (4€)¥ (X i1 d2)(2r)¥/ 7" maxi<jpesjun EVE.

REMARK 3.1. Lemmas 3.1 and 3.2 are generalizations of Lemmas 1 and 4,
respectively, of Huskova (1979). (We may point out that, in Huskova (1979), the
proof of Lemma 4 is incorrect in its application of Lemma 1, especially in deriving
(23) and (24) of her paper). Lemma 3.2 is also a generalization, as well as ‘an
improvement, of Lemma 2.2 of Bergstrom and Puri (1977).

PrOOF OF LEMMA 3.1. For r = /, the proof follows by applying Hélder’s
inequality to (X ¢-; d;Z;)*" and some routine computations. For r < /, the proof
follows by induction on # with r fixed.

PrOOF OF LEMMA 3.2. Since the assumptions and the conclusion of this
lemma are invariant under simultaneous permutation of d;’s and Y;’s, we may,
without loss of generality, assume that |d:| = [dy| = --- = |d,|.

DeﬁneZl—Zl—OZ—Zi‘ ,kandZ Zi_ ds ,k,2<1</sothat
(1/2) X6z Zk,é, diVie=1/2) (X1 d;Z; + Y5=1 Z;) = V,, say. The proof then
follows by using the following facts:

(@) EVY < /7227 Y (4e)'r"{($ =1 d?) max,<j<, EZ¥ + /" max,j<, EZ?}.
(b) EZ¥ < (4e)"(j — 1)'r" maxi<x<,1s; EVH  and
(¢) EZ¥ < (4¢)" (T4 di)rmaxi<i=sin EVE .

LEMMA 3.3. Let Ty and Sy be defined by (1.1) and (2.4). Then for any positive
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integerr = 1, E(T% — S¥)% < (16eA)*(2r)*N~™

PrOOF. Denote Hj, = u(X% — X§) — Ge(X%), 1=j, k=< N. Then, we have
(3.1) pi— pii = (N +1)7" B Hjp
and
(3.2) Sy =N citopji, X;) + (N + 1) I Hindi(pji, X))

First consider the statistic Ty with approximate scores. Then, by Taylor’s
expansion, for some 0 = A <1,

(8.3)  Twn=3Nicifolps, X;) + (pj — pji)r(Apj; + (1 = N)pj, X}
Using (3.2) and (3.3) along with assumptions (B) and (C), we obtain
(3.4) E(Ty — Sn)” < AN™' 3, E(p; — pj)*.

For each j, conditionally given X%, p; — pj; is the sum of independent r.v.’s with
zero means and thus we may apply Lemma 3.1 to obtain that for any integer
r=1,
(3.5) E(pj — pj)* < (4e)¥(2r)N~7.
The proof follows using (3.4) and (3.5). N

We now consider the exact scores. Let Tx be the statistic (1.1) with
exact scores and put for 1 < j < N, G;(t) = E¢(Uy;j, t) to distinguish it
from the statistic 7 with approximate scores. The proof then follows by using
[E¢(Un,j, t) — ¢(j/(N + 1), t)| = AN, E(T{ — T)*” = (2A)*N7,
E(TY — S{)* < 22E(Tn — Sn)¥ < (8eA)*(2r)* N~ and routine computations.

LEMMA 3.4. Let Sy and Sy be defined by (2.3) and (2.4). Then for any integer
r=1, E(S¥ — S%)* < (8e | ¢1 1)*"(2r)> ’ N~" where

| 11l = SUPo<s<1SUP_w<i<a | P1(s, t)].

PROOF. The proof follows by using Lemma 3.2 and noting that
3.6) E(Sn|X,) = c,¢(pe, X,) + ESy — c,E¢(ps, X,)
' + (N + 1) 3N ¢ E{H; d1(ps5, X;) | XA,

and
SY = 8% = (N + 1) XX, YN ¢;[Hindr(pijs X;) — E{Hindr(pjj, X;) | X}l

LEMMA 3.5. Let Ty and Sy be defined by (1.1) and (2.3). Then, for any real

r=, .

(3.7 E(TS — S2)” = (64e(A + | ¢1 1)) (2r)"N™.

i:’ROOF. Denote by [x], the smallest integer = x. Then, applying Holder’s
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inequality,
[E(T} — S%)*1"V" < E(TS — SR)?.
Since, by the C,-inequality,
the right-hand side term < 227 [E(T% — S%)27 + E(S — S%)%],
we have
[E(TS — S| < 241 E(TY — SR + E(S% — S¥)2].

Now using Lemmas 3.3 and 3.4 to the terms on the right-hand side, we obtain,
after omitting some details of computations, that

[E(T = S3)* 1" < {32e(A + || ¢: 1)1 IN.
Thus,
E(T% — S%)*
< {32([r]/r)e(A + | 61 )} (2r) N7 < {64e(A + || ¢ [N} (2r)"N~"
where the last inequality follows from the fact that 1 < [r]/r < 2 for any real
r=.
4. Proof of Theorem 2.1. By assumption (A) and Lemma 3.5, we have
|6% — v%| = |2 Cov(Tw, Sy — Tn) + Var(Sy — Tw)|
< 27n(Var(Sy — Tw))¥? + Var(Sy — Tw)

which implies that 6% /7% = 1 + O(N~Y2) and that there is a positive constant o
such that for all N = N,,

(4.1) ok = o
Hence, in order to prove Theorem 2.1, it is sufficient to show that
(4.2) P(Ty — ETy > 6nx)[1 — ®(x)] ' =1+ 0(1) ~

uniformly in the region 0 < x < pyN5.
By standard arguments we have

P(T% > énx) < P(SY > (x — N Y®)6x) + P(| T — S¥ | > N~85y),
P(T% > é6xx) > P(S% > (x + N Gy) — P(| TS — S%| > N™V55y).

Using Chebyshev’s inequality and applying Lemma 3.5 with r = %43 N3,
= o(64(A + || 91 11)e*) 7, we get

(4.4) P(|T% — 8%| > N™y) < E(TX — S%)¥ N33 < exp(—6N'?)
which implies that uniformly for 0 < x < py N,
P(| T = 8%| > N7%n)[1 — &(x)]™

< exp(—=N"?)[1 — ®(pxN"*)]™ = 0(1)
where the last equality follows by Lemma VII.1.2 of Feller (1968).

(4.3)

(4.5)
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Now, in view of (4.3) and (4.5), to prove (4.2) it suffices to show that as

N — o0
(4.6) PS> xnon)[l — ®(x)] =1+ o(1)

uniformly in |xy — x| = N™%, 0 < x < pyN'°.
Using (2.3) and (3.6) we can write S% = S X, S¥ where

S = c;l¢(psi» X;) — Ed(pj, X))]
+ (N + 1)7' T crE{[u(XE — X¥) — Gi(X5)]d1(prs X | X}
Thus S% is a sum of independent r.v.’s with means zero and
ISP =2l¢i| ol + (N+ DT IRy lerl N1l
=@lell + 16 DANTS 1<j=<N,

where || ¢ | = SUPo<e<1SUP—w<i<w | # (S, t)|. Furthermore, there is an integer N,
such that for all N = Ny and 0 < x < pyNY5, | xy — x| =< N7V5,
(4.7) 0< 2ol + 61 1DAINTo8 2N < Yo

in view of (4.1). Thus we can use Theorem 1 of Feller (1943) (cf. also Petrov,
1975, page 253) to obtain that for all N = N,

(4.8) P(8% > xyon) = exp{—% x3Qn(xn)}[1 — ®(xn) + OnAnexp(—Yoxk)]
where
A= @lloll + I 61 1)ALNT5R, Oy < 7.465,
(4.9) Qn(x) = ¥ qnixds g = 37968 TR E(SY),
lgn;| < 87'12Ay), j=2.

Note that |y | < pyNY¢ + N7"% Since py = 0(1) we have xy = o(N') as
N — . Let K > 0 be such that

KoyNVe
124:2 ol + 6. 1)’
Also it follows by assumption (B) and (4.1) that
(411)  |gman] <6 % QLo IP + 1 6111°) T | ¢jl’xn < AN

where A; is an absolute constant. Hence combining (4.9), (4.10) and (4.11) we
obtain that

|QN(xN)| = A3N_1/3 + 2;;2 |qux5v| = A3N_1/3,+ 8! 2;2 (KN_I/G)j

(4.10) [xn] =

which implies that as N — o
(4.12) i Qn(xn) = BZO(NT) = o(N¥)O(N) = o(1)
uniformly in 0 < x < pyN5. Moreover Lemma VIL.1.2 of Feller (1968) ensures
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that
OnAnexp(—%2 x%)[1 — @(xn)]7" = O(Anan) = o(1),
[1 - @]l - &(x)] = 1+ o(1).
(4.2) now follows uniformly in 0 < x < pyN'/® by using (4.8), (4.12) and (4.13).

(4.13)

REMARK 4.1. The above theorem obviously holds for the case of the iid r.v.’s.
However, for such a case, and for the statistics (1.4) and (1.5), the theorem holds
under somewhat weaker assumptions on the score generating function, if we
assume somewhat stronger assumption on the underlying distribution function.
For the case of the statistic (1.4), we refer to Kallenberg (1982). For the case of
the statistic (1.5), we have the following theorem:

THEOREM 4.1. Let Xyj, 1<j=<N, N =1 beiid r.v.’s with a continuous c.d.f.
Fyn(x) symmetric about 0. Assume the following:

AssuMmPTION (D). YN, ck; = 1, maxi<j<n|cnj| < A; N2 where A, is an
absolute constant.

AsSUMPTION (E). The score generating function ¢ (defined in Section 1) is
not identically zero and satisfies a Lipschitz condition of order 1 on (0, 1), that is,
there exists a constant C such that | $(t) — ¢(s)| < C| t —s| forallt, s € (0, 1).

Then, the conclusion of the Theorem 2.1 holds.

To prove this theorem we use the following two lemmas and proceed essentially
as in the proof of Theorem 2.1. (As before, we suppress the subscript N in cy;,
Xn;j etc. whenever it causes no confusion).

LEMMA4.1. LetZ,, -- -, Zy be random variables such that for any permutation
(il""viN)Of(]-,"',N)
(4.14) ETILZy=EIIX Zy

where aj’s are nonnegative integers such that X, a; = 2k, k = 1 integer.
Furthermore, assume that '

(4.15) ENX Zi=0

if at least one of the ajs is odd. Then if ¥}, ¢} = 1, for any integer k <
d(max,<j<n|cj|),d>0

(4.16) E(ZNi ¢;Z;)* < 2% (max{l, d})**k*EZ3.

Consider now the statistic Sy = S X, ¢;¢(F¥(] X;|))sgn X; where F(x) =
P(|Xi|=x),0=x<oc0.
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LEMMA 4.2. Forallrealp, 1 <p <N,
E(Tn — Sy)® < A(2p)*NP(max{l, p maxi<j=n| ¢;|})*
where A, is a constant independent of N and p.

PrOOF OF LEMMA 4.1. Because of (4.14) and (4.15), the multinomial expan-
sion yields ’
E(TX: ¢ Z;)*
(2k)!
4.17 =Yk
(AID = Do Dbyt T (@) TToer ()

Ty i EIL (eZ)? 12k (e, Zi)* - - T1 S, (e, 23)™

where k;, 1 < j < a are nonnegative integers, Kg = X0-1 k,, 1= =0a, A, =
{(B1, ko, - -5 ka): Yo—1 vk, =k} and Y, .. ,K )= means that the sum is taken over

mutually dlfferent indices 1 < iy, iy, - - - ik,
From (4.14) and generalized Holder’s mequahty, it follows that
Y= BT (€, Z)° Ik (e, Z:)* - TLjex,, (e, Z3)™
(4.18)
= Z(il""’iKa)¢ 7l'(k1, kg, ey, ka)EZ%k

where
w(ky, ko, -y Ra) = T1f €F TSk cf - 1Sk, €20
Now, if we let p; = --- = pg, = 2,
P11 = - =Pk, =4 -+, Dk = 0 =Pk, = 20
. by using the conditions & < d(max;<j<n|c;|)™" and SN, cF=1;we get
iy, i) TRy, - ooy Ra) = 22’,...,4{51 2 R [/ (ZE e?)
< (max|c;|)* - = (d/k)zk 2Ka,
Thus, relations (4.17)-(4.19) yield the estimate
EQXK, cjZ;)*

(4.20) 9k)! g\
= Yk Yy koea, II"‘ : [(2”)(']k) — 0! ( ) EZ%.

(4.19)

Further, by Stirling’s formula (see Feller, 1968)
(27)2n 2% < p! < (27)Y2n" %™ (1 + (1/4n))

we obtain, after some computations, that

' | 2k—2K,,
sa (y:){((zz;l;')] ilzk')f{ W)! (%) < 22%(max(1, d})*.

(4.21)
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Finally, on the basis of the expansion
kf =3k S, ke, (B {TT5=1 (W) (R)HE — Ko)!
inequalities (4.20) and (4.21) lead to the assertion (4.16) in Lemma 4.1.

_Proor oF LEMMA 4.2. Let1=p =< N be any given integer and let Z; =
{¢(R} /(N + 1)) — ¢(F*(| X;|))} sgn X;, 1 =j = N. Then, using Lemma 4.1
with d = p max,<j<n|¢;|, it follows that

(4.22) E(Ty — Sy)?? < 2%*Y(max{1, p max;<j<n| c; |})*’pPEZ?".

Now, using Hélder’s inequality and proceeding as in Kallenberg (1982), we
obtain the desired result for any real p, 1 =< p < N. The details are omitted.
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