Cramér Type Large Deviations for Generalized Rank Statistics1

By Munsup Seoh, Stelian S. Ralescu and Madan L. Puri

Wright State University, Brown University, and Indiana University

A Cramér type large deviation theorem is proved under alternatives as well as under hypothesis for the generalized linear rank statistic which includes as special cases (unsigned) linear rank statistics, signed linear rank statistics, linear combination of functions of order statistics, and a rank combinatorial statistic.

1. Introduction. Let $X_{N_1}, X_{N_2}, \ldots, X_{NN}$ be independent r.v.’s (random variables) and let g be a real valued measurable function such that $X_{N_j}^g = g(X_{N_j})$, $1 \leq j \leq N$, has a c.d.f. (cumulative distribution function) G_{N_j}. We introduce the generalized linear rank statistic

$$T_N = \sum_{j=1}^{N} c_{N_j} a_{N_{Nj}}(X_{N_j})$$

where \(c_{N_j}: 1 \leq j \leq N\) is an array of regression constants; \(a_{N_j}(\cdot): 1 \leq j \leq N\) is an array of known real functions (called scores); and $R_{Nj}^g = \sum_{k=1}^{N} u(X_{N_j}^g - X_{Nk}^g)$ is a generalized rank of X_{Nj}^g among X_{Nk}^g: $1 \leq k \leq N$ where $u(x) = 1$ if $x \geq 0$ and $u(x) = 0$ otherwise. We assume that the scores $a_{Nj}(\cdot), 1 \leq j \leq N$ are generated by a nonconstant score generating function $\phi(s, t), 0 < s < 1, -\infty < t < \infty$, in either of the following two ways:

$$a_{Nj}(t) = \phi(EU_{Nj}; t), \quad j = 1, 2, \ldots, N \text{ (approximate scores)}$$

$$a_{Nj}(t) = E\phi(U_{Nj}; t), \quad j = 1, 2, \ldots, N \text{ (exact scores)}$$

where U_{Nj} is the jth order statistic in a random sample of size N from the uniform distribution over $(0, 1)$. To avoid the trivialities, we assume that $\sum_{j=1}^{N} |c_{Nj}| > 0$.

When $g(x) = x$ and $\phi(x, y) = \tilde{\phi}(x)$, the statistic (1.1) reduces to the (unsigned) linear rank statistic

$$T_N = \sum_{j=1}^{N} c_{N_j} \tilde{a}_{N_{Nj}}$$

where $R_{Nj}, 1 \leq j \leq N$, is the rank of X_{Nj} among $X_{Nk}: 1 \leq k \leq N$ and \tilde{a}_{Nj}'s are usual scores of constants. On the other hand, when $g(x) = |x|$ and $\phi(x, y) = \tilde{\phi}(x)\text{sgn} y$, where sgn $y = 2u(y) - 1$, the statistic (1.1) reduces to the signed linear

1 Received July 1983; revised March 1984.

Research supported by NSF Grant MCS-8301409.

AMS 1980 subject classifications. Primary 60F10; secondary 62E20.

Key words and phrases. Linear rank statistics, order statistics, rank combinatorial statistic, large deviation probabilities.
rank statistic

\[T_N = \sum_{j=1}^{N} c_{Nj} \tilde{a}_{NR_{Nj}} \text{sgn} X_{Nj} \]

(1.5)

where \(R_{Nj}, 1 \leq j \leq N, \) is the rank of \(|X_{Nj}| \) among \(\{ |X_{Nk}| : 1 \leq k \leq N \} \).

Also note that when \(c_{N1} = \ldots = c_{NN} = N^{-1}, g(x) = x, \phi(x, y) = \phi(x)\psi(y), \) and the underlying c.d.f.'s \(G_{Nj} \) are continuous, the statistic (1.1) reduces to the linear combination of functions of order statistics

\[T_N = (1/N) \sum_{j=1}^{N} a_{NR_{Nj}} \psi(X_{Nj}) = (1/N) \sum_{j=1}^{N} \tilde{a}_{Nj} \psi(X_{Nj}) \]

(1.6)

where \(X_{Nj} \) is the \(j \)th order statistic among \(\{X_{Nk}, 1 \leq k \leq N\} \). Furthermore, denoting \(Y_{jk} = c_{Nj}a_{Nk}(X_{Nj}), 1 \leq j, k \leq N, \) we can rewrite (1.1) as

\[T_N = \sum_{j=1}^{N} Y_{jR_{Nj}} \]

(1.7)

which is a rank combinatorial statistic. For these four different types of statistics, several authors have investigated problems concerning asymptotic normality, rate of convergence to normality and higher order expansions. For a review, the reader is referred to Hájek (1962, 1968), Hušková (1970, 1977, 1979), Jurečková and Puri (1975), Bergström and Puri (1977), Puri and Seoh (1984a, b, c), Does (1982), Puri and Wu (1983) (for statistics of the type (1.4) and (1.5)); Shorack (1969, 1972), Stigler (1974), Bjerke (1977) and Helmers (1977, 1980, 1981) (for statistics of the type (1.6)); Hoeffding (1951), Motoo (1956), von Bahr (1976) and Ho and Chen (1978) (for the statistics of the type (1.7)) and the papers cited therein, among others.

In recent years, there has been a great upsurge of activity in the theory of large deviations initiated by Cramér (1938) and studied in detail by Petrov (1975) for the case of independent summands. Large deviation probabilities for \(U \)-statistics were obtained by Malevich and Abdalimov (1979) while the corresponding results for the case of the statistic (1.4) were studied by Kallenberg (1982). But these results are restrictive in the sense that the observations \(X_{N1}, X_{N2}, \ldots, X_{NN} \) are identically distributed and the underlying distribution function is continuous (Kallenberg, 1982). In addition, Robinson (1977) has dealt with the case of large deviations for samples from finite populations.

In this paper we shall be concerned with the relative error of the normal approximation to the distribution of the (properly normalized) generalized linear rank statistic (1.1) under general alternatives, i.e., assuming only that the observations are independent (not necessarily identically distributed) and without assuming the continuity of the underlying distribution functions. The results obtained not only include the results of Kallenberg (1982) as a special case, but also provide the large deviation theory for the statistics of the type (1.5), (1.6), and (1.7) which to the best of our knowledge has not been considered in the generality of the present paper.
2. Assumptions and main theorem. Throughout this paper we make the following assumptions.

Assumption (A). The variance of \(T_N \) satisfy
\[
\lim \inf \tau_N^2 = \lim \inf \text{Var} \ T_N > 0.
\]

Assumption (B). The regression constants \(c_{N1}, c_{N2}, \ldots, c_{NN} \) satisfy
\[
\sum_{j=1}^{N} c_{Nj} = 1, \quad \max_{1 \leq j \leq N} |c_{Nj}| \leq A_1N^{-1/3}, \quad \sum_{j=1}^{N} |c_{Nj}|^3 \leq A_2N^{-1/2},
\]
where \(A_1 \) and \(A_2 \) are absolute constants.

Assumption (C). The score generating function \(\phi(s, t) \) is differentiable with respect to its first argument \(s \) such that its first partial derivatives \(\phi_1(s, t) = \partial \phi(s, t)/\partial s \) satisfy Lipschitz's condition of order one with respect to \(s \), i.e., there is a constant \(\Delta \) such that for any \(x, y \in (0, 1) \)
\[
\sup_{-\infty < t < \infty} |\phi_1(x, t) - \phi_1(y, t)| \leq \Delta |x - y|.
\]
(2.1)

(Note that the normal scores statistic does not satisfy this assumption.)

We now introduce some notations. Let \(S^o \) denote a r.v. \(S \) centered at its expectation, i.e. \(S^o = S - E S \). Denote
\[
\rho_{Nj} = R_{Nj}^o/(N + 1), \quad \rho_{Nij} = E(\rho_{Nj} | X_j).
\]

Furthermore, we shall use the r.v. \(\hat{S}_N \) (Hájek's projection), as an approximation of the statistic \(T_N \), defined by
\[
\hat{S}_N = \sum_{j=1}^{N} E(S_N | X_j) - (N - 1)E S_N
\]
where \(S_N \) is the first two terms of Taylor's expansion of \(T_N \) with approximate scores, i.e.,
\[
S_N = \sum_{j=1}^{N} c_{Nj} \phi(\rho_{Njj}, X_N) + (\rho_{Nj} - \rho_{Njj}) \phi_1(\rho_{Njj}, X_N).
\]

Let \(\Phi(\cdot) \) denote the standard normal c.d.f. and put \(\hat{\tau}_N^2 = \text{var} \ \hat{S}_N \). Then

Theorem 2.1. Under assumptions (A), (B) and (C), uniformly in the region
\(0 < x \leq \rho_N N^{1/6} \), \(\rho_N = o(1) \), we have as \(N \to \infty \)
\[
P(T_N - ET_N > \tau_N x)[1 - \Phi(x)]^{-1} = 1 + o(1)
\]
(2.5)
which remains true if we replace \(\tau_N \) by \(\hat{\tau}_N \).

Remark 2.1. Note that the result of Kallenberg (1982) which deals with the statistic (1.4) and holds for the case of iid r.v.'s is a special case of our result, but we impose somewhat stronger assumption on the score generating function. This is due to our generalized statistic (1.1) and weaker assumptions on underlying distributions. However, for the case of iid r.v.'s, the results of the above theorem hold under relatively weaker assumptions (see Remark 4.1).
From now on, we shall suppress the subscript N in $c_{nj}, a_{nj}, R_{nj}, X_{nj}, \rho_{nj}, \rho_{njj},$ etc., whenever it causes no confusion.

3. Preliminaries. In this section, we derive bounds on the 2rth moments (r is any positive integer) for statistics defined in Lemma 3.1–3.5. These bounds play an important role in this paper and, since the method of their derivation depends heavily on that of Bickel (1974), we will give only the brief outline of the proofs.

Let \(\{Y_j\}_{j=1}^{\infty} \) be a sequence of r.v.’s and \(\{d_j\}_{j=1}^{\infty} \) a sequence of real numbers. Then we have the following lemmas.

Lemma 3.1. Let $Z_j, j \geq 1,$ be r.v.’s of the form $Z_j = g_j(Y_1, Y_2, \ldots, Y_j)$ such that for $j \geq 2$, $E(Z_j \mid Y_1, Y_2, \ldots, Y_{j-1}) = 0$. If the sequence $\{d_j\}$ is nonincreasing in absolute values, then for any positive integers r and ε,

$$E(\sum_{j=1}^{\infty} d_j Z_j)^{2r} \leq (4e)^r (\sum_{j=1}^{\infty} d_j^2)^r \varepsilon^r \max_{1 \leq j \leq \varepsilon/2} EZ_j^{2r}.$$

Lemma 3.2. Let $Y_j, j \geq 1,$ be independent r.v.’s and let \bar{V}_{jk} be r.v.’s of the form $\bar{V}_{jk} = g_{jk}(Y_j, Y_k)$, $1 \leq j, k < \infty$, such that for any j and $k, j \neq k, E(\bar{V}_{jk} \mid Y_j) = E(\bar{V}_{jk} \mid Y_k) = 0$. Then, for any positive integers ε and r,

$$E((1/\varepsilon) \sum_{j=1}^{\infty} \sum_{k \neq j} d_j \bar{V}_{jk})^{2r} \leq (4e)^r (\sum_{j=1}^{\infty} d_j^2)^r (2r)^{2r} \varepsilon^{-r} \max_{1 \leq j \leq \varepsilon/2} E\bar{V}_{jk}^{2r}.$$

Remark 3.1. Lemmas 3.1 and 3.2 are generalizations of Lemmas 1 and 4, respectively, of Hušková (1979). (We may point out that, in Hušková (1979), the proof of Lemma 4 is incorrect in its application of Lemma 1, especially in deriving (23) and (24) of her paper.) Lemma 3.2 is also a generalization, as well as an improvement, of Lemma 2.2 of Bergström and Puri (1977).

Proof of Lemma 3.1. For $r \geq \varepsilon$, the proof follows by applying Hölder’s inequality to $(\sum_{j=1}^{\infty} d_j Z_j)^{2r}$ and some routine computations. For $r \leq \varepsilon$, the proof follows by induction on ε with r fixed.

Proof of Lemma 3.2. Since the assumptions and the conclusion of this lemma are invariant under simultaneous permutation of d_j's and Y_j's, we may, without loss of generality, assume that $|d_1| \geq |d_2| \geq \cdots \geq |d_\varepsilon|.$

Define $Z_1 = \bar{Z}_1 = 0,$ $Z_j = \sum_{k=1}^{j-1} \bar{V}_{jk}$ and $\bar{Z}_j = \sum_{k=1}^{j-1} d_k \bar{V}_{jk},$ $2 \leq j \leq \varepsilon,$ so that $(1/\varepsilon) \sum_{j=1}^{\infty} \sum_{k \neq j} d_j \bar{V}_{jk} = (1/\varepsilon) (\sum_{j=1}^{\infty} d_j Z_j + \sum_{j=1}^{\infty} \bar{Z}_j) = \bar{V}_r,$ say. The proof then follows by using the following facts:

(a) $E\bar{V}_r^{2r} \leq \varepsilon^{-2r} (4e)^r (\sum_{j=1}^{\infty} d_j^2)^r \max_{1 \leq j \leq \varepsilon} E\bar{V}_j^{2r} + \varepsilon^r \max_{1 \leq j \leq \varepsilon} E\bar{V}_j^{2r}.$

(b) $EZ_j^{2r} \leq (4e)^r (j - 1)^{2r} \max_{1 \leq k \leq \varepsilon} E\bar{V}_j^{2r}$ and

(c) $E\bar{V}_j^{2r} \leq (4e)^r (\sum_{k=1}^{j-1} d_k^2)^r \max_{1 \leq k \leq \varepsilon} E\bar{V}_j^{2r}$.

Lemma 3.3. Let T_N and S_N be defined by (1.1) and (2.4). Then for any positive
integer }r \geq 1, \quad E(T_N^0 - S_N^0)^{2r} \leq (16e\Delta)^{2r}(2r)^{2r}N^{-r}.

Proof. Denote }H_{jk} = u(X_j^k - X_k^j) - G_k(X_j^k), \quad 1 \leq j, k \leq N. \text{ Then, we have }

\begin{equation}
\rho_j - \rho_{jj} = (N + 1)^{-1} \sum_{k \neq j}^N H_{jk}
\end{equation}

and

\begin{equation}
S_N = \sum_{j=1}^N c_j \phi(\rho_{jj}, X_j) + (N + 1)^{-1} \sum_{k \neq j}^N H_{jk}\phi_1(\rho_{jj}, X_j).
\end{equation}

First consider the statistic }T_N \text{ with approximate scores. Then, by Taylor's expansion, for some } 0 \leq \lambda \leq 1,

\begin{equation}
T_N = \sum_{j=1}^N c_j \phi(\rho_{jj}, X_j) + (\rho_j - \rho_{jj})\phi_1(\lambda \rho_{jj} + (1 - \lambda)\rho_j, X_j).
\end{equation}

Using (3.2) and (3.3) along with assumptions (B) and (C), we obtain

\begin{equation}
E(T_N - S_N)^{2r} \leq \Delta^{2r}N^{-1} \sum_{j=1}^N E(\rho_j - \rho_{jj})^{4r}.
\end{equation}

For each }j, \text{ conditionally given }X_j^k, \text{ }\rho_j - \rho_{jj} \text{ is the sum of independent r.v.'s with zero means and thus we may apply Lemma 3.1 to obtain that for any integer }r \geq 1,

\begin{equation}
E(\rho_j - \rho_{jj})^{4r} \leq (4e)^{2r}(2r)^{2r}N^{-2r}.
\end{equation}

The proof follows using (3.4) and (3.5).

We now consider the exact scores. Let }\hat{T}_N \text{ be the statistic (1.1) with exact scores and put for } 1 \leq j \leq N, \hat{a}_j(t) = E\phi(U_{N;j}, t) \text{ to distinguish it from the statistic }T_N \text{ with approximate scores. The proof then follows by using }

\begin{equation}
|E\phi(U_{N;j}, t) - \phi(j/(N + 1), t)| \leq \Delta N^{-1}, \quad E(\hat{T}_N^0 - T_N^0)^{2r} \leq (2\Delta)^{2r}N^{-r}, \quad E(T_N^0 - S_N^0)^{2r} \leq 2^{2r}E(T_N - S_N)^{2r} \leq (8e\Delta)^{2r}(2r)^{2r}N^{-r} \text{ and routine computations.}
\end{equation}

Lemma 3.4. Let }S_N \text{ and }S_N^0 \text{ be defined by (2.3) and (2.4). Then for any integer }r \geq 1, \quad E(S_N^0 - \hat{S}_N^0)^{2r} \leq (8e \parallel \phi_1 \parallel)^{2r}(2r)^{2r}N^{-r} \text{ where }

\begin{equation}
\parallel \phi_1 \parallel = \sup_{0 < r < 1} \sup_{-\epsilon < t < \epsilon} |\phi_1(s, t)|.
\end{equation}

Proof. The proof follows by using Lemma 3.2 and noting that

\begin{equation}
E(S_N | X_r) = c_r\phi(\rho_{\varphi}, X_r) + ES_N - c_rE\phi(\rho_{\varphi}, X_r)
+ (N + 1)^{-1} \sum_{j=1}^N c_j E[H_{jr}\phi_1(\rho_{jj}, X_j)|X_r],
\end{equation}

and

\begin{equation}
S_N^0 - \hat{S}_N^0 = (N + 1)^{-1} \sum_{j=1}^N \sum_{k \neq j}^N c_j[H_{jk}\phi_1(\rho_{jj}, X_j) - E[H_{jk}\phi_1(\rho_{jj}, X_j)|X_k]].
\end{equation}

Lemma 3.5. Let }T_N \text{ and }\hat{T}_N \text{ be defined by (1.1) and (2.3). Then, for any real }r \geq \frac{1}{2}, \quad E(T_N^0 - \hat{T}_N^0)^{2r} \leq (64e(\Delta + \parallel \phi_1 \parallel))^{2r}(2r)^{2r}N^{-r}.

Proof. Denote by }[x], \text{ the smallest integer }\geq x. \text{ Then, applying Hölder's
inequality,
\[[E(T_N^0 - \hat{S}_N^0)^2]^{1/r} \leq E(T_N^0 - \hat{S}_N^0)^{2r}. \]
Since, by the C_r-inequality,
the right-hand side term \(\leq 2^{2r-1} [E(T_N^0 - S_N^0)^{2r}] + E(S_N^0 - \hat{S}_N^0)^{2r} \),
we have
\[[E(T_N^0 - \hat{S}_N^0)^{2r}]^{1/r} \leq 2^{2r-1} [E(T_N^0 - S_N^0)^{2r}] + E(S_N^0 - \hat{S}_N^0)^{2r}. \]
Now using Lemmas 3.3 and 3.4 to the terms on the right-hand side, we obtain,
after omitting some details of computations, that
\[[E(T_N^0 - \hat{S}_N^0)^{2r}]^{1/r} \leq |32e(\Delta + \|\phi_1\|)|^{2r}(2|r|)^{2r}N^{-r}. \]
Thus,
\[E(T_N^0 - \hat{S}_N^0)^{2r} \leq |32((r)/r)e(\Delta + \|\phi_1\|)|^{2r}(2r)^{2r}N^{-r} \leq |64e(\Delta + \|\phi_1\|)|^{2r}(2r)^{2r}N^{-r} \]
where the last inequality follows from the fact that 1 \(\leq [r]/r \leq 2 \) for any real \(r \geq \frac{1}{2} \).

4. Proof of Theorem 2.1. By assumption (A) and Lemma 3.5, we have
\[|\hat{\theta}_N - \tau_N^2| = |2 \text{ Cov}(T_N, \hat{S}_N - T_N) + \text{ Var}(\hat{S}_N - T_N)| \]
\[\leq 2\tau_N(\text{ Var}(\hat{S}_N - T_N))^{1/2} + \text{ Var}(\hat{S}_N - T_N) \]
which implies that \(\hat{\theta}_N / \tau_N^2 = 1 + O(N^{-1/2}) \) and that there is a positive constant \(\sigma \)
such that for all \(N \geq N_0 \),
\[\hat{\theta}_N^2 \geq \sigma^2. \]
Hence, in order to prove Theorem 2.1, it is sufficient to show that
\[P(T_N - ET_N > \hat{\theta}_N x)(1 - \Phi(x))^{-1} = 1 + o(1) \]
uniformly in the region \(0 < x < \rho \omega N^{1/6} \).
By standard arguments we have
\[P(T_N^0 > \hat{\theta}_N x) \leq P(\hat{\theta}_N^0 > (x - N^{-1/6})\hat{\theta}_N) + P(| T_N^0 - \hat{\theta}_N^0 | > N^{-1/6}\hat{\theta}_N), \]
\[P(T_N^0 > \hat{\theta}_N x) > P(\hat{\theta}_N^0 > (x + N^{-1/6})\hat{\theta}_N) - P(| T_N^0 - \hat{\theta}_N^0 | > N^{-1/6}\hat{\theta}_N). \]
Using Chebyshev’s inequality and applying Lemma 3.5 with \(r = \frac{1}{2} \delta N^{1/3}, \)
\(\delta = \sigma(64(\Delta + \|\phi_1\|)e^{2})^{-1} \), we get
\[P(| T_N^0 - \hat{\theta}_N^0 | > N^{-1/6}\hat{\theta}_N) \leq E(T_N^0 - \hat{\theta}_N^0)^{2r} N^{r/3}\hat{\theta}_N^{-2r} \leq \exp(-\delta N^{1/3}) \]
which implies that uniformly for \(0 < x \leq \rho \omega N^{1/6}, \)
\[P(| T_N^0 - \hat{\theta}_N^0 | > N^{-1/6}\hat{\theta}_N)(1 - \Phi(x))^{-1} \leq \exp(-\delta N^{1/3})(1 - \Phi(\rho \omega N^{1/6}))^{-1} = o(1) \]
where the last equality follows by Lemma VII.1.2 of Feller (1968).
Now, in view of (4.3) and (4.5), to prove (4.2) it suffices to show that as $N \to \infty$

$$P(S_N^0 > x_N \hat{\sigma}_N)[1 - \Phi(x)]^{-1} = 1 + o(1)$$

uniformly in $|x_N - x| = N^{-1/6}, \ 0 \leq x \leq \rho_N N^{1/6}$.

Using (2.3) and (3.6) we can write $S_N^0 = \sum_{j=1}^N S_N^{(j)}$ where

$$S_N^{(j)} = c_j[f(\rho_{jj}, X_j) - E f(\rho_{jj}, X_j)] + (N + 1)^{-1} \sum_{k \neq j}^N c_k E[\{u(X_k^x - X_j^x) - G_j(X_k^x)\} f_1(\rho_{kk}, X_k) X_j].$$

Thus S_N^0 is a sum of independent r.v.'s with means zero and

$$|S_N^{(j)}| \leq 2|c_j| \parallel f\parallel + (N + 1)^{-1} \sum_{k \neq j}^N \parallel c_k \parallel \parallel f_1\parallel$$

$$\leq (2 \parallel f\parallel + \parallel f_1\parallel) A_1 N^{-1/3}, \ 1 \leq j \leq N,$$

where $\parallel f\parallel = \sup_{0 < c < 1} \sup_{-c / 2 < c < 0} |f(s, t)|$. Furthermore, there is an integer N_0 such that for all $N \geq N_0$ and $0 < x < \rho_N N^{1/6}, |x_N - x| \leq N^{-1/6}$,

$$0 < (2 \parallel f\parallel + \parallel f_1\parallel) A_1 N^{-1/3} \hat{\sigma}_N x_N \leq \frac{1}{12}$$

in view of (4.1). Thus we can use Theorem 1 of Feller (1943) (cf. also Petrov, 1975, page 253) to obtain that for all $N \geq N_0$,

$$P(S_N^0 > x_N \hat{\sigma}_N) = \exp\{-\frac{1}{2} x_N^2 Q_N(x_N) [1 - \Phi(x_N) + \theta_N \lambda_N \exp(-\frac{1}{2} x_N^2)]\}$$

where

$$\lambda_N = (2 \parallel f\parallel + \parallel f_1\parallel) A_1 N^{-1/3} \hat{\sigma}_N^{-1}, \ \theta_N < 7.465,$$

$$Q_N(x) = \sum_{j=1}^N q_{Nj} x_j, \ \ q_{N1} = 3^{-1} \hat{\sigma}_N^{-3} \sum_{j=1}^N E(S_N^{(j)})^3,$$

$$|q_{Nj}| < 8^{-1}(12 \lambda_N)^j, \ j \geq 2.$$

Note that $|x_N| \leq \rho_N N^{1/6} + N^{-1/6}$. Since $\rho_N = o(1)$ we have $x_N = o(N^{1/6})$ as $N \to \infty$. Let $K > 0$ be such that

$$|x_N| \leq \frac{K \hat{\sigma}_N N^{1/6}}{12 A_1 (2 \parallel f\parallel + \parallel f_1\parallel)}, \ \ N \geq 1.$$

Also it follows by assumption (B) and (4.1) that

$$|q_{Nj} x_N| \leq \hat{\sigma}_N^{-3} 4^j (2 \parallel f\parallel^3 + \parallel f_1\parallel^3) \sum_{j=1}^N |c_j|^3 x_N \leq A_3 N^{-1/3}$$

where A_3 is an absolute constant. Hence combining (4.9), (4.10) and (4.11) we obtain that

$$|Q_N(x_N)| \leq A_3 N^{-1/3} + \sum_{j=2}^\infty |q_{Nj} x_N^j| \leq A_3 N^{-1/3} + 8^{-1} \sum_{j=2}^\infty (KN^{-1/6})^j$$

which implies that as $N \to \infty$

$$x_N^2 Q_N(x_N) = x_N^2 O(N^{-1/3}) = o(N^{1/3}) O(N^{-1/3}) = o(1)$$

uniformly in $0 < x \leq \rho_N N^{1/6}$. Moreover Lemma VII.1.2 of Feller (1968) ensures
that
\[\theta_N \lambda_N \exp(-\frac{1}{2} x_N^2) [1 - \Phi(x_N)]^{-1} = O(\lambda_N x_N) = o(1), \]
(4.13)
\[[1 - \Phi(x_N)]^{-1} [1 - \Phi(x)] = 1 + o(1). \]

(4.2) now follows uniformly in \(0 < x \leq \rho_N N^{1/6} \) by using (4.8), (4.12) and (4.13).

Remark 4.1. The above theorem obviously holds for the case of the iid r.v.'s. However, for such a case, and for the statistics (1.4) and (1.5), the theorem holds under somewhat weaker assumptions on the score generating function, if we assume somewhat stronger assumption on the underlying distribution function. For the case of the statistic (1.4), we refer to Kallenberg (1982). For the case of the statistic (1.5), we have the following theorem:

Theorem 4.1. Let \(X_{Nj}, 1 \leq j \leq N, N \geq 1 \) be iid r.v.'s with a continuous c.d.f. \(F_N(x) \) symmetric about 0. Assume the following:

Assumption (D). \(\sum_{j=1}^N c_{Nj}^2 = 1, \max_{1 \leq j \leq N} |c_{Nj}| \leq A_1 N^{-1/3} \) where \(A_1 \) is an absolute constant.

Assumption (E). The score generating function \(\tilde{\phi} \) (defined in Section 1) is not identically zero and satisfies a Lipschitz condition of order 1 on (0, 1), that is, there exists a constant \(C \) such that \(|\tilde{\phi}(t) - \tilde{\phi}(s)| \leq C |t - s| \) for all \(t, s \in (0, 1) \).

Then, the conclusion of the Theorem 2.1 holds.

To prove this theorem we use the following two lemmas and proceed essentially as in the proof of Theorem 2.1. (As before, we suppress the subscript \(N \) in \(c_{Nj}, X_{Nj} \) etc. whenever it causes no confusion).

Lemma 4.1. Let \(Z_1, \ldots, Z_N \) be random variables such that for any permutation
\((i_1, \ldots, i_N) \) of \((1, \ldots, N) \)
\[E \prod_{j=1}^N Z_{i_j}^{\alpha_j} = E \prod_{j=1}^N Z_{i_j}^{\alpha_j}, \]
(4.14)
where \(\alpha_j \)'s are nonnegative integers such that \(\sum_{j=1}^N \alpha_j = 2k, k \geq 1 \) integer. Furthermore, assume that
\[E \prod_{j=1}^N Z_{i_j}^{\alpha_j} = 0 \]
(4.15)
if at least one of the \(\alpha_j \)'s is odd. Then if \(\sum_{j=1}^N c_j^2 = 1, \) for any integer \(k \leq d(\max_{1 \leq j \leq N} |c_j|)^{-1}, d > 0 \)
\[E(\sum_{j=1}^N c_j Z_j)^{2k} \leq 2^{2k+1}(\max_{1 \leq j \leq N} |c_j|)^{2k} k^{2k} E Z_j^{2k}. \]
(4.16)

Consider now the statistic \(S_N = \sum_{j=1}^N c_j \tilde{\phi}(P_N^*(|X_j|)) \text{sgn} X_j \) where \(P_N^*(x) = P(|X_1| \leq x), 0 \leq x < \infty. \)
LEMMA 4.2. For all real p, $1 \leq p \leq N$,

$$E(T_N - S_N)^{2p} \leq A_2^{2p}(2p)^{2p}N^{-p}(\max\{1, p \max_{1 \leq j \leq N} |c_j|\})^{2p}$$

where A_2 is a constant independent of N and p.

PROOF OF LEMMA 4.1. Because of (4.14) and (4.15), the multinomial expansion yields

$$E(\sum_{j=1}^K c_j Z_j)^{2k}$$

$$= \sum_{\alpha=1}^K \sum_{(k_1, \ldots, k_\alpha) \in A_\alpha} \prod_{r=1}^\alpha [(2p)!]^{k_r} \prod_{r=1}^\alpha (k_r)!$$

$$\cdot \sum_{(i_1, \ldots, i_{K})} E \prod_{j=1}^{K_1}(c_{i_j}Z_{i_j})^2 \prod_{j=K_1+1}^{K_2}(c_{i_j}Z_{i_j})^4 \cdots \prod_{j=K_{K-1}+1}^{K_2}(c_{i_j}Z_{i_j})^{2\alpha}$$

where $k_j, 1 \leq j \leq \alpha$ are nonnegative integers, $K_\beta = \sum_{r=1}^\beta k_r$, $1 \leq \beta \leq \alpha$, $A_\alpha = \{(k_1, k_2, \ldots, k_\alpha) : \sum_{r=1}^\alpha nk_r = k\}$ and $\sum_{(i_1, \ldots, i_K)}$ means that the sum is taken over mutually different indices $1 \leq i_1, i_2, \ldots, i_{K_a} \leq N$.

From (4.14) and generalized Hölder’s inequality, it follows that

$$\sum_{(i_1, \ldots, i_{K})} E \prod_{j=1}^{K_1}(c_{i_j}Z_{i_j})^2 \prod_{j=K_1+1}^{K_2}(c_{i_j}Z_{i_j})^4 \cdots \prod_{j=K_{K-1}+1}^{K_2}(c_{i_j}Z_{i_j})^{2\alpha}$$

$$\leq \sum_{(i_1, \ldots, i_{K})} \pi(k_1, k_2, \ldots, k_\alpha) EZ_1^{2k}$$

where

$$\pi(k_1, k_2, \ldots, k_\alpha) = \prod_{j=1}^{K_1} c_{i_j}^2 \prod_{j=K_1+1}^{K_2} c_{i_j}^4 \cdots \prod_{j=K_{K-1}+1}^{K_2} c_{i_j}^{2\alpha}.$$

Now, if we let $p_1 = \ldots = p_{K_1} = 2$,

$$p_{K_1+1} = \ldots = p_{K_2} = 4, \ldots, p_{K_{K-1}+1} = \ldots = p_{K_\alpha} = 2\alpha,$$

by using the conditions $k \leq d(\max_{1 \leq j \leq N} |c_j|)^{1-1}$ and $\sum_{j=1}^N c_j^2 = 1$; we get

$$\sum_{(i_1, \ldots, i_{K})} \pi(k_1, \ldots, k_\alpha) \leq \sum_{(i_1, \ldots, i_{K})} c_{i_1}^{p_1} \cdots c_{i_{K_\alpha}}^{p_{K_\alpha}} \leq \prod_{j=1}^{K_1} (\sum_{i=1}^N c_{i_j})^p$$

$$\leq (\max |c_i|)^{2k-2K_\alpha} \leq (d/k)^{2k-2K_\alpha}.$$

Thus, relations (4.17)–(4.19) yield the estimate

$$E(\sum_{j=1}^N c_j Z_j)^{2k}$$

$$\leq \sum_{\alpha=1}^{K} \sum_{(k_1, \ldots, k_\alpha) \in A_\alpha} (2k)! \prod_{r=1}^\alpha [(2p)!]^{k_r} \prod_{r=1}^\alpha (k_r)!$$

$$\cdot \left(\frac{d}{k}\right)^{2k-2K_\alpha} EZ_1^{2k}.$$

Further, by Stirling’s formula (see Feller, 1968)

$$(2\pi)^{n^{1/2}}n^{-1/2}e^{-n} < n! \leq (2\pi)^{1/2}n^{n+1/2}e^{-n} (1 + (1/4n))$$

we obtain, after some computations, that

$$\frac{\pi(\alpha)}{(2\pi)^{\alpha/2}} (k_1)!(k_2)!(k_3)!(k_4)!(k_5)!(k_6)!(k_7)!(k_8)!(k_9)!(k_{10})!$$

$$\leq 2^{2k+1}(\max\{1, d\})^{2k}.$$

LARGE DEVIATIONS FOR RANK STATISTICS 123
Finally, on the basis of the expansion
\[k^h = \sum_{a=1}^{k} \sum_{(k_1, \ldots, k_a) \in A_a} (k!)^2 / \prod_{a=1}^{k} (\nu!)^{k_a} \prod_{a=1}^{k} (k_a)! (k - K_a)! \]
inequalities (4.20) and (4.21) lead to the assertion (4.16) in Lemma 4.1.

Proof of Lemma 4.2. Let \(1 \leq p \leq N \) be any given integer and let \(Z_j = \{ \phi(R_j^+/(N + 1)) - \phi(F^+([X_j])) \} \text{ sgn } X_j, \ 1 \leq j \leq N \). Then, using Lemma 4.1 with \(d = p \max_{1 \leq j \leq N} |c_j| \), it follows that
\[E(T_N^2 - S_N^2)^{2p} \leq 2^{2p+1}(\max\{1, p \max_{1 \leq j \leq N} |c_j|\})^{2p}p^pEZ_j^{2p}. \] (4.22)

Now, using Hölder's inequality and proceeding as in Kallenberg (1982), we obtain the desired result for any real \(p, \ 1 \leq p \leq N \). The details are omitted.

REFERENCES

MUNSUH SEOH
DEPARTMENT OF MATHEMATICS
AND STATISTICS
WRIGHT STATE UNIVERSITY
DAYTON, OHIO 45435

STEFAN S. RALESCU
DIVISION OF APPLIED MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, R.I. 02912

MADAN L. PURI
DEPARTMENT OF MATHEMATICS
INDIANA UNIVERSITY
BLOOMINGTON, INDIANA 47405