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ASYMPTOTICAL GROWTH OF A CLASS OF RANDOM TREES

By B. PITTEL
The Ohio State University

We study three rules for the development of a sequence of finite subtrees
{t.} of an infinite m-ary tree ¢. Independent realizations {w(n)} of a stationary
ergodic process {w} on m letters are used to trace out paths in ¢. In the first
rule, t, is formed by adding a node to t,_, at the first location where the path
defined by w(n) leaves t,-;. The second and third rules are similar, but more
complicated. For each rule, the height L, of the added node is shown to grow,
in probability, as In n divided by h the entropy per symbol of the generic
process. A typical retrieval time has the same behavior. On the other hand,
lim inf,L,/In n = o1, lim sup, L./In n = o, a.s., where the constants o,, o3,
are, in general, different, depend on the rule in use, and o; < 1/h < 0,. It is
proven along the way that the height of ¢, grows as gsln n with probability
one.

1. Introduction; results; comments. Consider a probability space
(Q, 7, p), where @ = {w:w = {w, )1, v, €S, n =1}, S = {1, - - - , m}, the o-field
 is generated by finite-dimensional cylinders, and the probability measure P is
such that w is a stationary ergodic process. One may interpret w as the nonter-
minating m-adic expansion of a random number x from (0, 1], or as an infinitely
long random text written in an alphabet of m letters. For the first interpretation,
it is natural to assume that  is a sequence of independent trials, with m equally
likely outcomes in each trial. If  is a random text, it is important to take into
account that the different letters may appear in w with different frequencies, and
that there may be mutual dependence between the successive letters in w. A
stationary ergodic process w seems to be a proper probabilistic model in this
situation.

Introduce the probability space (2%, ¥, P®), where Q° = @ X @ X ...,
F=FXF X .o, P°=PXPX ..., 50 Q" consists of ” = (w(1),
w(2), ---), where w(n) € Q. Thus, w(1), w(2), - - - are independent copies of the
generic process w = {w,}i=1, and they can be thought of as an infinite sequence of
texts.

Let t be the complete infinite m-ary tree. We study some rules [6], (Section
6.3), each of which allows us to determine a sequence {t,}7-; of finite sub-trees of
¢, such that t, = t,(w(1), ---, w(n)), t C t; C ---, and t, has n of its nodes
labelled w(1), - - - , w(n). (t; is the root of ¢ labelled w(1).)

Rule A. Given the tree t,, (n = 1), introduce its external nodes; they are direct
descendants of nodes of t,, which are not themselves nodes of ¢,. The sequence
w(n + 1) = (w,(n + 1));=; determines uniquely an infinite path in ¢: it begins at
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the root, and its v-th link is the i-th left among m links of ¢ going out of the v-th
node of the path if w,(n + 1) =i, i € S, v = 1. Cut off the path when it reaches
an external node of t,, label this node w(n + 1), and form the next tree t,., by
connecting this new node to ,.

Thus, in Rule A, ¢, has exactly n nodes, all of which are labelled. In contrast,
the labelled nodes in Rules B-C are endnodes—i.e., nodes of t, without direct
descendants in t,, or “leaves” of the tree—and ¢, has in general more than n
nodes.

Rule B. If the path generated by w(n + 1) leaves t, at a node which is not an
endnode then, as above, the next node of this path is labelled w(n + 1). Otherwise,
the paths of w(n + 1) and of a certain w(u), 1 < u < n, coincide until they leave
the tree t,. The rule prescribes to follow these two paths further until they
disengage, and then w(n + 1) and w(u) are assigned to the endnodes of the
respective links going out of the node of branching.

Rule C. The tree t, is obtained by compressing the one constructed via Rule
B; namely, each path of the latter is shortened (if possible) by deleting its no-
branching nodes (i.e. those with outdegree 1), and putting together its remaining
pieces.

Figure 1 shows the trees t; for the dyadic sequences w(1) = (1,0, 1, -..),
(0(2) = (O’ 0’ 1’ . ')9 w(3) = (09 19 0’ ° ')’ (0(4) = (1’ 0’ 09 . ')’ (0(5) =
(O’ 0’ 0’ . )

In the third tree, the shape of the paths from the root to the nodes w(1), w(4),
and the mark 1 at the preceding node, imply that w;(1) = w1(4) = 1, ws(1) = wz(4)
and w3(1) = 1, ws(4) = 0. If this mark were some integer «, it would mean that
wi(1) = w1(4) = 1, wa(1) = wa(4), -+, wore-1(1) = Wor(a-1)(4), and we4a(1) = 1,
wa+a(4) = 0. Generally, for this rule, t, may have many marked nodes, and some
of them may belong to the same paths.

Whatever the rule is, t, is interpreted as a tree-type arrangement of n numbers
(records) in a computer’s memory. Upon request, any one of them can be found
by using its consecutive digits (letters) as the pointers showing where to move

(A) (B)

w (5) 0 (3) w(®) W@ e W) W) w@)

Fi1G. 1. The trees t; for the dyadic sequences w(1) = (1, 0, 1, --.), w(2) = (0, 0, 1, -..),
0(3) = (0) 1) O, . ')v 0(4) = (1: 0) 0: * ")v and “-’(5) = (0’ 0: 0: . )
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next in the tree. For the rule C, a mark encountered in the search process
indicates the respective amount of the next digits to be skipped over. The
corresponding algorithms are named “Digital Tree Search”, “Trie Search”, and
“Patricia” (abbr. “Practical Algorithm to Retrieve Information Coded in Alpha-
numeric”), [6].

For each rule, L,, = L,,(»*), the random length of the path leading to the
node w(») is the amount of the digits of w(r) to be checked before its position is
found, 1 < v < n. For the rule A, L,, = L,, =4 L,, as the position of the node
w () in t is determined once and for all by comparing its digits with those of (1),

-, w(v — 1). In case of the rules B and C, on the other hand, each ¢, = t,(w(1),

., w(n)) is permutation invariant; hence L,,, 1 < » < n, are equidistributed.
Another important characteristic of t, is M,, the length of the path from the
root to w(u), where w(u) is randomly chosen with equal likelihood from
{w(1), - -+, w(n)}. Thus M, might be viewed as a typical “retrieval time.”

Throughout the paper we shall assume that the generic process w satisfies
the following condition: denote % the o-field generated by ws, ---, ws
1 < a < b; there exist two positive constants ¢; < c¢; and an integer by > 0 such
that foralll =a=<a+ by < b,

(1.1) a1 P()P(#) < P(¥ B < coP(/)P(B)

whenever & € 59, & € F b4, (cf. [2], [3]). This condition implies not only
ergodicity of w, but also guarantees that it is strongly mixing [1]. For the rule C,
we shall also assume that for eachn=1and s" = (sy, ---, sp,) ES™”
(1.2) p(s™) = pp(s™™), (p(s’) = Plw, =51, -+, 0, = 8,)),

where p € (0, 1) and p(s°®) = 1.
To formulate the result, introduce

(1.3) h = lim,_.n"'E(In(1/p(«»"))),

(1.4) h, = lim,_,.n"'max{In(1/p(s")): p(s*) > 0},

(1.5) hy = lim,_,n 'min{ln(1/p(s")): p(s®) > 0},

(1.6) hs = lim,.(2n) ' In(1/E(p(»™))),

o" = (w, ---, w,). The limit in (1.3) exists for any stationary process w

(Kolmogorov-Sinai theorem, [1]), and it is called the entropy per letter. Existence
of the limits in (1.4)-(1.6) is proven below (Lemma 1) under the condition (1.1).
It can be seen that 0 < hy < hy < 2h3 < h < h,. Assume from now on that

(17) hl < o, h3 > 0.

THEOREM. Under the conditions (1.1), (1.7) and, for the rule C, also (1.2), we
have: (a)
(1.8) (P)lim,_,oL,/In n = (P)lim,_.M,/In n = 1/h;
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(b) almost surely (a.s.)
1.9) lim inf,L,/In n = ¢;, lim sup,L,/In n = o,

where o, = 1/hy, 65 = 1/h, (Rules A, C), and o, = 1/hs (Rule B).

NoTes. (1) Typically, o; < 1/h < g2, so this theorem reveals an interesting
property of L,/In n: if n is large then, with high probability, L,/In n is close to
1/h; on the other hand, almost surely L,/In n oscillates between ¢; and o, as
n — o, Qur proofs reveal also that the height of ¢, is a.s. equivalent to ¢;ln n.

(2) Suppose that the generic process w is a sequence of independent trials
with a distribution {p(s): s € S} for each trial. A little reflection shows that
h;=1In(1/p;), 1 = t < 3, where

P12 = min, max{p(s): s € S}, ps = (3, p%(s))"?

and, of course, h = ¥ p(s)In(1/p(s)).

In particular, if p(s) = 1/m, then h; = h, = In m and h; = In m/2. Thus,
L,/ln n — 1/In m as. (Rules A, C) and 27'lim sup,L,/In n = lim inf,L,/In n
=1/In m a.s. (Rule B). The case of equal probabilities was previously studied by
Konheim and Newman (m = 2) [7] who proved that E(M,) = log,n + O(1),
lim, .. P(M, < (1 — ¢)logzn) = 0, ¢ > 0, (Rule A), and also by Knuth (arbitrary
m) [6] (Section 6.3) who showed (for all the rules) that E(L,) = E(M,) = log.n
+ O(1). From [4], [6] (Section 5.2.2, analysis of radix exchange sorting), it follows
also that, for the Rule B, E(L,) = E(M,) = In n/h + O(1) in case m = 2 and
general p(1), p(2). The bulk of Knuth’s proofs concerns the study of the term
O(1) in the above estimates of E(L,), E(M,). (The author has obtained results
on the limiting distributions of L, and the lengths of the longest and shortest
path in ¢, (Rule B) for a general distribution {p(s): s € S}, [9].)

(3) Suppose that w is a stationary Markov chain. It satisfies (1.1), (1.7)
if its transition matrix [p(s, s’)], s, s’ € S, is irreducible and aperiodic; the
condition (1.2) is valid if max{p(s, s’): s, s € 8} < 1. Since p(s’) =
7(s1)p(s1, 82) - -+ p(s,-1, 5,), where {n(s): s € S} is the stationary distribution, it
follows from a (nonprobabilistic) result of Romanovski [13]:

(1.10) hi2 = max, min(| % | "'/ (%));

here max, min are taken over all simple cycles € = (s, --- Sy, 1) on S,
(&) = ¥=1 In(U/p(s,, $u+1)), Sor1 =81, || =», 1 < » < m), such that
/(%) < . From the formula for p(s*), it follows also that h; = —2"'In g, where
q is the spectral radius of the matrix [p2(s, s’)]. Finally, it is known that h =
s w(8)p(s, s )In(1/p(s, s')).

(4) A more general case of an r-dependent stationary Markov chain can be
treated similarly.

(5) Another well known search-insertion algorithm is based on comparisons
between the numbers, rather than their digits. For asymptotical results, the
reader is referred to [6] (Section 6.2.2), [8], [10], and [11].
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2. Proofs.
LEMMA 1. There exist the (possibly infinite) limits hy, hs, hs, (see (1.4)—(1.6)).

ProoOF. (a) Introduce f(n) = max{ln(1/p(s")): p(s*) > 0}. Let
=j+k+by, j=0, =0
according to (1.1) and stationarity of w,
f(j + k + bo) = max{In(1/p(s’)) + In(1/p(8")): p(s’) > 0, p(s*) > 0}
(2.1) +Incit =f(j) +f(k) +e
where §* = (sy—g+1, - - *» Sn), ¢ = In c7*. Let n, — o be such that
lim inf,f(n)/n = lim;_f (n:)/n..

For n = b, and a fixed t, write n — by = gn; + r, where ¢ = 0 and 0 < r < ny;
clearly, ¢ = g(n) — ® as n — . Repeatedly using (2.1), we have

f(n) = f(qn. + r + bo) = gf (n.) + f(r + bo) + gc.
Hence
lim sup,f(n)/n < f(n.)/n: + ¢/n,
or, letting t — o,
lim sup,f(n)/n < lim inf,f(n)/n.

Existence of h; = lim,_..f (n)/n is proven. The case of h; is similar.
(b) Introduce the process {@,}m=1 = {(wn(1), w,(2))}n=1; @ is obviously station-
ary, with the state space S = S X S. Observe that

E(p(w") = To# p*(s") = P(w,(1) = w,(2), 1 =» < n).

Also, by independence of w(1) and w(2), the process @ satisfies the condition
(1.1) with ¢, 55,4, replaced respectively by & X F¢ and Fiup, X F orsy
and é = ¢}, é = c3. Arguing as in (2.1), we obtain: the function g(n) =
In P(w,(1) = w,(2), 1 < v < n) satisfies

g(j+Ek+b) <g(j)+gk)+c, ¢=Inc,.

Again, this relation implies existence of h; = —lim,_..g(n)/2n.

LEMMA 2. There exist w, W € Q such that
hy = limpoentIln(1/p(@")), he = lim, ..n " In(1/p(@")).

Proor. Consider, for example, h,. By Lemma 1, there exists a sequence
{8"}%1, §" € 8", for which h; = lim,.n"'In(1/p(§")). By induction, one can
prove existence of a sequence t(v) € S%, » = 1, such that

(2:2) p@@™) = (m™¢;)'p@") --- p(*), v=1.
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Here ¢, is the constant from (1.1), and
wm = §1’
d)n" = (§1’ t(]-)’ §2’ Tty t(” - 1)’ §y)’ v = 27

so that n, = »(v + 1)/2 + bo(v — 1). Introduce an infinite sequence w =
(8%, t(1), 82 t(2), - - -). By definition of {§*}, and (2.2),

lim sup,n;In(1/p(w™))
< lim,,on; ' [— (v — DIn(m™c,) + 3 %=1 In(1/p(5*))]
= lim,a[v(v + 1)/2]"(Z /=1 n(r 7 In(1/p(8*)))) = ho.

(Cesaro-type averages of a convergent sequence converge to the same limit.)
Since obviously lim inf,n;'In(1/p(&™)) = h,, we have

(2.3) lim,_n;, In(1/p(@™)) = h,.
As lim, ,»(n,+1/n,) = 1 and In(1/p(")) is a nondecreasing function of n, the
relation (2.3) entails in a usual way that lim,_.n"'In(1/p(&")) = hs, too.

REMARK. Since hy, hy < , (see (1.7)), p(ib*) > 0, p(&*) > 0 for each k = 1.
A sequence w € Q is called feasible if p(w*) > 0, k = 1. Thus, W, W, are feasible.
Since h; > 0 as well, p(w*) € (0, 1), k = 1, for every feasible w.

We consider L, separately for the three rules.

Rule A. Each feasible w € Q determines an infinite path in the tree t. Denote
the path and its k-long initial segment by w and w” respectively, & = 0. Let
X, (w) = max{k:w* is contained in t,},

so X;(w) = 0. X,(w) is & "-measurable, where ¥ " = o(w(l), - - -, w(n)). Since
F™and w(n + 1) are independent, it follows from the description of Rule A that
on (X,(w) =k), k=0,

PXpsi(w) =k +1|5") =1 = P(Xp1(w) = k| F") = pw**).
Hence, {X,(w)} is a Markov chain with
P(Xpi1(w) = k + 1| X, (w) = k) = pw**),

and remaining (conditional) probability mass at X,.,(w) = k. It follows then
that

Tr(w) =aee min{n: X, (w) = k}
=1+ 3k (T (w) — Trm(w)) =1 + Tk, G(p(w")),

where {G(p(w"))} is a sequence of independent geometrically distributed random
variables with parameters { p(w")}. In particular, if Y = G(p), then

(@ P(Y=j)=p1-p)7, (jz1), (b) EY)=1/p,
(c) E(1/Y) = p In(1/p)/(1 — p), (d) E(x¥) = xp/(1 — x(1 — p)).

(2.4)

(2.5)
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LEMMA 3. Let w be such that there exists

(2.6) lim, ,.n'In(1/p(w™)) = h(w) > 0.
Then a.s.
2.7 lim, X, (w)/In n = 1/h(w).

Proor or LEMMA 3. Since X, (w) = k for n = Tx(w), (2.7) follows—by easy
monotonicity arguments—from

(2.8) limy_,oIn Th(w)/k = h(w) a.s.
To prove (2.8), observe first that lim,_,. [exp(—h(w)) p(w*)**] = 1 by (2.6). Then
(2.9) Plln T, > (1 + &)kh(w)] = P[T: > exp((1 + ¢)kh(w))]

tends to 0 exponentially fast via Chebyshev’s inequality and (2.4), (2.5b), while
Plln T, < (1 — e)kh(w)] = P[T, < exp((1 — ¢)kh(w))]
(2.10) = P[L + Tk G(p(w")) < exp((L — )kh(w))]
< P[1/G(p(w*)) > exp(—(1 — ¢)kh(w))]

tends to 0 exponentially fast via Chebyshev’s ifiequality and (2.5¢). Hence, (2.8)
follows from (2.9), (2.10) by the Borel-Cantelli lemma.

DEFINITION. A node of ¢ is called feasible if a path, say w*, connecting it
with root has p(w*) > 0.

Clearly, the nodes of all trees ¢, are feasible a.s. Denote #, and ., the length
of the shortest and the longest path from the root to the feasible external nodes
of the tree t,—;. Then, /, < L, < %, a.s.

LEMMA 4. lim sup,/,/In n < 1/h;, lim inf, %,/In n = 1/h, a.s.

PrOOF. The statement follows from Lemmas 2, 3 and obvious inequalities
< X)) +1, X)) +1 <%,

LEMMA 5. lim inf,4,/In n = 1/h,, lim sup,.%,/In n < 1/h, a.s.

COROLLARY 1. lim,_«,/In n=1/hy, lim, ,«.%,/In n =1/h, a.s.

COROLLARY 2. lim inf,L,/In n = 1/h;, lim sup,L,/In n = 1/h, a.s.

PROOF OF COROLLARY 2. As. L, = 4, whenever #,., > /,, which happens
infinitely often a.s., since /, — « a.s. Then a.s. lim inf,L,/In n = lim,_..4,/In n
= 1/h,. The case of the second limit is similar.
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Proor orF LEMMA 5. Since 4, = 1 + min, X,—; (w),
(2.11) P(/p=r) <Yy PXp-1(w) =r —1) = 3y P(T,(w) = n).
Here, (see (2.4), (2.5d)),
(212)  P(T:(w) = n) = x"Ex"™) = x™* [[ 11 xpw*)/(1 — xq(w*)),
for all x € [1, 1/q(w")), (¢(w*) =1 — p(w*)). Similarly,
(2.13) P& >r)< Yy PXp-1w) >r—1) =¥, P(T,(w) < n),
where
(2.14) P(T,(w) < n) < x"E(x"™), x € (0, 1).

(a) Given ¢ > 0, by Lemma 2,
(2.15) p(w*) = ca*, a = exp(—(1 + e?)h,), c = cle) € (0, 1).

Since
1/qw") =1 —pw))?>1+pw) = 1+ ca,

we may, and shall, choose x = 1 + ca” in (2.12). For x > 1, the function
p/(1 — x(1 — p)) decreases when p increases. Thus in (2.12)

T2 P@*)/(1 = xq@*)) < [T [(L + ca”) = ca™*]™

(2.16) = II4=1 (1 = ca™*) 1

< [Ii=0 (1 — ca*)™" = const < o,
Also,
(2 17) xr—n+l = (1 + car)r—n+l = 0((1 + car)—n)

= O(exp[—cna” + O(na?))]).

Take r = [(1 — ¢)ln n/h,;]. Since, (see (2.15)),

e+0(¢e c+0(02)

ant < na < n ,
choosing ¢ small enough, we obtain from (2.12), (2.16), (2.17):
P(T,(w) = n) < exp(—cn®?), n = n(e).
Thus, (see (2.11),
P(4, = r) < mexp(—cn*?) = exp(—cn”? + O(In n)),

and, by the Borel-Cantelli lemma, lim inf,/,/In n = 1/h; a.s.
(b) Fix ¢ € (0, 1) and estimate P(T,(w) < n) for

(2.18) r=[(1 + &)ln n/h,].
By Lemma 2 again, for all u = 1,
(2.19) pw*) < cB*, B =exp(—(1 —e?hy), c=cle).

Choose x = (1 + ¢/n)™" in (2.14). For x < 1, p/(1 — x(1 — p)) increases with p.



422 B. PITTEL

Thus, in (2.14), (see (2.12)),
(2.20) x"E(xT®) < x7 ([ 5=1 x8*)exp(—X 5y In(1/n + 8*)).
Here

w=1 In(1/n + g*)
8

r+1
= J: In(1/n + 8*) du = (In 1/8)71 J;m In(1/n + y)/y dy

1/n B8
= (ln 1/8)7" [J;M + J:/ ] = (In 1/8)7'[I, + LJ;
(by (2.18), (2.19), 8™ < 1/n < B for ¢ < & and n = n(e)). Further,

1/n
L = In(1/n) J;m 1/y dy = In’n — (r + 1)In n In(1/8),

8
I = f/ In y/y dy = 27'[In?8 — In’n],
1/n

and, after some work,
=1 In(1/n + g*) = (2 In(1/8))"'(In n — r In(1/8))?
+ In(1/8)(1 — r%)/2 — In n.
Then, (x™**! = 0(1) for x = (1 + ¢/n)™!), by (2.14), (2.20) we have
P(T.(w) <n)
< exp[—(r* + r)In(1/8)/2 — (2 In(1/8))"*(In n — r In(1/8))*

(2.21) )
+ r’In(1/8)/2 + O(In n)]

= exp[—(2 In(1/8))*(In n — r In(1/8))? + O(In n)].

Here, by (2.18), (2.19), (In n — r In(1/8))? is of order In?n, if ¢ is small; so
combination of (2.13), (2.21) yields

P(Z, >r) < exp(—cIn®n), c=c()>0.
As in (a), it implies that lim sup,.%,/In n < 1/h, a.s.
REMARK. Denote H, the height of the tree t,. Since H, = Z,+; — 1 ass,, it
follows from Corollary 1 that lim, .. H,/In n = 1/h, a.s.
To complete the study of Rule A, it remains to prove

LEMMA 6. (P)lim,_..L,/In n = (P)lim,_..M,/In n = 1/h.

Proor. It suffices to consider L,, as P(M,=r) =n"' X%, P(L, = r). Fix
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¢ € (0, 1) and a positive integer uo. Introduce
A, = [w”:|L,/In n — 1/h| = ¢/h],
By, = [0”: | p ' In(1/p(«*(n))) — h| < °h, p = o).
We have then
P(A;) = P(AwBy,,) + Plpo, ¢),
P(po, ) = P(SUp,zy, | n ' In(1/p(w*)) — h| = &%h),

where w = (w;, ws, ---) is the generic process. By Shannon-McMillan-Breiman
Theorem [1], lim, P (uo, ¢) = 0 for each ¢ = 0. Further, (compare with (2.11),
(2.13)),

P(Aanpo) = Yr Pu, Pp = 3w P(T:(w) = n),

where in the first sum |r/ln n — 1/h| = ¢/h, and in the second sum
max{|x'In(1/p(w*)) — h|:uo < u =< r} < e’h. It suffices to show that
Y.+ P, — 0 as n — . Observe that, for each x € (0, 1/q (w")),

P(T,(w) = n) < x "E(x™®),
(see (2.12)). By the definition of w’, for 1 < u < r,
Cla'f = p(w”) = 02015, Qg = exp(_(l + 82)h),

Using the lower (resp. upper) estimate of p(w*) for r < r, = [(1 — ¢)In n/h), (resp.
for r > r; = [(1 + ¢)In n/h]) and arguing as in Part (a) (resp. Part (b)) of the
proof of Lemma 5, we get: for small enough ¢ > 0,

Yr Por = Yr=r, Par + ror, Por < exp(—c'n’®) + exp(—c” In’n), ¢’, ¢” > 0.
Rule B. Introduce 4,, .%,, H, defined exactly as in the case of Rule A.

LEMMA 7. (a) 4/In n— 1/h; as., (b) Z,./In n — 1/h; a.s. (As in the case of
rule A, it follows from (b) that H,/In n — 1/h; a.s.)

Proor oF LEMMA 7. (a) According to the rule, if, for some rand n, /4, < r
then there is w” such that |{r:1 = v <n — 1, " (») = w'}| < 1. Then denoting
p(r) = min{pw")}, ¢(r) =1 - p(r),

(229 P=r) < 3Tuw[qg)™ + (n — 1)qg(w")" *p(w")]
' < m’ (g™ + (n — 1)g(r)*2p(r)] < nm’q(r)**

for large enough r, since ¢"™' + (n — 1)¢"*p (where p = 1 — q) increases with ¢
on (0, 1) and (see (1.4), (1.7)), p(r) — 0. On the other hand, if 4, > r then |{r:1
<v=<n-1,0"(r) =w}| =1, where w” minimizes p(w’), i.e. p(w") = p(r). Then

(2.23) P4 >r)<1—q(r)"
Since r'In(1/p(r)) — 1/h;, (r — ), the estimates (2.22), (2.23) imply that, for
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e < e, n=nle),

P(4, < (1 — ¢)ln n/hy) < exp(—n??), P(/, = (1 + ¢)ln n/h,) < n™%2
It remains to apply the Borel-Cantelli lemma in conjunction, for the second
estimate, with the fact that #, is nondecreasing and In n is a slowly varying

function, (cf., e.g., [5]).
(b) First, if &, >rthen [{(y,u):1=v,u=n—1, 0" (v) = 0 (n)}| = 1. Hence

(2.24) P(% >r) < <" ; 1) Y p(w)? = (" g 1)E(p(co’)).

Since hs = lim,»(2r)'In(1/E(p(w"))), (see Lemma 1), it follows from (2.24)
that P(%Z, > (1 + ¢)ln n/hs) < n™°, and lim sup,.%,/In n < 1/h; a.s.

How to estimate .#, from below? Notice that, for a given path w in ¢,
there is at Jeast one pair w(v), w(u), 1 < », u = n — 1, such that o"(v) = 0" (u),
r=X,-1(w) — 1. Hence .%, > X, (w) and choosing w = &, by Lemmas 2, 3, we
have that lim inf,.%,/In n = 1/h, a.s. This, together with the upper estimate,
shows that lim,_».%,/In n = 1/h; a.s. if hy = h,.

Let hy > hs. For a fixed r, %, < riff, for each w™, |{r:1=v=n-— 1 w1 (v)
=w"'}| = 1. Thus

P(Z =r) = 2 Hu-l P(wr_l(V)),

where the sum is taken over all samples {w™"*(1), -+, w™'(n — 1)} from S"!
with order and without replacement. Equivalently, this sum is (n — 1)! times the
coefficient of x"™ in [] ,~1 (1 + xp(w™™")). So,

(2.25) P& =r)=<mn—-D"Y [, [1+xp@")], x>0.
Choose x = n — 1. Then
In([Tw [1 + xp (™))
(2.26) =Yu1 [(n = Dp™) = (n — 1)’p*(w™™)/2 + O(n°p*(w™™))]
=(n=1)—-(m-1%2: Ty p@™)P?+ 00 - Ty pw)>).
Take r = [(1 — ¢)In n/hs]. Then, by definition of hs, hs,
(n—12 31 pw)? = exp[2¢ In n + o(In n)],

(2.27) (n — max{p(w™")} = exp[ln n — rhy + o(In n)]
= exp[ln n(1 — (1 — ¢)hy/h3) + o(ln n)].
Subsequently,
n’ . T ph)?
(2.28) = nmax{pw™)} - n® Tum pw™')?

= exp{ln n[l — hy/hs + (2 + ho/h3)] + o(In n)} - 0, n — oo,
provided that ¢ < (hy/hs — 1)/(2 + hy/hs) (remember that hy > h3). Combining
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(2.25)—(2.28) and the Stirling formula, we obtain, for sufficiently small ¢ > 0 and
n=nle),

P(Z, <r)< (- 1n-1)/e] " Vexp(—n°) = O(n'?exp(—n*)).
Thus, lim inf,.%,/In n = 1/h; a.s.

COROLLARY 3. lim inf,L,/In n = 1/h,, lim sup,L,/In n = 1/h; a.s.

PROOF. From the description of Rule B, it follows that a.s. (a) 4, < L, < .%,,
() L, = 4, if 441> 44, and (¢) L, = Lpy1 — 1 if Zpy1 > Z,. These relations and
Lemma 7 imply the statement.

The next lemma completes the study of rule B.

LEMMA 8. (P)lim,_,L,/In n = (P)lim,,«M,/In n = 1/h.

Proor. It suffices to consider L,, since L, =4 M,. Fix ¢ > 0, yo = 1,
6 € (1/hs, ). Using again the Shannon-McMillan-Breiman Theorem, we can
write

P(|L.,/nn — 1/h| = ¢/h) < ¥,ep, Pur + P(L, = 6 In n) + P(uo, ¢),
where lim, _...P(uo, ¢) = 0, and
P,.=P(L,=r, |r'In[l/p(«"(n))] — h| < e?hif uo < r),
D,={r=1:|r/lnn—-1/h| = ¢/h and r = § In n}.

Since P(L, = 6 In n) — 0, (see Corollary 3), we have to prove only that ¥,ep, Pnr
= 0(1). To this end, notice that if L, = r then v"(n) # 0" (v), 1 =v <n —1, but
w1 (n) = 0 1(v) for at least one such ». This shows that

(229) Pu=@m-2) T p@)p )1 —-pw)*3 n=3,
where w" satisfies
(2.30) [r'In(1/p(w") — h| < ¢e®h, if w=r.

Since Y. p(w™!) = m, it follows after simple estimations from (2.29), (2.30)
that, for ¢ < &y, P, < exp(—n“?) if r < [(1 — ¢)In n/h] and P,, < n™%if r =
[(1 + &)In n/h]. Thus,

> rep, Pnr < const In nlexp(—n”?) + n=*2] = o(1).
Finally, Rule C. Let {t,,} be the correspondent sequence of trees; t,, is obtained
by compressing the tree ¢, constructed according to Rule B, (see Introduction for

details). Let L., M/, H; be defined for ¢, as the counterparts of L,, M,, H,
for ¢,.

LEMMA 9. (a) lim,_H//In n = 1/h,, as.; (b) lim sup,L,;/In n = 1/hs,,
lim inf,L,/ln n = 1/h, a.s.
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LEMMA 10. (P)limy_...L;/In n = (P)limp. M1/In n = 1/h.

Since the proofs of these lemmas do not contain significant new elements, in
comparison with the Rules A, B, we restrict ourselves to just several remarks.

First of all, the condition (1.2)—the p-condition—implies that each feasible
node of the infinite tree ¢ has at least two feasible direct descendants. This
shows that (as.) L, = 4, — 1 and L, = 4, whenever 4,1 > 4, hence a.s.
lim inf,L}/In n = 1/h; (Lemma 7). The estimate lim inf,H,/In n = 1/h, (a.s.) is
proven (predictably) by considering the path & (see Lemma 2) and using the
p-condition. To get the estimate lim sup,H,/In n < 1/h, (a.s.), we fix kb, r = 1
and observe that if H, = k + r — 1 then there are some sequences w(1;), - -,
w), 1=y <y, < ... <y, =n,such that o"(y;) = - . - = " (). Subsequently,
lim sup,H,./In n < 1/h(k), where h(k) = lim,_.(kr) 'In(1/E(p(w")*1)), and it
remains to use the fact that h(k) — h; as k — o.

To prove Lemma 10, it suffices to show that P(L,/mnn<(1- e)/h) = 0(1),
where I, is the length of the initial segment of the path w” in t, such that all its
nodes, except the last one, are of branching type. (This portion of the path «”
will not change after compressing the tree t, into the tree ¢,,, whence L, = I,.)
The proof uses again the p-condition.
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