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DEPENDENCE BY REVERSE REGULAR RULE

By MEeI-LiNG TING LEE!

Boston University

A family of concepts of dependence by reverse regular (DRR) rule is
introduced. Interrelationships among DRR random variables are investigated.
Relationships with other concepts of negative dependence are discussed.

1. Introduction. In Lee (1985), a family of concepts of positive dependence
by total positivity was considered. This generalized work of Shaked (1977) was
done only in the bivariate case. Because of recent work by Karlin and Rinott
(1980) and of Block, Savits and Shaked (1982) on negative dependence analogs
of total positivity, it is now possible to consider families of negatively dependent
distributions analogous to those of Lee (1985).

Since negative dependence concepts are not simply mirror images of positive
dependence properties (except in the bivariate case), results are not immediate.
For example, Theorem 5.1 of Karlin (1968, page 123) for TP, densities, which
was heavily used in Lee (1985), does not have an immediate analog for a simple
reverse TP, type of concept. Consequently we use a more specialized version of
a reverse TP, type of concept due to Karlin and Rinott (1980) called strongly
multivariate reverse regular rule of order 2 (S-MRRy).

In Section 2, the concept of dependence by reverse regular rule is given and
some properties are derived. The main result is Proposition 2.7 which shows that
if a distribution is dependent by reverse regular rule of a certain order, then it is
dependent by reverse regular rule for all higher orders. Various other properties
are given.

Section 3 considers other concepts of negative dependence and how they are
related to the families studied here. In particular we consider concepts due to
Brindley and Thompson (1972) and Ebrahimi and Ghosh (1981).

2. Definition and properties of dependence by reverse regular
rule. A function K is said to be reverse regular of order 2 (RR;) on S; X S, if
K(x,y) =2 0 and if K(x, y)K(x',y") < K(x, y')K(x', y) wheneverx < x’,y < y’,
for x, x’ € S;and y, y’ € S, (see Karlin, 1968, page 12).

There are several recent papers in which reverse regular functions are dis-
cussed. Ebrahimi and Ghosh (1981) considered the condition that the joint
density of a random vector and all its marginals are RR; in pairs. Block, Savits
and Shaked (1981) defined a probability measure u to be RR, in pairs if the set

Received October 1982; revised April 1984.

! Supported by ONR Contract N00014-76-C-0837 when the author was a research assistant at the
University of Pittsburgh.

AMS 1980 subject classifications. Primary 60K10, 62H20; secondary 62N05.

Key words and phrases. Negative dependence, reverse regular rule, right corner set decreasing,
right tail decreasing in sequence, conditionally decreasing in sequence, negative regression depend-
ence.

583

%SJ%
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q% )2

Q)

o

The Annals of Probability. BIX@RY

www.jstor.org



584 M.-L. T. LEE

function u(ly, ---, I,) = p(lL X I, X --- X I,) is RR; in the pairs I;, [; for all
1 =i <j =< n, with the remaining variables held fixed. According to Karlin and
Rinott (1980) a nonnegative function satisfying the property

fxEAYNfxVy) =fx)f(y) forall x,y

is said to be multivariate reverse regular of order 2 (MRR;). Since the composition
formulas do not in general preserve the MRR; property, these authors introduced
the following stronger notion.

DEFINITION 2.1. (Karlin and Rinott, 1980). An MRR; function f(x) is said
to be strongly-MRR; (S-MRR,) if for any set of PF, functions {¢,}, each resulting
marginal

g(xvn Tty ka) = f st ff(xlv Tt x,,)q&l(le) e ¢"_k(xjn—k) dle e dxjn—k

is MRR; in the variables %, , - - -, x,,, where {v;, ---, v} and {j1, - - -, jns} are
complementary sets of indices {1, -- -, n} with n = 3.
NoOTE. Let T4, .-, T, be random variables with density f (with respect to a

product measure of g-finite measures), then by Remark (vi) of Block et al. (1982),
u is RR; in pairs if and only if

f f [Tl ey x2, (Ee)1f 1y - - 5 t)[TLaseij diti]

is RR, in the unintegrated variables ¢; and t; for all choice of intervals
I.(k #1i,j) in R’, where x; denotes the indicator function of I.

We give here a counterexample which shows that the RR; in pairs definition
of Block et al. (1982) does not imply the S-MRR; definition of Karlin and Rinott
(1980).

ExXAMPLE. Let X, Y, Z be distributed such that P(X =1, Y=1,Z = 0)
PX=1,Y=0,Z=0=P(X=0,Y=1,Z=0=PX=0,Y=0,Z=1) =
Y. Let I C R be any interval. We will check in the following cases that X, Y, Z
is RR; in pairs according to Block et al. (1982). We use Remark vi of Section 2
of that paper.

Case 1, {0,1} C I:
PX=x,Y=y,Z€l)=PX=x,Y=y) isRRy;in 1x,y,
PX=x,YeEl,Z=2)=PX=x,Z=2z) isRR;in «x, 2,
PXel,Y=y,Z=2)=P(Y=y,Z=2) isRRy;in y,z.
Case2,0€,1€¢1I:
PX=x,Y=y,Z€l)=PX=x,Y=y,Z=0) isRR;in «x, 1,
PX=x,YeEl,Z=2)=PX=xY=0,Z=2) is RR;in 1z, 2,
PXel,Y=y,Z=2)=P(X=0,Y=y,Z=2) isRRy;in y, 2.

Il
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Case 3,0¢& I, 1 €I: can be checked similarly as in case 2.
Case 4,0 I, 1 &€ I: trivial.
Now, let ¢ (z) = e* be a PF; function, then

f PX=x, Y=y Z=2z)$(z) dn(z)
=PX=x,Y=yZ=0+eP(X=x,Y=y,Z=1) isTP;in x,y,
hence X, Y, Z is not S-MRR;.

PROPOSITION 2.2. Let f(x1, ---, x,) be an S-MRR; function. Then for any
PF, function ¢, the integral [ f(x1, - - - , x.)¢ (x;) dx; is an S-MRR; function in the
variables xy, - -+ , Xi—1, Xis1, * = * 5 Xn-

PRrROOF. This follows from the definition.

Define, for s > 0,
o _ J(=0*YT(s), t=0
vA(t) l £> 0.
Then for s = 1, y®(x — y) is TP, in x and y (see Karlin, 1968).
Let X;, ---, X, be random variables with joint distribution function F.
Let v“(t) be defined as above. For k; > 0, define the n fold integral
‘I"kl,n-,k,,(xl’ ) xn) as

\I,kl,~~~,k,,(x1) D) xn)

= I ctt I 'Y(kl)(xl - tl) e ‘Y(kn)(xn - tn) dF(tly ] tn)

and define ¥, ... o(x1, -+ , Xs) = f(x1, - - - , %) if the joint density f exists.
Also define ¥,,.. 0,\1/0 ivp k(X1 + + + 5 Xn) to be the (n — t)-fold integral

f f vy ke (g, i — biv1)

v * (2, — tn)g(x1, - -+, %) AF (bivr, -+, tal 2, - o0, %)

where g is the joint density of Xi, ---, X;, and F(tu1, -+, tal %1, -+, %) i
the conditional distribution of X4, ---, X, given X; = x;, -+, X; = x;, for
kiy1 >0, .-+, k, > 0. Similarly, we can define ¥,,... s (%1, - -+, %) with any
subset of {k;, - - - , k,} consisting of zeros.

With the above concepts, we can introduce the following definition.

DErFINITION 2.3. For ky, ---, k, = 0, the positive random vector (X, ---,
X,) is said to be dependent by reverse regular rule of order 2 with degree
(k1, - - - , kn), denoted by DRR(ky, - - - , ky), if Wg,,... . (%1, - - - , %) is an S-MRR;
function.

Since ¥, ...o(x1, -+-, %Xs) = f(x1, ---, x,) if the joint density exists, the
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condition that a random vector (X;, ---, X,,) is DRR(O, - - ., 0) is equivalent to
the condition that the joint density is S-MRR; (or RR; in n = 2 case). For
example, the multinomial distribution, multivariate hypergeometric distribution,
etc., are DRR(0, - - ., 0), (see Block et al., 1982, and Karlin-Rinott, 1980). Also
a random vector X is DRR(1, - --, 1) means that F(x,, ---, x,) is an S-MRR,
function when n = 3, or is RR; when n = 2. For the bivariate case, from the
remarks of Block et al. (1982) we can see that DRR(0, 0) implies DRR(1, 1). For
the multivariate case we have from Proposition 2.7 that if f is an S-MRR, density,
then the joint survival function F is again S-MRR,. To prove this and more
general results, we need several lemmas.

LEMMA 2.4. The function 1(,,),(u) is TP, in pairs of x, y, u, where (x, y) is any
interval in R’ and

_ 1 i uexy)
L (1) = ]0 otherwise.

ProOF. This can be easily checked.

LEMMA 2.5. For any PF, function ¢, the integrals [% (w — x)*¢(x) dx and
I (w— x)*¢(x) dx are both PF, functions in w, for any k = 0, and any extended
real numbers a, b.

PRrROOF. We have

f_ (w—x— s)p(x) dx = f w— u)*(u —s) du

= ‘[m (w - u)k¢(u - s)l(w,a+s)(u) du.

Now, since (w — u)* is TP, in w, u, ¢(u — s) is TP, in pairs of s, u, w, and
1(w,a+s) (1) is TP, in pairs of s, u, w, the integral is TP, in w, s by Theorem 5.1,
page 123, Karlin. Similarly [§~ (w — s — x)*¢(x) dx is TP; in w, s.

NoOTE. On page 193, Karlin (1968) has deduced by applying the composition
lemma that if f(x) is PF,, and if f vanishes for nonpositive x, then

J; (& — w)f(§) dt

is PF, provided either « is an integer or o« = r — 2. That result turns out to be a
special case of the above lemma when r = 2.

LEMMA 2.6. Letf(wy, ---,w,) be an S-MRR, function, then

ff(wl, e wa)Y P — wy) dw;

is an S-MRR; function in wy, - - -, Wj_1, X, Wj41, -+ , Wy, for any k = 0 and any
16{1729 9n’}'
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ProoF. For any PF, function ¢,

f <f fwy, -+, w)y®Px — wy) dwj>¢(x) dx

wj REPRY = |
= f ( ] (w; — ) é(x) dx)f(wl, e, wy) dwj.

" I'(k)
The inner integral is PF, in w; by the previous lemma, hence the outer integral
is MRR; in wy, - -+ , Wj-1, Wjs1, - - - , W,. Now we prove by induction that
f < f flw, -+, wa)y®x — wy) dwj)eb(w/) dw,
is MRR; in the variables wy, - - -, Wj-1, X, Wjs1, - =+ , Wr—1, Wre1, =+ + 5 Whe

For the n = 3 case, we assume, without loss of generality, that » = 1, j = 3.
We show that

f ff(wl, wg, w3)yP(x — ws) dwsg(wy) dw,

is RR; in w,, x. Rewrite

® Y =1
| < | fany s wertan dw1>%dwa= | s wntes, ws) d,

where

8(x, w3) = 1y (ws)((ws — x)*7Y/T(R)),
and

h(ws, ws)=ff(w1, Ws, W3)¢(wy) dw.

Notice that g(x, ws) is TP, in x, ws, while h(w,, ws) is RR; in ws, ws. Thus by
the basic composition formula of Karlin (1968, Lemma 1.1, page 99)

fg(x’ w3)h(ll)2, w3) dw:; is RR2 in Wwa, X.

Now, assume the lemma is true for case of n — 1 variables, then for

f < f fws, -+ wa)y®x — wy) dwj>¢(w/) dw,
= f <f flws, -, wa)o(w,) dwz>7"”(x - wy) dw;

the inner integral is S-MRR; in w,, - -+ , w/-1, W41, - - - , Wy, hence the result is
true for any n = 3 by induction. By Proposition 2.2 the above holds true if we
integrate several PF; functions. Thus the proof is complete.

Now we have the following result.
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PropoSITION 2.7. If (Xi, ---, X,) is DRR(ky, ---, ky), then it is
DRR(s,, -- - , Sn) for any integers s; = ki, i=1, ---, n.

Proor. We have

\I,sl,'--,s,.(xly Tty xn) = f o f \I,kp'“,k,.(wh ) wn)‘y(sl_kl)(xl - wl)
<y nTR(x, — wy) dwy -+ dw,.

For the bivariate case, the result follows by using the basic composition formula
twice. For multivariate case, it follows from the previous lemma.
The DRR families are also closed under linear transformations.

PrOPOSITION 2.8. If (X1, ---, X,) is DRR(ky, ---, kn), then the linear
transformation vector (@1 Xy + by, -+, @nXn + by) is DRR(ky, - -, kn), for any
0,=0,i=1,...-,nandanyby, ---, b, real.

PrROOF. See Lee (1982).

The joint distribution of two independent sets of DRR random variables is
again DRR.

PROPOSITION 2.9. Let (Xi, ---, Xn) be independent of (Y1, -, Yn). If
(X1, - -+, Xn) is DRR(ky, - -+ , kw) and (Y4, - -+, Y,) is DRR(/y, - - , /4), then
(Xl, 7XMy Yl, ) Yn) I'SDRR(kl, ,kmy/h ’/n)~

PROPOSITION 2.10. For n = 3, assume X = (Xy, ---, Xu) is DRR(ky, - - -,
k,) with k; =0 or 1 for some 1 <i<n,then X9 =(Xy, - -+, Xi1, Xis1, - -+, Xn)
is DRR(ky, - -« , ki1, kiv1, - -+, Kn)-

ProoF. Without loss of generality assume that i = 1. First, assume that
ky=0and k;>0 forj=2, ---, n. Let g be the density function of X, then

\I’O,kz,“':k,.(xl’ R} xn)

= J; J; yE(xg — ty) - YH*x, — ta)g(x1) dF (L2, -+, ta] X1)

is S-MRR.. Let ¢,(x1) = 1, and {¢,}3 be a sequence of PF, functions. Then by
definition

J; J; Wiy oo (X2, ooy Xn) () -+ bn—r(x,_) dxj, -+ - dx,

= f e f f \I/O’kz,.,.,kn(xl, ey, xn)¢1(xl)¢2(xj2)
0 0 0

cee ¢,,_,(x,~"_,) dx; dsz ce dxj,__,

is MRR;in x,,, - - , x,,, where (v1, - - -, »,) and (1, jz, - - - , Ju—r) are complemen-
tary sets of indices. Hence we have (X, - -+, X,) is DRR(ks, - - -, kn).
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Now, assume k; =1 and k;>0forj=2, ---, n,then Wy, ... 4 (%1, -+, %) =
Jo o S fa v * e — ) - ¥y*®(xn — t) dF(ty, tz, -+, t,) is S-MRR,.
Thus Wy, ...k (x2, - -, xp) = lime oWip,... 5, (%1, -+, x,) is S-MRR;. i.e.
(Xs, -+, X,)is RRy(kg, - -+, k).

Shaked (1977) mentioned that if (X;, X;) is DTP(m, n) and also DRR(m, n),
then X;, X, are independent. We generalize this result as follows.

ProrosiTioN 2.11. Let (X;, ---, X,) be DTP(k,, ---, k,) and also be
DRR(ky, - - -, k,) with nonnegative integer k; fori =1,2, ..., n, then X, ---,
X, are independent.

ProOF. Because of Proposition 2.4 in Lee (1985) and Proposition 2.7, we
may assume that k; = 1 fori=1, 2, ..., n. By the assumption of both DRR and
DTP, we have the partial differential equation

2

IOg \I,kl,-n,hn(xl’ Tty xn) = 07

0x;0x;
forany i #j,1,j € {1, 2, ---, n}. Therefore (3/dx;)log Ws,...p (%1, -+, x,) =
fi(x;) for some univariate function f;, i = 1, ..., n, and the solution for

log ¥y,,... x, must be of the form
lOg ‘I/kl,...,kn(xb ctt xn) = E;;l gi(xi) + C;

where g;(x;) = [ fi(x;) dx;, and C some constant.

Hence Yy,,...k (%1, - -+, x,) = [[%1 hi(x;), for some functions h;(x;), i = 1,
-+, n. Notice that the partial derivatives of ¥y, ... » (x) of this form are still the
product of some univariate functions. Now,

F(xlv ) xn) = \III,---,l(xI’ Y xn)

JEErki—n
dxhl ... Jxht
if b, >1foralli=1, --., n; otherwise take proper partial derivatives. Thus
F(x,, - - -, x,) = [1 %1 wi(x:), for some functions u;, i =1, - - - , n. By the boundary

condition, we have u;(x;) = Fi(x;), for i = 1, ---, n, ie., Xi, ---, X, are
independent.

= (—1)Z=kn Wy, (X1, + o0y Xn)

3. Relationships with other dependence concepts. In this section we
discuss the relationships of the DRR families with the other families of negative
dependence distributions considered by Brindley and Thompson (1972) and
Ebrahimi and Ghosh (1981). We also give some results involving reliability
theory.

Brindley and Thompson (1972) defined a random vector (X, ---, X,) to be
right corner set decreasing (RCSD) if

PXi>xi, -, Xy> 20| X0 > x4, -+, X, > x,) is decreasing

in {x;: x; = x/} for every choice of x{, ---, x,. As in the RCSI situation, these
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authors gave an equivalent condition for the property RCSD. That is, Xj, - -,
X, are RCSD if and only if

PXg > xx | Xk > xk, Xg > Xg) is decreasing

in xz for all sets K C {1, 2, - - -, n}. See Lee (1985) for the definition of Xk and
Xk.

The next proposition gives the relationship between RCSD and
DRR(, ---,1).

PROPOSITION 3.1. Let (Xi, ---, X,) be a positive random vector. If (X;,
..., X,) is DRR(1, ..., 1), then (Xi, ---, X,) is RCSD. For the bivariate case,
the converse holds.

Proor. (X, --., X,) is DRR(1, ---, 1) implies that the survival function
F is MRR; according to Karlin and Rinott (1980). Hence

FxVy)F(x Ay) <Fx)F(y) forany XY,
and this inequality is equivalent to the condition that
P(Xx > xx | Xk > Xk, Xg > Xg) is decreasing

in xg for all sets K. For n = 2, the converse can be checked from the definition.

Random vectors with DRR properties can also be characterized by some
reliability functions as was in the DTP cases. See Lee (1985).

PROPOSITION 3.2. Let X be a positive absolutely continuous random vector.

(1) If X is DRR(O, - - - , 0, 1), then r(x,| X™ = x™) is increasing in x™ € Sxm,
for any x,.

(2) If X is DRR(O, - - -, 0, 2), then m(x,| X™ = x™) is decreasing in x™ € Sxm,
for any x,,.

(3) If X is DRR(O, ---, 0, m), for some m > 1 then

E[(X, — %)™ X > %, X = x™]
E[(X, — 2,)™ 2| X > %, X = x™)

is decreasing in x™ € Sxw for any X . .
(4) If X is DRR(1, - - -, 1), then r(x;| X > x9) is increasing in x, for any x;,
j =1, ..-.,n.

For n = 2 case, the converses of the above four assertions are also true.

ProOF. These follow since S-MRR; functions are RR; in pairs, and if a twice
differentiable function g(x) is RR; in pairs then 92/(dx;9x;)log g(x) < 0 for any
i,j =1, ---, n. The bivariate case can easily be checked.

Ebrahimi and Ghosh (1981) discussed the following notions of negative de-
pendence.

DEFINITION 3.3. (Ebrahimi and Ghosh, 1981). A sequence of random vari-
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ables {Xy, - -, X,} is said to be right tail decreasing in sequence (RTDS) if for
all real x;41,1=1,2, -+ ,n—1.

P[Xis1 > x| Ni=1 (X; > x;)] s decreasing in  xy, -- -, .

DEFINITION 3.4. (Ebrahimi and Ghosh, 1981). The random variébles X,
--+, X, are said to be conditionally decreasing in sequence (CDS) if for i = 2, 3,
-, n, and all real numbers x;,

P(X;> x| Xy = %1, -+, X;i-1 = x,,) is decreasing
inx, -, X.

PROPOSITION 3.5. Let X be a positive random vector.
(1) If X is DRR(O, ---, 0, 1) then X is CDS.
(2) If Xis DRR(1, ---, 1), then X is RTDS.

PROOF. The proof follows from Proposition 2.10 and Proposition 3.2, and by
similar arguments as in the DTP situations.

Even though many of the properties and theorems are similar to the DTP
case, the construction of DTP distributions does not carry through in the DRR
case. Namely, if (X, W) is DRR(m, 0) and (Y, W) is DRR(n, 0), such that X and
Y are conditionally independent given W = w, then by the basic composition
formula, (X, Y) is DTP(m, n) instead of DRR.
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