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CHARACTERIZATION AND DOMAINS OF ATTRACTION OF
p-STABLE RANDOM COMPACT SETS
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Let (#(B), ) denote the nonempty compact subsets of a separable
Banach space B topologized by the Hausdorff metric. Let K, K, K, be i.i.d.
random compact convex sets in B. K is called p-stable if for each o, 8 = 0
there exist compact convex sets C and D such that

.S’(aKl + ﬂKz + C) = _‘_/((ap + ﬂp)l/PK + D)

where + refers to Minkowski sum. A characterization of the support function
for a compact convex set is provided and then utilized to determine all
p-stable random compact convex sets. If 1 < p < 2, they are trivial, merely
translates of a fixed compact convex set by a p-stable B-valued random
variable. For 0 < p < 1, they are translates of stochastic integrals with respect
to nonnegative independently scattered p-stable measures on the unit ball of
co % (B). Deconvexification is also discussed. The domains of attraction of
p-stable random compact convex sets with 0 < p < 1 are completely charac-
terized. The case 1 < p =< 2 is considered in Giné, Hahn and Zinn (1983).
Precedents: Lyashenko (1983) and Vitale (1983) characterize the Gaussian
random compact sets in R,

1. Introduction. Studies by Kendall (1974) and Matheron (1975) have
revitalized the area of geometric probability by establishing a rigorous mathe-
matical theory of random sets. Quite naturally, the setwise average of random
sets under Minkowski addition has received a substantial amount of attention.
Already established are strong laws of large numbers (Artstein and Hansen
(1984), Artstein and Hart (1981), Artstein and Vitale (1975), Cressie (1975), Hess
(1979), Puri and Ralescu (1982)), various central limit theorems (Cressie (1979),
Giné, Hahn and Zinn (1983), Lyashenko (1982), Trader and Eddy (1981), Vitale
(1977, 1981) and Weil (1982)), a version of the law of the iterated logarithm
(Giné, Hahn and Zinn, 1983) together with some first statistical considerations
(Lyashenko, 1983) and some applications (e.g. to an optimization problem arising
in allocation under uncertainty, Artstein and Hart, 1981).

The role and utility of asymptotics in statistics is usually dictated by the
tractability of the limit distributions. Lyashenko (1983) and Vitale (1983) describe
two notions of Gaussian random set which apply respectively to random compact
convex and random compact sets in R In this article we provide a more intrinsic
definition of Gaussian as well as p-stable compact convex sets. This new defini-
tion is shown to be equivalent to the previous two notions after they are
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appropriately modified. We construct all p-stable compact convex sets in sepa-
rable Banach spaces. The construction justifies the versions of the central limit
theorems established in Giné, Hahn and Zinn (1983) for 1 < p < 2 and allows us
to extend the theory to stable limits with 0 < p < 1. Previously, Mase (1979)
considered p-stable compact convex subsets of R? containing the origin. His
techniques require the sets to be finite-dimensional and to contain the origin
while our approach is unrestricted. The compact nonconvex case is also consid-
ered. Our main tools are the representation of stable laws in Banach spaces (see
e.g. Araujo and Giné, 1980) and an exact characterization of the support functions
of compact convex subsets of B (see Section 2 below).

Let B denote a separable Banach space with norm | « ||. Z(B) will be the
collection of nonempty compact subsets of B. Two relevant operations defined
on .7 (B) are:

A+ B:={a+ba€A, b€ B} (Minkowski addition)
ad = {aa: a € A} (positive homothetics)

for A, B € 7 (B). % (B) is not a vector space since (A — B) + B need not equal
A. However, the Hausdorff distance 4,

8(A, B) := max{supaes infuep [|@ — b, supsep infoca @ — b1}
=inf{e>0: ACB, BCA,}

(where A, := {x € B: inf,e4 | y — x| < ¢} and likewise for B,) induces a complete,
separable metric topology on .7 (B). We will also let

I Al :=3(A, {0}) = sup{llal: a € A}

for A € % (B). An important subset of .7 (B) is co Z (B): = {co A: A € Z (B)}
where co A denotes the closed convex hull of A.

A convenient representation of compact (convex) sets as elements of a concrete
Banach space involves using support functions. Let B* denote the dual of B and
Bf={xeB* x| <1}

1.1 DEFINITION. The support function of a subset A C B is the function s4
defined on B} by the equation

(1.2) sa(f) := sup.eaf(x), f€E BT

In general, s, maps B} into (—, »]. However, if A is compact, then
sa(f) < o for all f € B}. By e.g. Lemma 1.1 in Giné, Hahn and Zinn (1983),

(1.3) 8(A,B) = ||sa—sgll« forall A,B €& coZ(B).

In particular, | A| = || sallo. (However, note that if A, B € #(B), then only
8(A, B) = || sa — sz ll».) Hausdorff distance satisfies a subadditivity property that
will be useful later

(14) 6(A+B,A’+B’)<é(A,A’)+6(B,B’), A A’,B,B' €% (B).



p-STABLE RANDOM COMPACT SETS 449

(Note that 6(A, B) <e¢, 6(A’, B’) <nimply ACB,and A’ CB/soA+ A’ CB,
+ B, C (B + B’),+,. Similarly, B+ B’ C (A + A’).+,.)

A random compact set is a Borel measurable function K from an abstract
probability space (2, Z, P) into 7 (B).

1.5 DEFINITION. Let K(w) be a random compact set. The support process
K(°) .= K(*, w) is defined by

K(f, 0) = Skw(f), fEBI.

If K € co #(B) as., K is called a random compact convex set. In this case the
support process K() uniquely determines K. Moreover, the correspondence is
isometric by (1.3) and preserves both addition and multiplication by positive
scalars. In a separable Banach space the support process takes values in the
space of weak-star continuous functions on Bf, C(Bf, w*) (see Theorem 2.3).

The intrinsic definition of a p-stable compact set should be analogous to that
of a stable random variable with values in R or any other Banach space, allowing
at most for the inadequacies of subtraction.

1.6 DEFINITION. A random compact convex set is called p-stable, 0 < p =< 2,
if for any K;, K; i.i.d. with the same law as K and for all «, 8 = 0, there exist sets
C, D € co Z(B) such that

1.7 Z(aK, + BK; + C) = Z((o® + BP)YPK + D).

K is strictly stable if C and D can be chosen to be {0}. If p = 2, K is called
Gaussian.

In actuality, D may be chosen to be {0} for 0 < p < 1 and C may be chosen to
be {0} for 1 = p =< 2. However, to see that for all p a single nonrandom set cannot
always be chosen to appear on the same side in (1.7), consider a constant random
set K(w) = M where M € co Z (B). Since

(@®+ BP)P —(@+B)=0 for 0<p<1
<0 for 1=sp=<2,
it is only valid that for all o, 8 = 0,
aM + BM + [(a® + PP — (a + B)IM = (P + BP)/’PM for 0<p<1
aM + BM = (a? + BP)PM + [(a + B) — (@ + BP)PIM for 1=<p <2.

The reason for restricting Definition 1.6 to convex sets stems from the fact
that any M € % (B)\co .7 (B) has the property that aM + M C (a + 8)M for
some a, 8 > 0, and therefore M may not satisfy (1.7).

Other notions of a p-stable compact convex set are possible and useful. To
formulate them we require the following definition.
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1.8 DEFINITION. A function ¢: 7 (B) — RY d € N, is in L*(% (B), RY) if
for all Al, A2 € .%(B)

(@) d(aA; + BA2) = ad(A;) + Bp(Az) whenever o, 8= 0;

(b) there exists ¢ = ¢(¢) < o such that

| #(A1) — d(A2) | < cd(A4, A2)

where | * | denotes the Euclidean norm in R%.

In other words, L*(% (B), R?) is the set of “positively linear” Lipschitzian
functions on .7 (B) with values in R% L*(% (B), R) is defined in Vitale (1984).

1.9 THEOREM. The following are equivalent for a random compact convex set
K(w) in B:

(a) K(w) is p-stable;

(b) the support process K(*) is a p-stable C(B¥, w*)-valued random variable;
(¢) ¢(K) is p-stable for all $ € L*(¥ (B), R?);

(d) ¢(K) is p-stable for all ¢ € Us-; L*(Z(B), R?).

1.10 REMARK. (1) The above equivalences are also true if “p-stable” is
replaced by “strictly p-stable”, and then R may replace R? in condition (c).

(2) If p > 1, R? can also be replaced by R in condition (c).

These two observations reflect the fact that a random vector need not be
stable even though all its 1-dimensional projections are stable. Only if the
1-dimensional projections are all either strictly stable or all of index p > 1 can
stability of the random vector be deduced. The case p = 1 is unknown. In general,
stability of the 2-dimensional projections is needed. (See e.g. Giné and Hahn,
1983, and Marcus, 1983.)

(3) in R? with p = 2, (b) coincides with Lyashenko’s (1983) definition and (c)
with R instead of R? is Vitale’s (1983) definition.

Although Definition 1.6 seems inappropriate for nonconvex compact sets,
statements (b)-(d) provide reasonable definitions of p-stable (nonconvex) com-
pact sets. These notions are related as follows:

1.11 THEOREM.
(i) For a general (not necessarily convex) compact random set K(w) of B,
conditions (b)—(d) are each equivalent to

(e) co K is a p-stable compact convex set.

(ii) For every p € (0, 2], there exist random compact sets which satisfy (b)
(hence (c)-(e)), but not (1.7).

Our construction of p-stable compact convex sets in an arbitrary separable
Banach space relies heavily on characterizations of support functions of compact
convex sets (Corollary 2.5) and of support functions of single points (Corollary
2.6). The representation theorem in Section 2 identifies the set of support
functions of compact convex sets as a closed cone 7" of C(B¥, w*) which contains
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B (acting as x(f) = f(x)) as the largest linear subspace. This has the effect that
a Gaussian measure, or more generally a p-stable measure, with 1 < P < 2, whose
support is contained in 7, has its support in effect reduced to sy + B for some
M € co #(B) (see Proposition 4.5). For p < 1, no such restriction is necessary
essentially because there exist real p-stable measures supported by half lines.
(Proposition 4.7 contains the representation for 0 < p < 1.) Once the represen-
tation of p-stable measures with support in 7 is obtained, the general form of
p-stable random sets follows immediately using Theorem 1.9 ((a) < (b)).
Thus, for 1 < p < 2 we obtain

1.12 THEOREM. K(w) is a p-stable compact convex set in B with 1 <p < 2 if
and only if

(1.13) K=M+{¢} as.
for some M € co 7 (B) and a p-stable B-valued random variable .

For 0 <p <1, an example of a nondegenerate p-stable compact convex set is
6M where 0 is a positive real p-stable random variable and M is a nonrandom set
in co # (B). These are the building blocks for a stochastic integral construction
which yields all of the p-stable compact convex sets for 0 < p < 1. Let

Zi={A€cox(B): |A| =1}

1.14 THEOREM. K(w) is a p-stable compact convex set in B with 0 <p < 1 if
and only if

(1.15) K=M+ f xdL a.s.
H

1

where M € co # (B) and L is a positive p-stable independently scattered random
measure on %, with finite spectral measure o.

The stochastic integral will be constructed in Section 3, where positive
p-stable independently scattered random measures are also discussed.

For deconvexification, Theorems 1.12 and 1.14 when combined with Theorem
1.11 yield -

1.16 COROLLARY. A random compact set K(w) of B satisfies any one (hence
all) of the conditions (b)-(e) of Theorems 1.9 and 1.11 if and only if co K admits
the representation in Theorem 1.12 if 1 < p < 2, or in Theorem 1.14if 0 <p < 1.

Giné, Hahn and Zinn (1983) study the domain of attraction problem for
compact convex random sets with 1 < p < 2, only to the point of giving sufficient
conditions for statements of the form

limy e Z[naz"6((Ky + - -+ + K,)/an, EK)] = Z (|| Y||)

(where K; are ii.d. with law K, + denotes Minkowski addition, and Y is a
p-stable C(BY, w*)-valued random variable). These results provide a rate of
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convergence for the law of large numbers, but they do not provide the typical
approximation of the laws of normalized sums by stable laws. A posteriori, this
is a natural fact in view of the degeneracy arising in Theorem 1.12 (note that Y
does not correspond to a stable random set). The case p < 1 is different. In this
case there are enough stable laws (Theorem 1.14) and there is no need for
centering in the CLT, therefore limit theorems approximating the laws of
(Ky + --- + K,,)/a, by the laws of p-stable random sets, p < 1, are possible. Let
us recall a definition.

1.17 DEFINITION. Let K, K;, K;, - - - be i.i.d. compact convex random subsets
of B, and let » be a p-stable law on co Z(B) with0<p<1.LetS,=K; + .-
+ K, n € N (Minkowski sum). Then K belongs to the domain of attraction of v
with norming constants {a,} (K € DA(», {a,}) or K € DA({a,})) if

limy, . (Sp/an) = »

in the sense of weak convergence of measures on the metric space (co .7 (B), é).
If a, = n'/? then K is in the domain of normal attraction of v, (K € DNA(») or
K € DNA).

Generally, a, = n*?/(n), where / is a slowly varying function.

The isometry between compact convex sets and support functions implies a
correspondence between DA for random compact convex sets K and DA for their
support processes K(+). Namely,

Z (X1 Kifan) = Z(L) in (co Z(B), 6) iff
Z (X1 Ki(*)/a,) = Z(L(*)) in C(BT, w*).

It is convenient to remark that for a random compact set to have a nonvoid
domain of attraction it must verify Definition 1.6. Hence, by Theorem 1.11(ii)
there are nonconvex random sets which are “stable” in the sense of (b)-(d) in
1.10 but have a void domain of attraction. So, we will restrict our attention to
domains of attraction of random compact convex sets.

The following is a direct translation to random sets of one of the main results
on domains of attraction in Banach spaces (Corollary 3.6.19 and Theorem 3.7.10
in Araujo and Giné, 1980). If A C 7(B), we let 6(K, A) = inf{6(K, L): L € A}.

(1.18)

1.19 THEOREM. Let K be a random compact convex set in B. Then K is in the
DAf{a,} of a p-stable random set, 0 < p < 1, if and only if both:
(a) ¢(K) is in the DAla,} of a real p-stable random variable for all
¢ € LY (% (B), R), and
(b) there exists a sequence of compact convex sets M;, with M, = {0}, such that
if Fr, = {371 \iM;, \; = 0}, then

lim,_xlim sup,nP{é (K, F}) > a,} =0,

with all the lim sup, finite.
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If this is the case, the measures on %4,
A—pnPlK/|K| €A, | K| >a), A€EB(T),

converge weakly to a finite measure o. Moreover, the p-stable limit law of
2&1 Ki/an, K; independent copies of K, is #({s, x dL), where L is a positive
D-stable independently scattered measure with spectral measure o.

Section 5 contains a proof of this theorem together with several examples
concerning domains of attraction.

2. Support functions of compact convex sets in Banach spaces. In
this section we characterize the support functions of compact convex subsets of
a Banach space B (not necessarily separable). This is the only section in which
B is not assumed to be separable. A crucial step in the proof of the main theorem
relies on the proof of a similar theorem of Hormander (1954) characterizing
support functions of closed convex sets. To be consistent with Hormander, in
this section we first consider the support function to be defined on all of B*.

2.1 DEFINITION. The extended support function of a subset A C B is the
function §, defined on B* by the equation

(2.2) Sa(f) = supseaf (x), fE€ B*.

If A is compact, then §4(f) < +o for all f € B*. Note that support functions
are positively homogeneous, i.e. §4(Af) = A§a(f) for all A > 0. Consequently, §,
is really determined by its values on the unit ball S = {f: ||f|| = 1} (in fact, by
its values on 4.5).

Prior to proving the main theorem of this section, we recall a few facts about
the bounded-weak-star (bw*) topology of B* (see e.g. Dunford and Schwartz
(1958), V.5.3, 4, 5 and V.3.9). This is the strongest topology of B* which coincides
with the w*-topology of B* on every ball B} = {f € B*: || fl| = r}, 0 <r < o; that
is, a subset F C B* is bw*-closed iff F N B} is w*-closed for all 0 < r < o. A
neighborhood base at the origin for the bw*-topology consists of all sets of the
form

{(feEB* |fx) <1, k=12, ...}

where {x., k = 1} is any sequence in B such that lim; || x| = 0. Two important
facts about this topology are that (B*, bw*) is a locally convex topological vector
space and that its dual is B, i.e. (B*, bw*)* = B.

2.3 THEOREM. Let B be any Banach space and let H: B* — R. Then H is the
extended support function of a compact convex set if and only if

(1) H is bw*-continuous;
(2) H is subadditive, i.e. H(f1 + f2) < H(f1) + H(f»), f1, f € B*; and
(3) H is positively homogeneous, i.e. H(Af) = AH(f), A >0, f € B*.
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PrOOF. Let A be a compact convex (nonrandom) subset of B. From the
definition of extended support function, §, is subadditive, positively homogeneous
and

|3a(f) — 3a(8) | < supsea |f(x) —g(x)|, f &€ B*

On B*, 0 < r < «, the weak-star topology coincides with the topology of uniform
convergence on compact subsets of B. Hence, as a consequence of the above
inequality $a|p is w*-continuous for each 0 < r < o. Therefore, $s is
bw*-continuous as desired.

For the converse, let H be a function from B* — R satisfying (1)—(3). The
proof of Hormander’s Theorem (1954, pages 182-184) applies, modulo two simple
changes, to produce a closed convex set A such that H = §,. The two changes in
Hormander’s proof are that his cone D is now bw*-closed (rather than
" w*-closed) and his final argument requires the fact that (B*, bw*)* = B instead
of (B, w*)* = B.

It remains to establish that A is compact. For this we utilize both the
bw*-continuity of 5§, and the fact that A is closed. Note that bw*-continuity of §4
at 0 implies the existence of a sequence x; — 0, x; € B, such that ‘

(2.4) sup; | f(x:)| <1=34(f) <1, f€B*
Let J = co{=x;}, which is compact since x; — 0. Then, §,(f) = sup;f(x;). Hence
(2.4) implies

Sa<S$§y
by homogeneity. Therefore, A C J. As a closed subset of a compact set, A must
be compact. O

The support functions of compact convex subsets of B can also be characterized
as a particular closed cone 7 of C(B¥, w*), using Theorem 2.3.
Let H: B* — R satisfy (1)-(3) in the above theorem. Then H|, satisfies:

(1)’ H]py is w*-continuous,
(2)’ Hlp(f+8) < Hlp(f) + H|ps(8), f, 8 f+8E BT,
(3)" Hlp(Nf) =AH]|p(f), N>0, f,A\fE B}

Conversely, if L: B} — R satisfies (1)'-(3)’, then the function L: B* — R defined
by

L(f) = IFI LU/ AN, fE B,

satisfies (1)—(3) in Theorem 2.3.

Thus the support functions s, defined in Definition 1.1 are characterized. For
convenience, a function on B} satisfying (2)’ or (3)’ will be also called respectively
subadditive and positively homogeneous. Observe that if it satisfies (1)’, (3)’,
and s(f + g) = s(f) + s(g) for all f, g € B} with f + g € B, then s is the restriction
to B} of a linear function; hence we will simply call it linear. We adhere to these
three conventions throughout the remainder of the paper.
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2.5 COROLLARY. A function H: Bf — R is the support function of a compact
convex subset of B if and only if H € C(B}, w*), H is subadditive, and H is
positively homogeneous. The set of all these functions is a closed cone 7° of
C(BF, w*).

(The last statement holds because properties (2)’ and (3)’ are preserved upon
taking limits on C(B¥, w*).)

This latter characterization of support functions is convenient in our situation
because B is a separable Banach space: in this case (B, w*) is compact metric
and as a consequence C(BF, w*) is a separable Banach space. For this reason we
define support functions on Bf.

A set consisting of a single point x € B has as its support function the function
x(f) = f(x), i.e. x itself, which is linear. Conversely, if H: Bf — R is linear then
H is the support function of a single point because H extends uniquely to an
element of (B*, bw*)* = B. Let us record this simple fact:

2.6 COROLLARY. A function H: Bf — R is the support function of a set
consisting of a single point iff H is linear. In fact H is the support function of {x}
iff H(f) = f(x), f € B}. The identification of x € B with the function
f — f(x) is a linear isometry of B onto the linear functions of C(B¥, w*) and it is
in this sense that B C C(BT, w*).

These two corollaries will be used in a crucial way to obtain a characterization
of p-stable compact convex sets. Our method of proof will also exploit the fact
that the map from (co .7 (B), é) to C(B¥, w*) given by

A—)SA

is an isometry onto the image 7 of co % (B) which converts Minkowski addition
of sets into addition of functions, and preserves positive scalar multiplication.
We refer e.g. to Giné, Hahn and Zinn (1983) for details on this and other
generalities about compact convex sets (random or not) and support functions.

(Several corrections to Giné, Hahn and Zinn (1983) should be noted. First,
Artstein and Vitale (1975) defined the expectation of a random compact set using
the Aumann integral. Second, on page 112 line 7, L' should replace L% Finally,
EX # E(co X) in a general Banach space. Artstein and Vitale supplied us with
the following example: Let F: [0, 1] — L?[0, 1] be defined by F(t) =
{0(°), Iio1)(*)}. If ¢(s) = 1 — s, then Y%¢ € [ co F but 2¢ & [ F. These corrections
do not affect the validity of any of the results in that paper.)

3. Construction of stochastic integrals. Our characterization of p-stable
compact convex sets for 0 < p < 1 requires a set-valued stochastic integral while
the proof also utilizes a stochastic integral in C(B¥, w*). The method is the same
in both cases so we supply the details only in co Z(B). (An alternative, more
general and more complicated construction in Banach spaces may be found in
Woyczynski, 1978.)

Let %, = {A € co Z(B): |A || = 1} and let ¢ be a finite Borel measure on .%;.
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Without loss of generality we may assume ¢(.7;) = 1. A standard real positive
p-stable random variable, 6, 0 < p < 1, has characteristic function

(3.1) E exp(itd) = exp(—c; | t|? + icaotP)

where ¢; = [§ (1 — cos u)u™P du, ¢, = [§ (sin w)u™? du and t* = | t|Psgn t.
Given ¢ and 6, we define on the Borel sets of .#; an independently scattered
random measure M, by

(i) M,y(A) =2 (c(A))"6;
(ii) if {A;} are disjoint then

MU A) = X Mp(A) as, n<o,

(3.2) and
Mp(ugil At) =pr-— hmn—-»oo Zgﬂ Mp(Al);
(iii) for all n < o, Mp(A,), ---, Mp(A,) are independent if {A;} are
disjoint. )

The Kolmogorov consistency theorem implies that M, exists. We call M, a
positive p-stable independently scattered random measure on %,.

Although a general theory of integration with respect to M, can be developed,
it suffices for our purposes to construct only

L 1 x dMp(x).

It is easy to construct a sequence of simple functions x,:.Z7 — % such that

(3.3) f 0P(x,, x) do(x) — 0.

A
(Simply choose compact sets @, C #; such that ¢(Q,) = 1 — 2™. @, can be
partitioned into disjoint collections of sets A,;, 1 < j < r, so that the é-diameter
of Anj < 27" Fix xm € Ano := Q1 and x,; € A, and let x, = ¥jzo x4;l4,.) For
simple functions the meaning of [ x dM, is obvious: M,(A,) = 0, (o (An))*P,
with 6, i.i.d.,, 1 =< j < r,, and we have

(34) L Xn de = 2;&0 0,,j(a(A,,j))l/"x,,j.

1

Using the inequality

2-p 1/p
Ap(Th=1 |arbe]) < 1-p (Zh1 |ar |P)VP

where A,(n) := (supsotP’P(n > t))P and « := A,(f) (proved analogously to
inequality (22) in Lemma 2.1 of Giné and Marcus, 1982; see e.g. Remark 4.7 in
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Giné and Marcus (1983)) we obtain

Ap<5< f X, dM,, f Xm de))
Z e
(3.5) =< A,,(L 6 (Xny Xm) dM,,)

2 _ p 1/p 1/p
< o 0P(%,, Xm) da) — 0 by (3.3).
1- p 7

(The first inequality uses (1.4).) This shows that the sequence

(] «om)

is Cauchy in probability and must therefore converge. Call the limit ~

f x dM,,.
Z

1

It is easy to see, using computations similar to (3.5), that this definition does not
depend on the sequence x, — x in Ly(c), so it is well-defined. In particular
[, x dM,, has a very concrete meaning: there exist sets {{x,;},n =1,1=<j=<r,}
and rowwise independent random variables {0,;,, n = 1, 1 < j < r,} with law 6
such that

(3.6) Ying Onjxn — f xdM, in A, andas.
A

Note that [, x dM, is a p-stable compact convex set (e.g. because the random
sets on the left side of (3.6) are p-stable and limits of p-stable compact convex
sets are also p-stable). Previously, Mase (1979) recognized as p-stable the random
sets of the form Y2, 6,A; where 0; are i.i.d. real nonnegative p-stable random
variables and A; € co % (RY).

The above construction of a stochastic integral for compact convex sets does
not seem to extend to the nonconvex case.

4. Proofs of results on stable random sets. Our first objective is to
obtain a constructive representation for the support process K(*) of any p-stable
random set. Different representations will arise depending upon whether
0<p<1lorl=p =2 These results will then be used to prove Theorems 1.9,

1.11, 1.12, and 1.14.
So, assume K(*) is a p-stable C(B¥}, w*)-valued random variable. Probability
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in Banach space theory identifies K() as follows:
(4.1) (i) Forp =2, K(*) is Gaussian and for all t € R and h € (C(Bf, w*))*,
E exp(ith(K)) = exp{ith(a) — t*®,(h, h)/2}

where @, (h, h) = [ h*(x)dy(x), a € C(B}, w*) and ¥ is a centered
Gaussian measure on C(Bf, w*).

For the non-Gaussian case, let ¢’ denote a finite Borel measure on the unit
sphere U = {f € C(B¥, w*): || f || = 1}. Then,

(4.1) (i) For 0 <p <1, & (K(*)) = & * Pois(de’ X r™*"Pdr) where for any
t € Rand h € (C(BY, w*))*

E exp(ith(K))

= exp [ ith(a) + (exp(ztrh(u)) - 1)rPdr da'(u)1
| f
J
|

= exp

ith(a) — ¢ Itl”f [h(w)|? do’(u) + ic, f (th(u))” da(u)}

(4.1) (i) For1=p <2, £(K(+)) = b, » c;Pois(do’ X r™* dr) where for any
t € Rand h € (C(B*, w*))*

E exp(ith(K))

zth(a) + f f (exp(itrh(uw)) — 1 — itrh(u) L,<;)r P dr da’(u)}

—

= exp{tth(a) - ¢ tl"f | h(u) |P do’(u)

+1 J;J; (sin(trh(w)) — trh(w)I,<;))r "7 dr da’(u)}

(see e.g. Araujo and Giné, 1980). ¢’ is called the spectral measure of K ().
Since K() is both positively homogeneous and subadditive, an appropriate
choice of linear functionals yields pertinent information. For x € C(B¥, w*),

(i) given A >0 and f € B} with \f € B} set
hi(x) := hi(X, £, x) == 2(Af) — Ax(f);
(ii) given f, g € Bf with f + g € B¥ set
ho(x) = haof, & x) = x(f) + x(g) — x(f + g).
Positive homogeneity and subadditivity of K(¢) then imply
4.3) hi(K(*)) =0 and hq(K(*)) = 0.

For 1 < p < 2, there do not exist any real positive p-stable random variables

4.2)
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other than the degenerate ones. Consequently,
(4.4) hao(K(*)) =c=0 if 1=sp=2,

where c is a constant.
For 1 = p < 2, the desired support process representation is

4.5 PROPOSITION. Let K(*) be a support process. Then K(*) is a p-stable
C(BY, w*)-valued random variable with 1 < p < 2 iff there exist a fixed set M €
c0.% (B) and a p-stable B-valued random variable £ such that

(4.6) K(*) = sy + {£}(*).

Proor. Sufficiency is trivial. Necessity requires separate, though related,
arguments for the Gaussian and non-Gaussian cases.

(@) 1 = p <2 K() is assumed to be a p-stable C(B¥, w*)-valued ran-
dom variable and thus takes the form given in (4.1)(iii). It suffices to show
that: the spectral measure o’ is supported by linear functions, i.e. by B. Then
since the linear functions form a closed subspace of C(B¥, w*), they ac-
tually support the measure c,Pois(de’ X r~' dr). Invoking Corollary 2.6,
c1Pois(de’ X r™'® dr) must then be the law of a singleton, i.e. a p-stable B-
valued random variable £. So for some such £, K(f) = a(f) + f(£) or a(f) = K(f)
— f(£) which is the support function of K + {—£}. However, a(+) is nonrandom;
thus, a(+) is the support function of some M € co.% (B). So K(*) = sy + {£}(*)
a.s.

To verify that ¢’ is supported by linear functions, combine (4.1) (iii), (4.3) and
(4.4) to obtain

J; |u(Af) = Au(f)|Pdo’(w) =0 for X>0,f, \f € B}

and
J; lu(f) + u(@) —u(f +g)|°Pde’(u) =0 for f, g f+ g€ B}

Varying ), £, g over countable dense sets and using the continuity of u allows us
to conclude that
o’(U N { linear functions}) = ¢’ (U).
The proof for 1 < p < 2 is now complete.
(b) p = 2. K(°) is assumed to be a Gaussian C(B¥, w*)-valued random

variable and thus takes the form in (4.1) (i) with y = < (K(*) — a(*)). Combining
(4.1)(i), (4.3) and (4.4),

0=2&,(h;, h;) = f h?#(x) dy(x) for i=1,2.
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As in part (a),
v(C(B¥, w*) N {linear functions}) = y(C (B}, w*)).

By Corollary 2.6, v is supported on linear functions, i.e. v is a Gaussian law on
B. Hence there exists a B-valued Gaussian random variable ¢ with
ZL(¢) = v such that K(f) — a(f) = f(¢). Again, a(*) nonrandom implies
K() = sy + {£}(°) a.s. for some M € co # (B).0

Next we obtain the support process representation for 0 < p < 1. As above,
9 denotes the closed cone of C(BF, w*) consisting of positively homogeneous
subadditive functions.

4.7 PROPOSITION. Let K(*) be a support process. Then K(¢) is a p-stable
C(B¥, w*)-valued random variable for 0 < p < 1 iff there exist M € co % (B) and
a positive p-stable independently scattered random measure L’ whose spectral
measure ¢’ is supported by the closed set S := U N 7" such that

(4.8) K(*) =suy + Lx dL’.

Proor. Computing characteristic functions shows that (4.8) verifies (4.1) (ii),
which gives sufficiency. Thus, we turn to necessity. Let K(¢) be a p-stable
C(B¥, w*)-valued random variable. Then there exists a finite Borel measure ¢’
on U with K(+) satisfying (4.1) (ii). To establish (4.8) it suffices to show that

(i) a(*) €7;
(ii) the support of ¢’ is contained in S.

Then by Corollary 2.5 there exists M € co % (B) with sy = a(*). Also, if L’ is
defined to be a positive p-stable independently scattered random measure with
spectral measure ¢’, then the characteristic function of

a+fde’
s

coincides with that of K(*). So (4.8) follows.
To establish (4.9) (i) and (4.9) (ii), combine (4.3) for h, and (4.1) (ii) to obtain
that for t € R,

(4.9)

0 = ithy(a) — c.| t|? J; [ hy(w) [P do’(u) + ic, fU (thy(w))? do’ ().
Thus, [v|hi(u)|? do’(u) = 0. Consequently, both [y(hi(u))? do’(u) = 0 and
hi(a) =0or

a(\f) = Aa(f),
u(Nf) = Au(f) o’ ae.
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Taking countable dense sets of A’s and f’s and using continuity, we conclude

Jla(xf) = Aa(f) forall A=0, f€ B}

(4.10) o’ (U N {positively homogeneous functions}) = ¢’ (U).

Now employing (4.3) for hy, ho(K(*)) is a real positive (or degenerate) p-stable
random variable, i.e. its characteristic function is of the form

(4.11) expiita — ¢;8| t|P + icoBt?}

where «, 8 = 0. Equating (4.11) with (4.1) (ii) yields
ho(a) = 0

and

J; | ha(w) |® do’(u) = J; (h2(w))? do’(u);
S0 | ho(w) | = ho(u) ¢’ a.e.
Therefore,
a(f + 8) = a(f) + a(g)
and
u(f + 8) = u(f) + u(g) o ae.
Again taking a countable dense set of f’s and g’s we conclude:

a is subadditive
o’ (U N {subadditive functions}) = ¢’(U).

Conditions (i) and (ii) now follow from (4.10) and (4.12); whence the proof is
complete. [

(4.12)

PROOF OF THEOREM 1.9. Obviously, (a) = (d) and (d) = (c). So we are left
with the implications (c) = (b) and (b) = (a).

(c) = (b): If F: C(B¥, w*) — R? is a continuous linear function, then
¢r(A) ;= F(sy) for A € % (B) satisfies

| ¢r(A1) = ¢r(A2)| < | F || |54, = sa,ll < | F |l 6(As, Ao).

Hence ¢r € L*(# (B), R?). By (c), ¢7(K(w)) = F (K(w)) is a p-stable R?-valued
random variable. Therefore the support process is a p-stable C(B¥, w*)-valued
random variable (Giné and Hahn, 1983, Theorem 2).

(b) => (a): If the support process K(*) is a p-stable C(B¥}, w*)-valued random
variable then it has a representation of the form (4.6) if 1 = p = 2 or (4.8) if
0 < p < 1. Hence, by passing to sets, K(w) has the representation given in (1.13)
for 1 = p =< 2 orin (1.15) for 0 < p < 1. The positive p-stable independently
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scattered random measure L on #(B) has spectral measure o defined by
o(G) = o'{ss: A € G}.

But it is obvious that both random sets M + {£} and M + [ «, x dL satisfy (1.7)
respectively for 1 <p < 2 and for 0 < p <1 (see end of Section 2 for the latter).O

PROOF OF THEOREMS 1.12 AND 1.14. Obvious from Propositions 4.4 and 4.7
and from Theorem 1.9, by use of the representation theorems of Section 2
(Corollaries 2.5 and 2.6). 0

Turning attention to the nonconvex case we first require several simple
lemmas.

4.13 LEMMA (Vitale). IfA € # (B), lim,.0(A/n+ ---" + A/n,co A) = 0.

PROOF. Let ¢> 0 be given. Denote by A, an ¢-net of A (x4, ---, x, € A form
an e-net of A if sup,eamin;<, || x — x;|| <e). Then

1/n)A, +---+A)CA/)A+ ---+A)CcoA
SO
S((1/n)A + --- + A),coA) =d((1/n)(A, + --- + A,), co A).

The finite-dimensional case (Matheron, 1975) together with the fact that the
convex hull of A, and co A, are at distance 0 apart imply

lim,_.6((1/n)(A. + --- + A,), co A,) = 0.
Hence
lim sup,_..6((1/n)(A + --- + A),co A) = 6(co A,,co A) =¢ 0O

4.14 LEMMA. (@) Sa4 = Scon, A € Z(B). (b) If ¢ € L*(# (B), R?), then
$(A) = ¢(coA), A € # (B).

PROOF. (a) Obviously s4(f) < secoa(f) for every f € Bf. On the other hand,
the points of the form {Y4-; \;x;: Y4y \i =1, X\; = 0, j finite, x; € A} are dense
in co A. For such points f(X4=; \ix;) < sup f(x;). Hence scoa () < sa(f).

(b) It follows immediately from ¢(A) = ¢(A/n + ... + A/n) — ¢(co A) as

n—o. 0

Proor oF THEOREM 1.11.

(i) (d) = (c) is trivial.
(c) = (b) follows exactly as in Theorem 1.9 ((c) = (b)).
(b)  (e) follows from Lemma 4.14 (a) and Theorem 1.9 ((b) & (a)).
(b) = (d): Let ¢ = (¢y, - - -, ¢a) € L*(# (B), R?Y). The Hahn-Banach
theorem applied componentwise to ¢ determines a continuous linear map F:
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C(B*, w*) — R? with ¢(K) = F(K(*)) by Lemma 4.14(b). Since F(K(+)) is
p-stable by (b), so is ¢(K).

(ii) To produce examples of random sets K which are not p-stable but
such that co K is stable we consider two cases. For p < 1, let § be a positive
p-stable real random variable. Consider the random set K = {0, #}. Then
co K = [0, 8] = [0, 1]6 which is p-stable. Let K, K, be independent copies of K.
Then

aK; + BK; = {0, afy, B0, ab, + B0},

is a set with a.s. four different points, whereas («” + §P)PK has at most two
different points. Therefore, K cannot satisfy Definition 1.6.

For p = 1, let n denote a p-stable real symmetric random variable.
K := {n,n+ 1} = {0, 1} + {n} provides another example by the same reasoning as
above. O

Vitale (1984) also handles deconvexification for Gaussian compact sets in R¢
by using the identity ¢(K) = ¢(co K) for ¢ € L*(# (R?), R).

5. Remarks on domains of attraction. Fix p = 1. Let K, K; be i.i.d.
random compact convex sets and let £ be a p-stable B-valued random variable.
Suppose there exists a slowly varying function # and a sequence of nonrandom
sets H, such that

L (X1 Kifan + Hy) > £ (M + {£})

with a, = n'? /(n). Then it is easy to show (using arguments involving the
functions h(K) = K(f + g) — K(f) — K(g) f, g, € B*, similar to those used in
previous proofs) that for p > 1, K is a random singleton, and that for p = 1, K is
the sum of a fixed set and a random singleton. So, as mentioned in the introduc-
tion, the domain of attraction problem for p = 1 is not interesting if posed in
these terms. (See Giné, Hahn and Zinn, 1983, for a “different domain of attraction
problem”.) This is not the situation for 0 < p < 1. This section contains a proof
of Theorem 1.19 together with several examples. (For simplicity, we will only
construct examples of random sets in domains of normal attraction.)

Proor oF THEOREM 1.19. The result follows from Theorem 3.7.10 and
Corollary 3.6.19 in Araujo and Giné (1980) upon making the following observa-
tions:

(i) By the Hahn-Banach theorem, hypothesis (a) in Theorem 1.19 holds if
and only if h(K(+)) € DAfa,} for all h € (C(B¥, w*))*. Due to the
absence of centering, the Cramér-Wold theorem implies that this holds
if and only if the R?-valued random variable (hi(K(*)), - - -, ha(K(*)))
is in DA{a,} for all d = 1 and all h; € (C(B}, w*))*.

(ii) All separable Banach spaces, in particular C (B}, w*), are of Rademacher
type 1. (See e.g. page 158 of Araujo and Giné, 1980.)
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(iii) If F,, is the linear span of M;(*), ---, M,(*), then (X, F;) =
d(X(*), F,) (= inf{]| X(*) — x(*)|]|l=: x € Fn}). Hence sufficiency of
(1.19) (a) and (b) follows from Theorem 3.7.10, loc. cit., by the previous
observations.

(iv) Necessity of 1.19(a) and (b) can be deduced exactly as in Corollary 3.6.19,
loc. cit., by passing to support processes. The only changes required in
the proof are that F,, be replaced by the image of F , and the requirement
that U F},=co%# (B) (which is possible because co % (B) is separable). O

5.1 EXAMPLE. Let o be a probability measure on %; and let p be a proba-
bility measure on R* such that lim, ,t?u[t, ©) = lim, ,.t?P{0 > t}, where 0 is
the standard positive p-stable random variable. Let #(K) = ¢ and Z(£) = u with
K and ¢ independent. Then £K is in the domain of normal attraction of [« x dL,
where L is a nonnegative p-stable independently scattered random measure with
spectral measure o.

ProoF. Fubini’s theorem implies that for ¢ € L*( % (B), R),
lim;tPP{tp(K) >t} = E(0 v ¢(K))Plim,t°P{0 > t}.
lim,tPP{tp(K) < —t} = E|0 A ¢(K) |Plim,.t?P{0 > t}.

Consequently the 1-dimensional random variables £¢(K) are in the DNA of the

corresponding law.
For any sequence F'}, such that U F}, = 2; we have

lim,lim, ..t?P{6(¢K, F%) > t} = limnlim,_tPP{£5(K, F}) > t)
= (lim,E (K, F};))?) (lim,at”P{8 > t}) = 0.

Hence conditions (a) and (b) of Theorem 1.19 are verified. O

The following two examples are based on examples 3.7 and 3.9 in Giné and
Marcus (1983).

52 EXaMPLE. Fix 0 < p < 1 and let 6 denote a standard positive p-stable
random variable on R. Let u be a positive measure on R* satisfying
Supt>0tpﬂ(0’ t)c < @, limt—wotpﬂ(oy t)c =a

for some fixed p € (0, 1), where a = lim;_,»t°P{f > t}. Let ¢ be a finite measure
on % (B). Define an independently scattered nonnegative random measure on
% by the equation

E exp(itM(A)) = exp(a(A) J(; (e™ —1) du(u)) ,

tER, AE B(#),
where (%) denotes the Borel sets of 4. (Such a measure exists by the
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Kolmogorov consistency theorem.) The arguments on pages 66 and 67 of Giné
and Marcus (1983) (but using inequality (4.16) there instead of their Lemma 2.1)
give:

(5.3) M(A) € DNA((6(A))P0), A € B(#)
and
(5.4) SUPac @) Ap(M(A)/(s(A))P) < ¢ for some ¢ < .

Inequality (5.4) allows us to define, as in Section 3, the stochastic integral

L x dM(x).

1

Let M, be an independently scattered positive p-stable random measure with
spectral measure o. Then

(5.5) f x dM(x) € DNA(f x de(x)).
“ “

PrOOF. Let M, M' be i.i.d. Another application of inequality (4.16), loc. cit.,
in conjunction with (5.4), implies that for any f € L,(5#, 8 (%), o), there exists
a finite constant ¢’ with

1/p
(5.6) Ap(n""’ 2im L f(x) dM"(x)> = C'< L If(x)l"da(x)> , nE€EN.

(Compare with Lemma 3.6, loc. cit.) Choose compact subsets A, of %; which
satisfy a(#\A,) — 0. Then, by (5.6),

6.7 Ap(n“/"zz'=1 fA (B9 dM(x)) = ¢’'(a(A5)"P > 0.

So, by the approximation lemma in e.g. Giné and Marcus (1982, Lemma 2.1), it
is enough to prove (5.5) under the assumption that ¢ has compact support (in
(¥ (B), 6)). Let S, := supp(s). Since S, is compact, it is totally bounded.
Therefore there exists a sequence of compact sets M; C B, M; = {0}, such that

(5.8) SUp,es,0(%, Fr) =em—0 as m— o

where F;, is the “positive” linear span of M, ..., M,,. Since 6(¥ a;x;, F}) <
Y a;6(x;, F}) if x; € co# (B) and a; = 0, it follows that

(5.9) 5<f x dM(x), FI,) =< f o(x, Ft) dM(x).
# #
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Hence, using (5.6), (5.8) and (5.9),

lim,,_,.lim supt_,wtpP{lS(f x dM(x), F,‘:.) > t}
4

= limp_.lim Supt_mt"P{f o(x, Fr) dM(x) > t}
“

= limm—wo(c,)pem(o'(%))p = 0.

Condition (b) in Theorem 1.19 is thus proved (with a, = n'/?).
Now, (5.3) makes it possible to apply Lemma 4.1 in Giné and Marcus (1983)
(here in a simpler situation), to obtain that

f ¢(x) dM(x) € DNA(f ¢(x) de(x)).
4 4

This is condition (a) in Theorem 1.19. The claim is thus proved. O

5.10 EXAMPLE. Fix 0 <p <1 and let 0, 6,, 65, - - - be i.i.d. standard positive
p-stable random variables. Let £; be i.i.d. nonnegative random variables in the
DNA of 6. Select m; = 0 with ¥ m; < « and K; € %,(B). Then a proof similar to
the previous one yields

Y1 mi? £,K; € DNA(Z 2, ml? 6,K;).
(If & (&) = Pois u, u as in Example 5.2, then this example is a special case of
Example 5.2; otherwise it is distinct from Example 5.2.) O

The following example should be compared to the results on domains of
attraction for p > 1 in Giné, Hahn and Zinn (1983). Here we use the notation
| K|lg:=inf{A = 0: K C AG}, where G and K are compact convex sets and G is
symmetric.

5.11 EXAMPLE. Let K be a random compact convex set in B such that:

(a) ¢(K) is in the DNA of a real p-stable law (p < 1), for all ¢ € L*(#(B), R);
(b) lim, ..tPP{|| K || ¢ > t} < o for some compact convex symmetric set G in B.

Then X is in the DNA of a p-stable compact convex set.
The proof of this example is based on Theorem 1.19 and the following

5.12 LEMMA. Let H € co % (B). Then the set F = {K € co % (B): KC H} is
compact in (co ¥ (B), 6).

PrOOF. It is enough to establish compactness in C(B¥, w*) of the correspond-
ing set of support functions, which we also denote by F. Since for K C H we have
IKlo=IKI=IHI,

F is uniformly bounded. So, by Arzela-Ascoli’s theorem, the result will follow
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upon showing that F is equicontinuous for some distance d metrizing (B, w*).
One such distance is d(f, g) = Y&, 27| f(x;) — g(x:) |, {x;} 21 being a countable
dense subset of the unit ball of B. Since H is compact, given any ¢ > 0 there exist
r < « and integers i; < ... < i, such that the set of points {x;, ---, x;} is
(¢/6 | H||)-dense in H/||H|. Let 6 = 27%/3|| H| and let f, g € B} satisfy
d(f, g) < 6. Then we have

| K(f) —K(g) | = |H(f— &) | = | H|l [2¢/3 | H|| + max;= | f(x;) — 8(x;) |] <e.

Hence, F is equicontinuous for d. 0

ProoF oF EXAMPLE 5.11. Find compact convex sets M;, M, = {0}, such that
if F}, is the positive linear span of M;, ---, M,,, then ¢, := supxcré(K, F})
— 0. Then, (b) in 5.11 implies (b) in 1.19 because

o(K, Fr) = | Kllco(K/II Kllg, Fr) < em || Kllg. O

Acknowledgment. We are indebted to Richard Vitale for discussions con-
cerning the Hausdorff distance (particularly (1.4)) and approximation of co A by
iterates of A. Vitale’s Lemma 4.13 allowed us to shorten our previous proof of
Lemma 4.14.
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