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THE SPACE D(A) AND WEAK CONVERGENCE
FOR SET-INDEXED PROCESSES?

By RICHARD F. BASs AND RONALD PYKE
University of Washington

In this paper we consider weak convergence of processes indexed by a
collection & of subsets of I, As a suitable sample space for such processes,
we introduce the space 2 () of set functions that are outer continuous with
inner limits. A metric is defined for (&) in terms of the graphs of its
elements and then we give a sufficient condition for a subset of 2/ (%) to be
compact in this topology. This framework is then used to provide a criterion
for probability measures on 2 (&) to be tight. As an application, we prove a
central limit theorem for partial-sum processes indexed by a family of sets,
&, when the underlying random variables are in the domain of normal
attraction of a stable law. If « € (1, 2) denotes the exponent of the limiting
stable law, if r denotes the coefficient of metric entropy of %, and if ./ satisfies
mild regularity conditions, we show that the partial-sum processes converge
in law to a stable Lévy process provided r < (a — 1)

1. Introduction. The main purpose of this paper is to provide a useful
topology for a space of set functions that are “outer continuous with inner limits.”
The space is denoted by & («7) where %, the domain of the functions, is a family
of Borel subsets in the d-dimensional unit cube I¢ = [0, 1]¢ (see Definition 3.4
below). This space of set functions was introduced in Bass and Pyke (1984b) as
a range space for set-indexed Lévy processes. It should be viewed as a natural
generalization of the space D[0, 1] of real functions on [0, 1] having left limits
and right continuity, functions which were originally referred to as having
“discontinuities of the first kind.”

Whereas D[0, 1] and its extensions are suitable range spaces for many
discontinuous processes indexed by points, the space & (&) studied in this paper
is a natural range space of sample paths for processes indexed by a family of sets.
Examples of such processes include set-indexed empirical processes, partial-sum
processes, Brownian processes, Lévy (infinitely divisible) processes and general
point processes. Topologies on range spaces of processes are necessary for the
measurability and distribution theory of functionals of processes and especially
for the study of weak convergence of image laws. In the examples to date of weak
convergence results for set-indexed processes, the limiting processes have had
continuous sample paths, enabling one to make use of the uniform topology. In
such situations the nonseparability and resulting nonmeasurability problems can
be circumvented in various ways. However, a much smaller topology is essential
when the limiting process itself does not have continuous paths, as is the case
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for the central limit problem studied below in Section 5 in which the limit
processes are stable Lévy processes with index o < 2.

There are many ways in which set functions can have discontinuities. In this
paper we focus upon discontinuities that are due to the existence of point masses
(atoms) at fixed points. The motivating principle for the construction of a suitable
topology is the same as for D[0, 1]; namely, two functions should be close if the
large atoms (the “jumps” in the real case) of one function and their locations are
approximately equal to those of the other function, while the two functions minus
their large atoms are uniformly close. The challenge is to make this precise in
such a way as to enable one to be able to provide a usable characterization of the
compact sets. This is the purpose of Section 3.

The first topologies for D[0, 1] were provided by Prohorov (1953, 1956),
Skorokhod (1955, 1956a, 1956b, 1957) and Kolmogorov (1956). See Billingsley
(1968) for a presentation of the main topology on D[0, 1], commonly referred to
now as the Skorokhod topology. This is a topology determined by a metric which
makes D[0, 1] into a complete and separable metric space.

Many topologies are possible for D[0, 1]. Skorokhod (1956) introduced four
topologies, known as the 1, J2, M; and M, topologies. Convergence in each of
these topologies consists of convergence in the weakest M, topology plus perhaps
additional conditions. Each thereby postulates the convergence of graphs with
respect to the Hausdorff metric, and this is true also of our topology for 2 ().

The d-dimensional generalization of D[0, 1], D(I% say, and the provision of
suitable topologies for it has been given by Bickel and Wichura (1971), Neuhaus
(1971), and Straf (1972), with the latter reference focusing on more general index
sets than I°. Other extensions have been made to the cases D [0, ) and D [0, )¢
of noncompact index sets; see Lindvall (1973). Also of interest, is a recent
approach by Vervaat (1981), where a different sample space is introduced in
which functions are equated with pairs of upper and lower semicontinuous fits,
and then a corresponding topology is introduced.

The topology for 2 (&) that we introduce is similar in spirit to the M, topology
for functions on R. (J; and M, are clearly not suitable.) The idea is to define the
distance between two functions by the Hausdorff distance between their graphs.
The set of right continuous, left limit functions are not closed under this topology,
but this is a lesser difficulty. Most of the work comes in developing a criterion
for when a set is compact (see Theorem 3.4).

The main application and motivation of the topology of Section 3 is the central
limit theorem of Section 5. For this, the necessary characterization of weak
convergence is provided in Section 4. The central limit theorem then states that
the partial-sum processes obtained by suitably smoothing and normalizing the
partial-sums formed from an array of independent random variables (r.v.) with
common distribution in the domain of attraction of nonnormal stable distribu-
tions converge to a stable process indexed by sets.

Central limit theorems for partial-sum processes (random walks) on [0, 1]
date back to Donsker (1951). For & a class of sets much larger than the orthants,
a uniform central limit theorem for smoothed partial-sum processes was given
by Pyke (1983). A different method of proof, as well as a law of the iterated
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logarithm, was given in Bass and Pyke (1984a). These results have now been
shown to hold under a finite variance condition only; cf. Alexander and Pyke
(1985) and Bass (1985). All of these results, however, are concerned with conver-
gence to a normal limiting process. For a central limit theorem for partial-sum
processes in D[0, 1] converging to a nonnormal Lévy process on [0, 1], see the
book of Gikhman and Skorokhod (1969). A martingale approach and further
references may be found in Jacod, Klopotowski, and Memin (1982). For more
general index families .2/, the structure and existence of suitable limit laws has
been studied by Adler and Feigin (1984) and Bass and Pyke (1984b).

Before introducing a topology for & () and deriving these limit theorems, we
first introduce in the next section the assumptions we impose on the index
families & Finally, in Section 6, some remarks and open problems are given.

2. The assumptions on A. Before beginning our study of the topology on
(&), and from there to the study of weak convergence and central limit
theorems, some conditions on our family .# must be imposed. For convenience,
we collect the assumptions here in one place.

(A1) (i) « is a collection of closed subsets of I%
(ii) o itself is closed with respect to the Hausdorff metric dg;
(iii) for each 4, there is a finite subset .&/; of & such that if A € &, there
exists A} € &;such that A C (A7)° C A°.

Here (A7)° is the interior of A with respect to the relative Euclidean topology
on I% and A’ is the set of all points of I¢ that are less than & from some point of
A. Recall dy(A, B) = inf{e: A C B° and B C A°}. We use | - | to denote Lebesgue
measure.

(A2) (i) for each 5, there is a finite subset ./; of ./ satisfying (A1) (iii) such
that if A € o, there exists A;, A7 € &; withA; CACAY and | AF\A;|
=<0,

(ii) there are constants K and r > 0 such that if #%; is the cardinality of
&5, and H(6) = In(#;), then H(8) < Ko™ for 6 sufficiently small.

Examples of index families covered by these assumptions when d > 1 include
@, the set of closed convex sets in I¢, for which r = (d — 1) /2 (cf. Dudley, 1974)
and .7 (d, g, M), the family of closed sets with “smooth” boundaries determined
by g-differentiable functions whose Lipschitz norm of order ¢ is bounded by M.
For the latter, r = (d — 1)/q (cf. Dudley, 1974). A related family with the same r
has been introduced by Révész (1976). In connection with the central limit
theorem of Section 5, where « is the exponent of the limiting stable distribution,
we see from the above that ¢ is a possible index family provided (d — 1)/2
< (a — 1)7 or equivalently a < (d + 1)/(d — 1). For example, if a = 5/4, the
convex sets form a possible index family if the dimension does not exceed 8.

The classical case of processes indexed by the points in I¢ can of course be
viewed as set-indexed processes by the identification of t with [0, t]. If .#¢ :=
{[0, t]: t € I} denotes the resulting index family of intervals, then note.that any
coefficient r > 0 satisfies (A2)(ii) for & = .74
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3. The Po(«) space. Throughout this section we assume that .« satisfies
(A1). We begin by defining the subfamily 2, = 2, (') of & (%) which will contain
the sample paths of our processes. We denote elements of 2, by x, y, 2.

If x: ¥/ - R, set

(3.1) I xllo = supsew |x(A4)].

DEFINITION 3.1. A function x: &/ — R is purely atomic if there exist finitely
many locations t,, - - -, t, € I¢ and masses a,, - - -, a, such that for all B € v,
(3.2) x(B) = YyeB a;.

For such an x, let
(3.3) Variation(x) = Y; | a;]-

Let (%) be the class of real-valued functions that are uniformly continuous
with respect to dy.

DEFINITION 3.2. Let 9, = {x: &/ — R, such that there exist‘uniformly
continuous functions C,, € €(«) and purely atomic functions </, such that
| x = Cn—Jnlle — 0as m— o}

Our set 9, is closely related to the set & in Dudley (1978).

DEFINITION 3.3. x: &/ — R is outer continuous at A € & if A C A,, A, >4,
A, and A, € & implies x(A,) — x(A). x has inner limits if A, C A°, A, —q, A°,
and A,, A € & implies lim,x(A,) exists, where A° is the interior of A.

As pointed out in Bass and Pyke (1984b), one does not want to require
A, — A monotonically in the definition, even in the case where & = _7¢
= {[0, t]: t € I}, the family of lower orthants.

DEFINITION 3.4. Let 9 (&) = {x: & — R, such that x is outer continuous
with inner limits at each A € w/}.

It is clear that both purely atomic functions and continuous functions are
outer continuous with inner limits. Since outer continuity is preserved under
sums and uniform limits, every element of 9,(%) is outer continuous with inner
limits. Thus, 2,(¥) C 9 (¥).

Next we proceed to define a metric on 2 (). Let the distance between two
elements of &/ X R be defined by

(3.4) p((A1, 1), (Az, r2)) = du(Ay, Ap) + | — el

Let £ be the collection of closed subsets of &/ X R, and let d¢ be the Hausdorff
metric on & induced by p.

For x € 9 (&) define the graph of x, denoted by G(x), to be the closure in
& X R of {(4, x(A)): A € &}. Note that we therefore do not require G(x) to
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contain the “vertical” pieces (4, r), r, < r < r;, whenever (4, r;) and (4, r;) are
both in G(x), as is done in Skorokhod’s M, topology for D[0, 1].
Now define

(3.5) dp(x, y) = de(G(x), G(¥)).

Since dg is a metric, dp is a pseudo-metric on 2. In the usual way, let us identify
functions x and y if dp(x, y¥) = 0. (Note, e.g., the functions x,(t) = sin(1/t),
t € (0, 1], x,(0) = a for a € [—1, 1] are all identified by dp.)

It is known that if .7 is the class of compact subsets of a metric space .% then
% under the Hausdorff metric is complete (separable) (compact) if . is complete
(separable) (compact). See, for example, Debreu (1967). In view of assumption
(A1) and the compactness of I, this implies that & is compact, separable and
complete. In particular, .« is totally bounded under the Hausdorff metric dj.

It is easy to characterize the compact subsets of &,

PROPOSITION 3.1. Suppose & C & is closed and contains at least one set G,
that is bounded in &/ X R. Then & is compact if and only if R = sup{|r|: (a,r) €
G for some A € &/ and some G € F} < .

ProOF. First suppose # is compact. Let K; = sup{|s|: (4, s) € Go}, K; =
sup{d¢(Go, H): H € 5}, and K = K; + K,. K is finite since G, is bounded and &
is compact, hence bounded. If (A4, r) € H € 4, then |r| < K; + K,.

Now suppose R < «. If we define & by

(3.6) Yr={HE % HC &« X [-R, R]},

then % is totally bounded since ¥ X [—R, R] is a bounded set. Since £ is
complete, £z is compact. If H € 7, then H C &/ X [—R, R]. Thus . is a closed
subset of £z, hence compact. 00

Unfortunately, characterizing the compact subsets of £ is not that useful
because neither 2,(«) nor 2(«) is closed in £ For example, let &/ = .#!
= {[0, t], 0 = ¢t < 1}, and let x,([0, t]) = sin(nt). Each x, € #(«), and G(x,)
converges as n — ®© to G, = [0, 1] X [—1, 1], but x, does not converge to an
element of 2 (). What is needed is to characterize those subsets of & o(«)
which are compact with respect to dp. We do not give a complete characterization
of such sets, but we do prove compactness for a class of sets sufficiently large for
the purposes of our central limit theorem.

If x is purely atomic with atoms at locations t,, - - -, t,, define

(37) gap(x) = inf,~¢j| t; — tjl .
DEFINITION 3.5. If h is an increasing real function with k() < 8, N is a finite

positive integer-valued function, and n and R positive real numbers, deﬁne
Fra(h, N, n, R) to be the set of all purely atomic x such that

(3.8) (i) gap(x) =9,
(ii) Variation (x) < R, and
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(iii) for each 4, there exist sets A;, As, - - -, Ane) € &, possibly depending
on x, such that
(a) each point of G(x) is within a distance < 6 from some (4;, x(A;)),
i=1,... N(@),
(b) A\A; contains no atoms of x.

The crucial proposition is
PROPOSITION 3.2. Sp4(h, N, n, R) is a compact subset of Do().

PROOF. For the duration of this proof, abbreviate $p4(h, N, 7, R) by %. If
x € %, then | x || ., < Variation (x) < R. Since the image of % under G is thus a
subset of £ (defined by (3.6)), which is compact in &, it suffices to show that the
image of % under G is closed. To do this, it suffices to show that if x, € % and
de(G(x,), Go) — 0 as n — o for some Gy, then there exists an x € % with
G(x) = Go.

Since inf, gap(x,) = » by (3.8)(i), the number of atoms in x, is uniformly
bounded. Replacing x, by a subsequence if necessary, we may assume that there
is a positive integer M and each x, has precisely M atoms. Let us denote the
locations by t;,, i =1, - - -, M, and the masses by a;,, i =1, - - -, M. Replacing x,
by a further subsequence if necessary, we may assume, since I¢ is compact, that

the t;, converge as n — o, say to t;, i = 1, - .-, M, and that the a;, converge as
n—o,saytoa;,i=1, .-, M. Let x be the purely atomic function which has an
atom of size q; at location t;, i =1, ..., M.

First we show G(x) C G,. For A € %, choose ¢ small enough and then choose
B € & such that A C B® C A°, x(B) = x(A), and no atom of x lies on the
boundary of B. This is possible since x has only finitely many atoms. Since the
locations and sizes of the atoms of x, converge to those of x, and every atom of x
lies either in B® or (B9)°, x,(B) — x(B). Thus (B, x(B)) is in lim G(x,) = G,.
The fact that x(B) = x(A) and ¢ is arbitrary shows that (A, x(A)) € Gy, or
G(x) C Gy.

Now we show G, C G(x). Suppose (B, r) € Go. Because G(x,) —q, Go, there
exists sets B, such that B, —4, B and x,(B,) — r. Let > 0, and use (3.8)(iii) to
find A, such that dy(A,, B,) < 28, | x,(A,) — x,(B,) | < 26, and A"®\A,, con-
tains no atom of x,. Replacing x, by a subsequence if necessary, we may
assume A, —4;, say to A. Finally, choose ¢ and C such that ¢ < h(§)/2, A C
C°C A*, x(C) = x(A), and no atom of x lies on the boundary of C.

Now dy(C, B) < ¢ + 26 < 56/2. Since no atom of x lies on the boundary of C,
%,(C) = x(C). And since A, —4, A, for n large enough, A, C C° C A%?®. But then
x,(C) = x,(A,) by (3.8)(iii)(b), and so | x(C) — r| = 24. This shows that p((B, r),
(C, x(C))) = 96/2; since ¢ is arbitrary, (B, r) € G(x), and hence G, C G(x).

It remains to show x € %. (3.8)(i) and (ii) are obvious. Fix §, and for each n,
choose A;,, i = 1, --., N(68), to satisfy (3.8)(iii) for x,. Replacing x, by a
subsequence if need be and using the fact that .« is compact, we may suppose
Ay >y, saytoAj,asn— oo, i=1, ..., N(3).

Let v > 0 and let A € /. As above, choose B such that dy(4, B) < v,
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x(B) = x(A), and x has no atoms on the boundary of B. If n is sufficiently large,
|x.(B) — x(B)| = v. Choose A, , such that p((A; ., *.(A;.)), (B, x.(B)))
< 6 + «v. Replacing x, by a subsequence if need be, we may assume that
A; . converges to one of the 4;, i = 1, ..., N(§); for the sake of definiteness,
suppose it is A;. By (3.8)(iii)(b), x has no atoms in A?®\A4; .. Since the atoms
of x, converge to those of x and A, is closed, x,(4;, ) — x(A;). For n sufficiently
large, p((Ai,n, 22(Ai,n)), (A1, x(A1))) < v. Hence p((4, x(A)), (A1, x(4,))) <6 +
4+, which, since y was arbitrary, shows that the A; satisfy (3.8)(iii)(a).

Finally, since the set A?®\A; is open, x has an atom there only if x has an
atom in A?®~2\A% for some ¢. But then for n large enough, x, would have an
atom in A\ A¢ C A¥O\A;,, a contradiction. 0

LEMMA 3.3. Suppose y, € 2(¥),y € €() and || ¥ — y | » = 0. Suppose z,,
2 € D() and z, —>ap 2. Then y, + 2, =4,y + 2.

PROOF. Let ¢ > 0. Recalling that ./ is compact, choose § < ¢ small enough so
that | y(A) — y(B) | < e whenever dy(A, B) < § and A, B € &. Suppose n is large
enough so that |y, — y ||« < eand dp(z2,, 2) <.

Suppose A € . By the definition of dp, there exists B, € & such that
du(A, B,) <déand | z(A) — 2,(B,) | <. Then

|(y + Z)(A) - (yn + zn)(Bn)l =0+ |y(A) _y(Bn)l + Iy(Bn) -yn(Bn)l
<0+ 2 =< 3e.

Hence G(y + 2) C (G(yn + 2,))* if n is large. By the same argument with the
roles reversed, we can conclude dg(G(y + 2), G(y, + 2,)) < 3¢, from which the
lemma follows. O

Our criterion for compactness is based on the following definition:

DEFINITION 3.6. Suppose for each m = 1 that %,, R., and M,, are real
numbers, h,, and N,, are functions as in (3.8), and w,, an increasing function with
wm(r) — 0 as r — 0. Suppose A, is a positive sequence tending to 0. Define & to
be the set of functions x in 9,(«) such that for each m there is a purely atomic
function J,,(x) and a function C,,(x) € #(«) with

(39) (i) Jm(x) € %A(hm, Nm» Nm, Rm)y
(i) (a) | Cul(x) |lor = My,
(b) sup{|Cn(x)(A) — Cn(x)(B)|: A, B € &, du(A, B) < r} < wn(r)
for all r, and
(iii) | x — (Jm(x) + Cn(x)) | v < Ap.

Note that we allow the bounds and moduli of continuity of C,,(x) to depend
on m. Even for Lévy processes on the line, this is necessary. There, for example,
we might take the J,,(x) to be Y.<t AX,(w)1(ax,w)121/m)> £ < 1, and Cp(x) = cpt,
where, in general, c,, — ® as m — o,
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In Section 5 we will show that our partial-sum processes have, with high
probability, paths in sets such as & There, C,,(x) will be identically 0 and the
Jn(x) will be the purely atomic functions whose atoms are the points of the
partial-sum process that are larger in absolute value than «v,,, where v,, is a
sequence of positive reals tending to 0.

The case where one has purely atomic functions converging uniformly to a
continuous function (e.g., as in most empirical processes) can also be fitted into
the above framework. For example, if x, are purely atomic, converging uniformly
to x continuous, then {x,, x} form a subset of a set & of the above type if we let
Co(x,) = Cn(x) = x for each n and J,,(x,) = J,.(x) = 0 for each n. Alternatively,
we can let C,.(x,) be a “smoothed” version of x,,.

Our theorem is

THEOREM 3.4. Suppose & is as in (3.9). Then & is compact relative to dp.

PrROOF. Note that
Supres || x | & < R + SUPses || Cn(x) | & + sUpres || * = (I (%) + Crn(x)) || o < 00.

Thus, as in the proof of Proposition 3.2, it suffices to show that if x, € &
G(x,) = Gy, then there exists x € # such that G(x) = G,.

Using (3.9)(i) and Proposition 3.2, (3.9)(ii) and Ascoli-Arzela, and a diagon-
alization argument, we may replace x, by a subsequence (also denoted x,)
such that Jn(x,) —q4, to an element of Fpa(hAm, Nm, Nm, Rn), call it j,, and
Cpn(xn) —y .y, to an element of (%), call it ¢, foreachm =1, 2, .- ..

The main stép is to show {j, + c»} is a Cauchy sequence with respect to
Il - | . Let e > 0. Suppose M is large enough so that whenever m = M,

(3.10) sup,es | X — (Im(x) + Cn(x)) | < &.

Suppose k, m = M and for some A € &, | (jm(A) + cn(A)) — (Ju(A) + cr(A)) |
= be. Since ¢, and c; are continuous and j,, and ji are purely atomic, there exists
a set B with A C B° C A" for some v such that j,(B) = jn(A), jx(B) = j:(4),
neither j,, nor j, have any atoms on the boundary of B, and | c.(A) — cx(B)|,
|cm(A) - Cm(B) I =e

Then

| jm(B) + cm(B)) — (jr(B) + cx(B)) | = 3e.
Since neither j, nor j,, have any atoms on the boundary of B, as we argued in

Proposition 3.2, Ji(x,)(B) — jr(B) and J,,(x,)(B) = jm(B) as n — . Thus, for
n sufficiently large,

[ (Jm (%) (B) + Cpn(x2)(B)) — (Jr(22)(B) + Ci(xs)(B)) | = 2,

contradicting (3.10).
Therefore, || (jm + ¢m) — (Jr + &) | « < 5e, and {j,, + ¢} is a Cauchy sequence.
Since || - || « is complete, j, + cm —>y .y, say to y. Let Ju(y) = jm, Cu(y) = ¢ for
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each m. For each ¢ > 0,
Iy = (m + m) v < lim sUPssee [l G + €&) = (jm + €m) |l
< lim supselim supn« || (Jx(xs) + Ci(xs))
= (Im(xn) + Crl(xa)) | + 2¢
=< lim supp_Ar + A, + 2,

the argument for the second equality being similar to the proof that {j,, + ¢} is
Cauchy. It is now easy to see that y € &
Finally, let ¢ > 0. By Lemma 3.3,

dG’(G(Jm + cm)’ G(Jm(xn) + Cm(xn))) <e

if n is large enough. Since clearly dg(G(j. + cn), G(y)) and dg(G(Jpn(x,) +
Cn(x,)), G(x,)) < A, and also dg(G(x,,), G) <eif nis large enough, then dg(G(y),
Go) < 2¢ + 2A,,. Hence G(y) = G,, and the theorem is proved. 0

The next theorem concerns dp convergence when the limit is'a continuous
function.

THEOREM 3.5. Suppose x, — x relative to dp and x is continuous. Then
%, — x relative to the uniform norm || - || «.

ProOOF. Let e > 0. Choose § < ¢ so that if dy(A, B) < 6, then | x(A) — x(B) |
< ¢. Suppose dp(x,, x) < 4. If A € 7, there exists B € .« such that p((4, x.(4)),
(B, x(B))) < 6. Then dy(A, B) < 4, and so

[%,(A) — x(A) | = |x,(A) —x(B)| + |x(B) —x(A) | <é+ e =< 2

Hence || x, — x || o < 2e.0

4. Weak convergence. In this section we study weak convergence with
respect to the topology introduced in Section 3. We suppose throughout that
(A1) holds.

First, we rather easily dispose of the question of measurability for processes
with sample paths in 2 («). Recall that the graph function G has domain 9 ().
The o-field & induced on 2/ (&) by G and the Borel ¢-field of &, %, are related
by
(41) B = G_l((@g).

Let & * be a subset of & that is dense with respect to dy. Let 74: 2(&#) -> R

denote the one-dimensional projection. Thus w4(x) = x(A). Analogously, let

Tay,- 4, (%) = (x(A1), - -, x(Ap)).
Now let By = o({ma: A € &*}), the smallest o-field with respect to which each
of these one-dimensional projections is measurable.

PROPOSITION 4.1. %, = %.
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PROOF. Since .« is separable, we can without loss of generality assume ./ *
is countable. For B in &, let

4.2) B,=BNAXR), AE

Since elements of .7 and £ are closed, it is clear that

(4.3) G Y(B) = Naewsrix € D(¥): (A, x(A)) € Bal.

This, together with the easily checked fact that %, C %, proves the proposition. [

The above result shows that to check measurability of a & («)-valued process
X, it suffices to check the measurability of the one-dimensional projections X (A),
A E w*,

A simple monotone class argument applied to (4.3) shows that the finite-
dimensional distributions are a determining class for probabilities on Z(«).
More precisely,

PROPOSITION 4.2. Suppose P and Q are two probabilities supported on
(2 (%), &) such that for all choices Ay, -+, Ar€E X *, k=1,

-1 — =1
Po TAy,-- A = Q-° TAy,- - Ape

Then P = Q.

As usual, we say that probabilities P, on & (#) converge weakly to a probability
P, denoted P, —, P, if | f dP, — [ f dP for all f continuous and bounded on Z.
In view of Proposition 4.2, Prohorov’s theorem (cf. Billingsley, 1968, page 37),
the fact that & is a complete and separable metric space, the imbedding of & (/)
into £ by means of the mapping x — G(x), and standard arguments, we have

THEOREM 4.3. Suppose for all ¢, there exists a compact subset 7, of 2 (/) such
that inf, P, (%) = 1 — ¢. Then there exists a subsequence of the P,’s which converge
weakly to a probability P on 2 (/). If, moreover,

-1 -1
P, o TAy,-- A, w Po TAy,-- Ay

for all choices of A, - -+, Ax € &*, k = 1, then P, —, P.

It is perhaps worth mentioning that Skorokhod’s representation theorem still
holds. Thus if X,, X are set-indexed processes with the law of X, converging
weakly to that of X, then we can find another probability space and processes
X}, X’ equal in law to X,, X, respectively, such that dp(X;, X’) — 0, a.s. Since
# is a complete and separable metric space, this is a special case of the general
result of Skorokhod (1956a); see also Billingsley (1971) and Pollard (1979).

By Theorem 4.3, to prove weak convergence, one must show that the finite-
dimensional distributions converge and prove tightness. Criteria for a subset of
() to be compact are given above in Section 3, but as they stand, it may be
difficult in general cases to show that a given process is in a compact set with
high probability. For the applications to our central limit theorem of Section 5,
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we can achieve a considerable simplification since our partial-sum processes will
have sample paths in 9y(¥) C 2 (¥).

Let C;=n"'(G—1,j]forjEJ?and J = {1, 2, - - -}. Let T, be a purely atomic
set-indexed process on .« Clearly the domain of T}, can be considered to contain
all subsets of I¢ and hence in particular, the cubes C,;. Set

£.(A) = #latoms of T, in A}, & = £.(Crj).
Assume that T, satisfies the following condition:

(4.4) (i) For each n, {£,;: n™%j € I} are i.i.d. Bernoulli r.v.’s with parameter
DPn < c;n”¢ for a positive constant c,. (In particular, this implies that
the number of atoms in each cube C,; is either 0 or 1.)
(ii) If A C Cy,

P(fn(A) = ]-Igni = 1) = IAI/ICnJI

so that the location of any atom in C,; is uniformly distributed there.
(iii) As My — oo,

P(I Tn(an)I > MOIEnj = ]-) g 0
uniformly in j and n.
This condition will be satisfied by the “large atoms” of our partial-sum processes.

A key result is

THEOREM 4.4. If T, satisfies (4.4), then given ¢ > 0, there exist n, M, N, and
h (independent of n) such that P(T, € Fpa(h, N, n, M)) =1 — ¢ for all n.

Before proving this result, we first need a lemma.

LEMMA 4.5. Suppose T, satisfies (4.4).
(a) Lett € I be fixed. Then
r = P(fn({SZ IS - tl = 8}) > 1) = Cz£2d,

with ¢, independent of n and t.
(b) ro: = P(£,(A) > 0) =c3| A, cs independent of n.
(c) If Ay, ---, A, are disjoint,

rs:=P(&(A) > 0,1 <i=m|&UTYD) =m) < c[[2 | Al

here ¢, may depend on m but not on n.

PROOF. Measurability is not a difficulty here, since all the relevant events
are measurable with respect to the o-field generated by the events (T, has an
atom in (s, t) of size >a:s,t €I¢ a €ER).

To prove (a), note that {s: | s — t | < ¢}, the ball of radius ¢ about t, intersects
at most K(n, ¢) cubes C,;, where K(n, ¢) = ko([n%? V 1) for an integer ko
independent of n and . We need to bound the probability that this ball contains
two or more atoms of T',. Let B(k, p) denote a Binomial r.v. with parameters k
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and p. If n e = 1, by (4.4)(ii)
r. < P(B(ko, cse?) > 1) < cee™

where ¢ is the volume of the unit ball in R¢.

If ne=1, by (4.4)(1),

r = P(B(K(n, ¢), ps) > 1) < c7(ko[np,)* < cse™.
This proves (a). Next, consider (b). Consider first the case where A C C,; for
some j. Then by (4.4)(, ii),
rs = P(£.(A) > 0| & = DP (¢ = 1) < (|A|/Cs)crn™ = 1| A|.

Since in the general case we can write A = U; (A N Cy;), the above suffices to
prove (b) because of subadditivity and linearity.

Finally, to prove (c), fix n and m. As above, we may assume each A; is wholly
contained in some C,;. Observe that without loss of generality we may assume

that each C,; intersects only one A;. By (4.6)(ii), it suffices to suppose each A;
equals some C,;. But then .

a\~1

PROOF OF THEOREM 4.4. First of all, by Lemma 4.5(a),
P(gap(T,) < k™) = P(for some j € J* with k™'j € I the ball of radius
3/k about k~'j contains at least two atoms of T)
< k%, (3/k)* —> 0

as k — . Thus we may choose 7 sufficiently small so that P(gap(T,) < 7)
<e/4.

On the set where gap(T,) = k™%, T, can have at most c¢;0k? atoms for a suitable
constant c;o. This fact together with (4.4) (iii) shows that for a given ¢ > 0 we
may choose M, sufficiently large so that if M = ¢10k*Mo,

P(Variation(T,) = M, gap(T,) = k™) < ¢/4.

Fix 6. We want to show next that we can find N and sets A;, - - -, Ay so that
{(A;, T.(A)):i=1, ---, N} is a é-net for G(T,) with high probability. Although
the A/s could be allowed to depend on w, that is not necessary here. If .2 is given
by (A1)(iii), let B, = UL, . Let Go(x) = {(4, x(A)): A € 4%,} be the graph of
the restriction of x to %,. We now show that if q is sufficiently large,

(4.5) P(G,(T,) is not a é-net for G(T), gap(T,) = kY < ¢/4.

Since T, has at most c;0k® atoms when gap(T,) = k7%, it will suffice to show that
for each fixed m

P(G,(T,) is not a é-net for G(T5,) | £.(I%) = m)

can be made arbitrarily small if q is large.
Let ty, - - -, t,. be given. Let A € &/ By (A1)(iii), there exists agand a B € %,
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such that A C B, B\A contains no t;/s and dy(A, B) < §/2. If x is any purely
atomic function that has exactly m atoms at locations t;, - - -, t,, then x(B) =
x(A) and p((4, x(A)), (B, x(B))) < /2.

Let Uy, - - -, U, be a finite collection of balls of dy; diameter 5/2 that cover .«
Let {r;, i = 1, ..., 2™ be the collection of all subsets of {t,, ---, t,}. For
eachi=1, .-..,2™" |l =1, ..., u, let A; € U, N &/ denote a set satisfying
A; N {ty, .-+, t,} = 7; whenever such a set exists. For each such A;, select a g,
and a B; as in the preceding paragraph. Let ¢ = max;,;q;.

Let x be any purely atomic function whose atoms are at t;, - - -, t,,. We claim
G,(x) is a é-net for G(x). For if A € &/, then A € U, for some [ and A N
{t, .-+, tn} = 7; for some i. Then there must exist an A; € U, N & with
Az N {tl, ey tm} = 7; for which du(A, By) < dy(A, Ay) + dH(Ail, By) <6
and x(A) = x(As) = x(By), which proves that G,(x) is a é-net for G(x).

Now let us turn this around. Let

W, = {(t,, - - -, t,,): there exists a purely atomic x with atoms located
at t, ---, t, such that G,(x) is not a é-net for G(x)}.

What we have shown, then, is that W, | ¢. The W, are subsets of (I 9)m Tt is not
hard to see that the W, are open, hence measurable; hence the Lebesgue measure
of the W, — 0. For each g, select countably many sets V;, i = 1, - - -, such that
W, C UL Vg, |UR1 V| < 2| Wy, and each V; is of the form Ay X - -+ X Agin
where the A,;’s are disjoint subsets of I°.

Then by Lemma 4.5(c),

P(G,(T,) is not a é-net for G(T,) | £.(I%) = m)
< P(there is a labeling (t,, - - -, t,) of the atoms of T,
with (ty, - -+, tm) € W,| £.(I%) = m)
=< ¥: P(T, has atoms in each of Agi, -+, Agin| £.(I%) = m)
= Yica [T2: |Aqal = 2ical Vol = 204‘ Wel —0

(4.6)

as q — o,

We have thus shown that by taking q sufficiently large and letting N = N(§)
= #(4,), then {(4, T,(A)): A € &,} is a é-net for G(T,) with high probability.
Finally, if A € %,, by Lemma 4.5(b),

P(T, has an atom in A™\A) < c3|A™NA| - 0
as h — 0. Since 4%, is a finite set, we can take h = h(d) small enough so that
P(T, has an atom in A"\A for some A € &,) < ¢/4.
Thus P(T, & Fpa(h, N, 3, M)) <e. O
5. Central limit theorem for partial-sum processes. In this section we

prove a central limit theorem for partial-sum processes in the domain of normal
attraction of a stable law of index «. The main result is for the cases of o €
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(1, 2). The cases « € (0, 1] will be discussed at the end of this section, while some
remarks concerning more general central limit theorems are given in Section 6.

Consider an array of i.i.d. r.v.’s X;: j € J% where each X; is in the domain of
normal attraction of a stable law of exponent « € (1, 2) and J = {1, 2, ---}.
Without loss of generality, assume EX; = 0. For this context, we define the
partial-sum process indexed by &, S, = {S.(4): A € &/}, by

(5.1) Sn(4) = ™Y Tiena X;.

Just as in the case where X; is in the domain of normal attraction of the
Normal law, there is no central limit theorem for S, itself; rather it is first
necessary to “smooth” S, (cf. Pyke, 1983; and Bass and Pyke, 1984a). By the
“smoothing” of a partial-sum process, we mean a deterministic or random
perturbation of the masses X;. In Pyke (1973, 1983) and Bass and Pyke (1984a)
the smoothing that was considered spread the mass X; uniformly over the cube
C;:= (j — 1, j] = nC,; in the sense that the purely atomic set function X;jd;(nA),
where 8,(B) = 1 or 0 according as x € B or x & B, is replaced by X;| A N Cy| to
give
(5.2) Xn(A) = 7Y Fieyr |A N Cy| X;.

The main reason that this smoothing could be used for these previous applications
is that the limiting processes (Brownian processes, either tied-down or not) were
always in #(«). Thus X,(-), which is continuous, could be expected to be a
suitable perturbation of the S,-process.

In the present paper, where the natural limiting processes are not Gaussian
and whose paths are not continuous but are in Z,(#), one cannot expect to be
able to smooth the partial-sum processes in a manner as in (5.2) that results in
continuous paths. Rather, we retain the discontinuous purely atomic nature of
S, by simply perturbing the location of the atoms. Namely, let {U;: j € J% be
independent r.v.’s that are independent of the X; with Uj being uniform over C;.
Then write

(5.3) Yn(A) = n“’/"‘ ZUjGnA Xj.

This type of smoothing involves a random relocation of the grid points and can
be viewed as being determined by a random transformation of the sets in .. The
mapping j — Uj determines, by linear interpolation for example, a transformation
7n: I — I° (note that U; < j) that maps j/n — U;j/n. By interpreting 7,(4) in
the natural way, we see that

(5.4) Y.(4) = Sn(7.(A4))

for all A C I°.

Let us now assume 5/ satisfies (A1) and (A2). Moreover, let us assume that
the r defined in (A2)(ii) satisfies
(5.5) 1<r<(a-17.

There is no loss of generality in taking r > 1 since increasing the size of & merely
results in a stronger theorem. On the other hand, the existence of a limit law
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with paths in 2 (&) requires r < (« — 1) (Bass and Pyke, 1984b); hence (5.5)
is optimal, except for the boundary case r = (@« — 1) 7. See Section 6.

By assumption, the Xj are in the domain of normal attraction of a stable law
of index «. Let v be the Lévy measure of that stable law, and let Z :=
{Z(A): A € &/} be a Lévy process with Lévy measure »; cf. Bass and Pyke (1984b).
We need to show

PROPOSITION 5.1.  The finite-dimensional distributions of Y, converge to those
of Z.

PrROOF. For notational simplicity, we will show that the two-dimensional
distributions converge, the general case being completely analogous. For any
Borel set A in I, define

(5.6) un(A) = 35 1,a(Uj) = #{j: U; € nA}.
Note that u,(A) is a sum of independent Bernoulli r.v.’s. Since
E p.(A) = 35 |AN Cy| = |nA| = n?|Al,
and
var(n™u,(4)) = n* 5 |A N Cy[{1 — |A N Cy|} =n7?A],
it follows by the Borel-Cantelli lemma and Chebyshev’s inequality that
(5.7 un(A)/n? = |A|, as.

Now let us consider the joint characteristic function of Y,(A4), Y,(B). Let f be
the characteristic function of Xj, and f, the characteristic function of the limiting
stable law. Then, using the independence of the Uj’s from the Xj,

E exp(i{uY,(A) + vY,.(B)})

= E[E[exp(i 35 n~*X;{ul,a (U;) + v1,8(U;)}) | U;, i € J]

= E[II; f (n™"*{ulna (U}) + v1,8(Up})]

= E[f((u+ v)n=%) n"(n,.(AnB)n"’)f(un—d/a) nun(A\B)Y) o f(vn-d/a)n"(u,.(B\A)n-d)]
— folu +v) 40P o () o (v) 12!

= Eexp(i{uZ(A) + vZ(B)}).

The limit follows from the facts that f(wn %)™ — fo(w) for all w, Ifl =1,
fo # 0 and (5.7) together with the dominated convergence theorem. 00

(5.8)

We do not need the convergence of the finite-dimensional distributions of S,
but if A has a smooth boundary in the sense that | A(5) | — 0 as 6 — 0, where
A () = {x: distance of x to dA < 4}, then S,(A) — Y,,(A) — 0 in probability. In
fact,

Sn(A) = Yn(A) = 55 0™ X;(1,4 G) — 1na(U5)).
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Under the assumption of a smooth boundary, it is not hard to show that
E 351 1,4G) — 1,a(Uy) |/n? = Tiena | AN Cp5| + Viena | AN Cp| >0
and hence that
17?35 | 1,4 () — 1,a(Us) | —p 0.

An argument using characteristic functions as in Proposition 5.1 then shows
that E exp(iu(S,(4) — Y,.(4))) — 1.
The following result is needed to prove tightness of the Y,. Let

(5.9) X = X514 x,1 = 9n%/a>

(5.10) YUA) = n~9 35 1 (U)X,
and

(5.11) Y (A) = =4 35 1,4 (U)EX).

The process y” has atoms at the same random locations as Y, but with
deterministic masses. .

PROPOSITION 5.2. Let e > 0 and n > 0. Then for all v > 0 sufficiently small
PUYY -y =nl<eforalln.

PROOF. Since Y, is purely atomic, | Y’ —y9| ., — 0, a.s. as y — 0 for each

n. It thus suffices to find v and n, such that

(5.12) Pl Y? =y? | =n]<e forall n=ne.

Form =1, n = 1, define

(5.13) Yom(A) =0~ 3; 1,4 (Up) X nm

and

(5.14) Yam(A) =07 F; 1o (U) EX; nm,

where

(5.15) Xinm = Xi 11X €@ amn®’

and where the sequence of constants a,, will be specified later with a,, — 0. Set
(5.16) fom = Plams1 <n | X;| < an].

We will need the following bounds for the mean and variances of X, m:
(5.17) E|Xnm| < annfom

and

(5.18) E| Xnm|?<afomn

To prove the proposition, it suffices to prove that for ¢ > 0 and n > 0, there
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exists my = mo(e, 1) and a sequence a,, — 0 such that
(5-19) P[ " Emamo (Yn,m - yn,m) II.W > 7’] =e

For simplicity, assume that the Xj are symmetric so that EX;, , = 0 and hence
Ynm = 0. At the end of the proof, we will show that this assumption is unnecessary.
We prove (5.19) by showing the existence of constants 5,, and ¢, such that

2:=1 37’m = n, 2:=1 em = 8/3,
and
P[" Yn,m "M>3'I7m] =éem, M>my.

Let 0 < 8 < 1, let 6 be fixed, and let §,, = 6o3™. Consider first of all (for any
o, > 0) that

Pl Yom Il o > 31m]
< P[ll Yomllsr, > 1m]
+ P[maxy a+tew, |Ja\al<s, SUPBesacBcat | Yom(BAA) | > 2]
:=Pi(n, m) + Py(n, m).

By the usual nesting argument (cf. Bass and Pyke, 1984b, or Dudley, 1973, the
second probability is split again based on the inequality

Maxy,ateq, ,|4M\4|<s,SUPBew,acBcat | Yom(BAA) |
k, —
= ngml maerM‘;i,BEM&iﬂl Yn,m (AAB) I
+ maXA,A*e.M‘;*m,lA+\A|<6,,msupBeM,A£BQA+I Y.m(AAB) |

= Ty + T,

(5.20)

where k,, will be chosen later.
By Bernstein’s inequality

2
Nm
P,(n,m) <2 exp{H(&m) 2 fom + mman/3) }

To obtain the necessary convergent series, we will show that we can obtain
UES 3m
4na’fmn  4danm

To satisfy this inequality, we use the known characterization of the d.f. of a
r.v. in the domain of normal attraction of a stable-« distribution (cf. Gnedenko
and Kolmogorov, 1954, page 182) to obtain

fom = Plap+ < | X;| n™* =< a,]

(5.22) = P[|1 %] > n¥*ap]

(5.21) H(G,) <lne, +

d/a dfa

am+1))

where g(x) = 0(1) as x — +oo. From this it follows that for a sufficiently large

= (n"*apm+1) (1 + g(n
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constant ¢, we have f, » < co(n%%a,+1) %8 for all n and m. Therefore
(5.23) naifom < C200a0% B

for all n and m.
Let us choose a,, = ao3*" for some a > 0 and a, > 0. Then a,,/an+; = 87! and
)

(5.24) n%afum < coaZ e,

The inequality (5.21) will then be satisfied if

N 3m
(5.25) H@Gn) =lnen+ —=—=AN—, m=m,.
4coa; ¢ 4da,

This inequality becomes (5.41) below.
In a similar way, to study P, (n, m), obtain from Bernstein’s inequality that

2
kp—1 . _ Nm,j
(56.26) PlTo > nm] < Tj=, 2 exp{2H(5J+1) 2n%aBfomd; + ﬂm,jani/3)}

where we will choose the 7,,; so that ¥;=." 5,.; < n,, and where the following
bound on the variance is used:

var(Y,m(4)) =n~*/* 3 {| ;N nA| EX;, ., — | G;NnA |* EX], .}

5.27
(5.27) < alfum|nA| =n%ifom|Al.

To obtain the desired summability, it will suffice to have

77'sz 30m,i
4naifomd;  4am

(5.28) 2H(5j+1) < In ¢y, +
for m < j < k,, and m = my, provided ¥=.! ¢,,; < ¢, for each m and n. As was
done for (5.21), an application of (5.23) permits the above to be simplified to

ﬂ?nj 377mj
dcoa2720;  da,

(5.29) 2H(5j+1) <In em,j +

To handle the term T, we use the bound
(5.30) | Yom(B\A) | <= 0™ 35 Loarnay(Up) | Xsmm |

when A CBC A*and A, A* € &5, . To apply Bernstein’s inequality in these
cases, we need to center the sums at their expectations and compute the
corresponding variances. But here the mean and variance of the right-hand side
of (5.30) are, respectively,

(5.31) n|ANA | n~E | X pm| < 05, n%mfrm
and
n2* TGN n(ANA) | EXjnm)? — | GGNR(ANA) |2(E | Xinm )3

d. 2
= O, . n“Qmfr,m-

(5.32)
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Thus to apply Bernstein’s inequality, we need after centering to have
(5.33) Ny, — Oy, VU fr,m

remain positive. Write 67, = 8, and 57, = nmx,. We will ask that the term in
(5.33) exceed 7} /2; that is

(5.34) 5:’:znfdamfn,m =nn/2.
In view of (5.23), (5.34) would be satisfied if
(5.35) cedkal*<nk/2

for m = my.
Subject to (5.34) being satisfied, we may apply Bernstein’s inequality to obtain

(n3/2)*
2(5r’l:znda?n nm + n:;am/6)

(5.36) P[Toy >kl <2 exp{ZH(é ) —

We will therefore aim to satisfy the inequality

(n%)? 3
* < —_— —_—.
(5.37) 2H(6%) < In e, + 165%n%a2fon | 1a,
Again, (5.23) permits the replacement of this inequality by
(n%)? 3nm
—_— —_— . >
166%c.a%* " 8a,’ m = Mo

To show that it is possible to satisfy all of the above inequalities, it suffices to
choose

(5.39) Om = 008", am = aoB""
(5.40) M = 108%™, Mmy = m;(1 — BO).
The key inequalities (5.25), (5.29), (5.35) and (5.38) can then be rewritten for

m = my as, respectively.

(5.41) Koy’ < In e, + _m_ g (2=a)a=26Im A\ 310 gta=tm,
4coal™™ 4a,

(5.38) 2H(6%) <Ine, +

. BT 310
i 2 K —r —r(j+1) < i ]___770_] —(2—a)am—(1—-2b)j /\ 0 —am+b}
(5.42) 2Ké&y'8 In em; + 146211(2)_050J'8 14, [¢]

m=<j<Rky;

(5.43) doff 7™ < I B Vhn;

|
lZcza(l) o
[

(5.44) 2K56rﬁ ~rkp < ln cm n% ]‘B"(l —2b)k,,—(2—a)am A <3n0>‘3_am+bk

l 165002 ao J 8&0

Since r < (@ — 1)7!, one can choose b > 0 sufficiently small so that
a—1<(1—-b)/(r+ b)™" or equivalently,

rla—1)<@@-5)/1+b/r)<1.
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Moreover, one can also choose b sufficiently small to insure
rle—1<1-ab<l,
which insures that
(2—a)/(r—1+2b)>1/(r+b).

Let a = (r + 2b)/(2 — «), which in turn is larger than r + b. Then let k,, be
the first integer strictly larger than (o« — 1)am/(1 — b) for m sufficiently large.
Since 0 < 8 < 1, straightforward algebra shows that we have

(5.45) r<@-a)a—2b and r<a—b;

(5.46) (r—1+4+2b)j=(2—a)am and (r+b)j<am, for m=<j<ky;
(5.47) km = (o — 1)am/(1 — b);

(5.48) m < (2 —a)am/(r — 1 + 2b) and k, < am/(r +b),

The choice of ¢, = eom ™ and e,,; = ¢, suffices to provide a suitable convergent
series for which, by an appropriate choice of ey, Y &m < ¢/3 and ¥, D57, & <
>m Bmem < €/3.

Choose 7o so that Y ,m-1 7» < 1 and choose ay and &, < 1 arbitrarily. Then,
provided my is sufficiently large, (5.41), (5.42), (5.43), and (5.44) will be satisfied
by examining the appropriate powers of 8 and taking into account (5.45), (5.46),
(5.47), and (5.48), respectively.

The only place in the above where we use the symmetry of Xj is to insure that
EX;,.,m = 0, which was needed in the use of Bernstein’s mequahty In the general
case, we instead apply Bernstein’s inequality to the sums Y,,,,,(A) Yom(A) —
Yn.m(A). Since

| Eynm(A) | = 7 35 | (0A) N G| E | Xjnm| < namfam| Al
for A € &, then
SupAQBQA"’l EYn,m (B\A) I = ndamfn,m | ANA | .

A comparison with (5.30) and (5.31) shows that only minor modifications are
required in (5.34) and (5.37). With these modifications, the proof proceeds as
above. [0

We can now prove

THEOREM 5.3. With X;, Y., Z, &/ as above, Y, converges to Z weakly with
respect to dp.

PROOF. Since the finite-dimensional distributions converge (Proposition
5.1), by Theorem 4.3 it suffices to show tightness of the Y,,. We do that by means
of Theorem 3.4. Given A,, — 0, for each m, let C,,(Y,,) = 0. Choose v,, sufficiently
small so that P[|| Yo — (7”') ||y = An] < e/2"‘+1 for all n. This can be done by
Proposition 5.2. Let J,, (Y ) =Y,— (Y("") ylmy,

Fix m, and let T, = J, (Y ) Since |y(“"")(C,,,) | < Ym, T, has an atom
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in Cp3 =n7'( — 1, j] only if Xj is larger than v,,(n%* — 1) in absolute value. By
(5.22), the probability of this happening is O(n~%. Thus (4.4)(j, ii, and iii) follow
easily, and so by Theorem 4.4, we can find 9,,, M,,, N,», and h,, such that

P(Jm(Yn) & %A(hmy Nm9 Nm, Mm)) = e/2m+l’

We can therefore apply Theorems 3.4 and 4.3, and we are done. O

Let us now discuss the cases a € (0, 1]. If X; is in the domain of normal
attraction of a stable law of index «, o = 1, it is necessary first to center the Y,
processes appropriately (cf. Gnedenko and Kolmogorov, 1954, page 175) and then
use techniques similar to those employed in Proposition 5.2. When a < 1, the
methods needed are considerably easier, since

o) -
IYR o = n7 35 | X511y x124m,
and so
E| Yo = n*YE | X;| 1x,2ynt

,Ynd/a
< pd9e f P[| X;| > x] dx
0

,ynd/at
< cynd9/e f x7 dx
0

=c(l—a)™'™ >0 as yv—0.

6. Remarks. 1. Consider the one-dimensional situation in which & =
{[0, t]: 0 = t =< 1}, the family of right closed intervals. Identifying Z(¢) with
Z([0, t]), we are in the well-known case of processes whose sample paths are right
continuous with left limits, that is, processes with paths in D[0, 1]. The results
of Section 5 then provide a central limit theorem for D[0, 1], where, however,
weak convergence is stated with respect to Skorokhod’s metric M, rather than
with respect to the more usual metric /;. To see that, in fact, our approach also
yields the stronger result, recall that the way the central limit theorem is proved
is to show both the convergence of the finite-dimensional distributions and
tightness, and recall that the way tightness is proved is to show that the
hypotheses of Theorem 3.4 are satisfied. However, observe that once the hy-
potheses of Theorem 3.4 are satisfied, we have, with high probability, a bound
on how close together the jumps of S, that exceed a given size can be. By the
tightness criteria for J; (cf. Billingsley, 1968, page 116), we see then that we also
have, in this case, tightness with respect to J;, and hence a central limit theorem
with respect to J; as well.

2. Consider a general array X,;: j € J% j < k,} of independent infinitesimal
r.v.’s. In this case we view X,; as a random mass placed at ji,) := (ji/kn1, - - -,
Ja/kna). Assume k, approaches infinity in the sense that k,; — +o for each
1 < i < d. We use our same notation for the resulting unsmoothed and smoothed
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partial-sum processes, namely
(6.1) Sn(A) = Tsea Xnj, Yn(A) = Yy, ea X

where now the normalizing constants are included in the {X,;}, and the {U,;} are
independent r.v.’s independent of the {X,;} with U, being uniform over the
interval Cp; = (Joy — 1), Jy]- Now define for any real Borel set B and any
AEw,

(6.2) vn(B, A) = ¥;.ea P[Xn € B].

This is then the expected number of atoms located in A that have masses with
magnitudes in B. Assume that on (—c, —x].U [x, ®) for any x > 0, the measures
v.(-A) converge weakly to v(-, A), the limiting Lévy measure, uniformly
over A € 7. For purposes of this discussion, let us assume further that we have
a homogeneous case in which »(-, A) is of the form |A| »(-) for some Lévy
measure ».

If X&) denotes the truncation of X,; at r and if S}, and Y’ denote, respectively,
the unsmoothed and smoothed partial-sum processes formed from
the truncated array {X(7}, then the necessary and sufficient conditions for the
classical case (cf. Gnedenko and Kolmogorov, 1954, page 124) could be used to
obtain conditions for the weak convergence of the finite-dimensional distribu-
tions of the S,-processes. These conditions would be expressed in terms of {v,}
and the means and variances for the truncated arrays, namely

(6.3) pn(r, A) = EST(A), oi(r, A) := var ST (A).

Such conditions could be described as requiring that all subarrays cut out by
A € g« are in the domain of attraction of the appropriate infinitely divisible
distributions. By contrast, to obtain conditions for the weak convergence of the
finite-dimensional distributions of the smoothed Y,-processes, it may well be
necessary to introduce an assumption about the smoothness of the boundaries of
the sets in ..

To complete a central limit theorem for these general arrays one needs to
verify the required tightness. A key assumption that may be needed for our
arguments to carry through in this case is the uniform domination of the »,-
measures by the Lévy measures; e.g.,

(6.4) va(B, A) < cv(B, A)

for some constant ¢, and all A € & and B C (-, —x] U [x, «). For the case
studied in this paper (that is, i.i.d. arrays in the domain of normal attraction of
a stable law,) this property is known to hold; cf. (5.22) above.

It would be very interesting to obtain a central limit theorem for general
arrays. We expect one must assume (6.4), sufficient smoothness of the boundaries
of A € o, and bounds on H(5), the log-entropy of .. The last condition is
necessary to ensure that the limiting Lévy process exists in 9 (&) (cf. Bass and
Pyke, 1984Db).

3. Theorem 3.4 characterizes many of the compact subsets of Z(%7). It would
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be interesting and useful to have a complete characterization of the compact
subsets of (/). For example, consider a set-indexed process Z where, for each
w, Z(w) is the set function that is generated by surface measure of a ball whose
center and radius depends on w. Such a process belongs to & () but not P («/).
Of course, much more complicated and interesting examples might arise. To
study the weak convergence of such processes, one would first like a suitable
criterion for tightness, hence a characterization of compact sets.

4. Recall that our metric is related to Skorokhod’s M, topology. Of the
topologies for D[0, 1], most work since 1956 has concentrated instead on
Skorokhod’s J; topology. There are inherent difficulties in extending the latter
to Z(«/). The definition of J; requires the existence of a group A of homeomorph-
isms on the index set [0, 1], and in this aspect has been extended to very general
index sets by Straf (1972). However, a simple example shows why straightforward
extensions of JJ; are not suitable for general spaces of set-indexed functions, Let
& be the family of closed convex subsets of I¢, and define functions x,: %/ — R
by x.(A) = 1if t, € A and 0 otherwise; n =0, 1, 2, - - -, where t, € 1, is a fixed
sequence which converges to a point t, as n — . Clearly one requires a topology
under which x, converges to xo; but can one construct homeomorphisms \, on &
so that x, ° A\, = x,? Perhaps such )\, exist, but their construction would not be
simple. Of course, & and x, can be considerably more complicated.

A more appealing approach might be to consider homeomorphisms A on I¢
itself. But, in general, A will not map . to & and so x © A\(A) may not make
sense. Enlarging & to &/* = {AA: \ € A, A € 7} generally results in a class of
sets that is too large to support the processes under consideration. It would be
extremely interesting to see if a suitable extension of J; to & () exists.

5. A further application of our results is to empirical processes. Although the
limit processes of empirical processes are usually continuous, the empirical
processes themselves are not, and there are considerable difficulties involved
with the nonmeasurability of certain necessary random quantities. One possible
way of approaching the questions of nonmeasurability is to observe that empirical
processes have paths in 9,(«) and to use the topology we introduce here.
Measurability follows from Proposition 4.1. The relation to uniform convergence
is given by Theorem 3.5.

It would be worthwhile to compare this approach with those of others, such
as in Dudley (1978) and Dudley and Philipp (1983); for other references, see
Giné and Zinn (1984). In particular, is the class of central limit problems the
same for each approach?

6. Our central limit theorem of Section 5 requires the log-entropy H to satisfy
H(3) = K67.1<r<(a—1)7" As discussed there, there is no loss of generality
in taking r > 1. By an example of Adler and Feigin (1984), no limit process can
existif r> (e —1)7L.

This leaves the case r = (o — 1) ". By Bass and Pyke (1984b), there exists a
set-indexed stable process whose paths are outer continuous with inner limits if
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H satisfies

(6.5) J; (H(x)/x)*™ V= dx < oo,

We would expect that a more refined truncation procedure, such as the one in
Bass (1985), would allow one to prove a central limit theorem for H satisfying
(6.5).

7. In this paper we have proved a uniform central limit theorem for smoothed
versions of partial-sum processes for which the random atoms are at fixed
locations, namely at the points of a regular lattice. A central limit theorem may
also be obtained for sums of i.i.d. Zy(«)-valued processes and this is to be
included in a forthcoming paper by the authors. This provides a central limit
theorem for the cases of random masses at random locations, generalizing results
for empirical processes to the case of nonnormal limits. By contrast, recall that
an empirical process involves nonrandom constant masses at random locations.
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