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OPTIMAL PREDICTION OF LEVEL CROSSINGS IN GAUSSIAN
PROCESSES AND SEQUENCES

BY GEORG LINDGREN
University of Lund

Let 5(t) be stationary, Gaussian, and suppose one wants to predict the
future upcrossings of a certain level u. The paper investigates criteria for a
good level crossing predictor, and restates in simple form a result by de Maré
on optimal prediction. Write 7t + h) for the mean square predictor of
n(t + k) at time ¢, and let {(¢ + k) be the conditional expectation of n’(¢t + h)
given observed data and given (¢t + h) = w. It is shown that an alarm which
predicts an upcrossing at ¢ + h if 7,(¢t + h) differs from u by a quantity that is
a certain function of (¢t + h) is optimal in the sense that it maximizes the
detection probability for a fixed total alarm time. Explicit formulas are given
for the upcrossing risks at alarm, detection probability, and total alarm time.
In an example the optimal alarm is compared to a naive alarm which predicts
an upcrossing if 7,(t + h) differs from u by a fixed proportion of the residual
standard deviation. The optimal alarm locates the upcrossings more precisely
and at an earlier stage than the naive alarm, which has a tendency to give
late alarms.

1. Principles of level crossing prediction. To predict a stationary sto-
chastic process 7(¢) is in principle nothing but to calculate the conditional
distribution of the entire future of the process given all available data. If the
process is Gaussian, with known mean and covariance function, the conditional
mean value function 7,(t + h), h > 0, calculated at time ¢, completely determines
the distribution of the future (together, of course, with the conditional covari-
ances, which do not depend on the data), and is therefore the perfect way to
summarize data. Furthermore #,(¢ + h) is optimal in the mean square error sense
if the object is to give a single value to approximate n(t + h), i.e. to make value
prediction.

However, if the object is to predict whether or not #(t + k) will exceed a
specified level u for some h, 0 < h < hy one can not only use the single value
7:(t + h) for each particular h, but must also consider the predicted change rate,
in a way to be specified later. Furthermore, and this is important for this type of
event prediction, the goodness of the prediction principle must be judged by its
ability to detect the level crossings, to locate them correctly in time, and to make
few false alarms, or to make alarm for as short time as possible.

The naive way to predict upcrossings of a level u > E(#(t)) is to fix an alarm
level &, and to foretell that »(¢t + h) will upcross u if 7.(¢t + h) upcrosses i, and
since V(7:(t + h)) < V(n(t + h)) it seems also reasonable that one should take i
less than u in order to obtain sufficient detection probability. A basic result by
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de Maré (1980) states that one should predict an upcrossing of the level u by
n(t + h) if

. 2 P
Q) <H_Ml> < 2 log W(@) + 2 log(o1/on) + K.

’
Oh h

Here ft(t + h) is the conditional expectation of 5’(t + h) given available data and
also given that n(t + h) = u; 7 and o2 are the residual variances of n(¢ + h) and
n’(t + h) given data, and for ¢4? given also that n(t + h) = u. Further, the
function ¥ is defined by

W(x) = % f_ ] f _exp(—2%2) dz dy = $(x) + x8(a),

and K, is an arbitrary constant that determines the detection probability.
Taking the lower limit

1= u — 6,{2 log W(5i(t + h)/oh) + 2 log (ch/an) + Kin}/?

one obtains a variable alarm level that adjusts according to the expected growth
rate of the process.

The alarm principle (1) is optimal in the sense that it has the highest detection
probability of all alarm principles with the same overall alarm probability.
Further, it predicts the time for an upcrossing better than other possible alarm
principles.

The paper is organized as follows. In Section 2 is defined precisely what is
meant by alarm probability (or alarm size) and detection probability, and in
Section 3 are introduced the concepts of specific and total risks at alarms. By
this we mean the conditional risks for upcrossing given that an alarm has actually
been given; the specific risk is then defined for each set of available data which
gives rise to alarm, while the total risk is the average of all specific risks.

The optimal alarm is derived in Section 4, by comparison of the conditional
distribution of data given an upcrossing, and the unconditional distributions.
Explicit formulas for its specific and total risks are given in Section 5.

By considering the costs for giving alarm, and the losses incurred by unpre-
dicted upcrossings, one can find the best balance between detection probability
and total alarm probability; this is done in Section 6. Finally, an example of an
optimal level crossing predictor is given in Section 7, and compared to a naive
predictor.

The literature on level crossing prediction is sparse. Some ideas on detection
probabilities and risk functions were developed in Lindgren (1975) and (1979).
The likelihood ratio principle was used by de Maré (1980) to derive an expression
for the optimal alarm which is equivalent, but not as explicit as the one given
here. The formulas for the risk functions are based on results in Lindgren (1980).

2. Alarm size and detection probability. Let {#(¢), ¢ € T} be a stationary
zero mean Gaussian sequence or continuous time process with covariance func-
tion r,(t) = E(n(s)n(s + t)). Suppose that, at time ¢, prediction may be based on
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some data £(t), finite or infinite dimensional, which may include 5(s), s < ¢, as
well as other information available at time ¢. It is important that £(f) contains
all information that may be used for prediction at time ¢, and this precludes, e.g.,
the use of any derivative component of £(¢) which is not already in £(t). Examples
of possible data sets are £(t) = (5(t), n(t — 1), - - -, n(t — p))T in both discrete and
continuous time, and £(¢) = (n(t), n’(t))T if 5(t) is a differentiable continuous
time process. We assume for simplicity of notation that £(¢) is finite dimensional,
£(t) € RP. We also make the basic assumption that {5(t)} and {£(¢)} are jointly
stationary, ergodic and Gaussian.

Denote by {t:} the upcrossings of a predetermined level v, i.e. the times when

2) n(ty — 1) < u < y(t), in discrete time,
3) n(tx) = u, upcrossing, in continuous time.

We write u for the upcrossing intensity, i.e., the expected number of upcross-
ings per time unit,
_ JP(n(-1) <u = 1(0)), in discrete time,
# E(#{t. € (0, 1]}), in continuous time,

and suppose u < %, so there are only a finite number of £;’s in any finite interval.
Since 7(¢) is Gaussian a sufficient condition for this in continuous time is
—r;(0) < . In that case

4) p = fuo(WE(m (0)" | 7(0) = u) = fyo(w J; " 2fy ) 1n0=u(2) dz,

where x* = max(0, x), and f,, f,|,=. denote densities and conditional densities.
General aspects on upcrossings in continuous time are developed in Leadbetter
et al. (1983), Chapter 7.

Denote by C{ the event that 5(*) has an upcrossing of the level u at t and
write P°(¢ | C) for the Palm probabilities (for n(¢) and £(*) € RP) given a
u-upcrossing in n(e¢) at t. The Palm probabilities describe statistical properties
around the upcrossings provided {»(t)} and {£(¢)} are jointly ergodic. For example,
for any Borel set B C RP, with probability one,

#{tx € (0, T]; £(tx — h) € B}
#{t, € (0, T}

_ E(#{t € (0, 1]; £&(te — h) € B})

E(#{t, € (0, 1]}) :

For a discrete time sequence the Palm probabilities are simply conditional
probabilities, e.g.,

(6) P°(¢(t) € B| C{) = P(&(t) € B|n(-1) <u < 5(0),

while for a continuous time differentiable 7(¢) we have the following lemma.

P(((t — h) € B|C) = limpo
(5)

LEMMA 2.1. If {n(t)} and {£(t)} are jointly stationary, Gaussian and ergodic,
n(t) mean square differentiable and £(t) continuous, and £(t), n(0), 7’ (0) have a
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nonsingular distribution, then

oo

Pt(t) EB|CY) = p™ J; _, Zhoro, 2PER) €B|1(0) =u, n'(0) = 2) dz.

Proor. This follows in the same way as Lemma 7.5.2 and Theorem 10.3.1
in Leadbetter et al. (1983).0

By a crossing predictor with warning time h we mean a Borel set ', C RP, also
called an h-alarm or simply, an alarm region, such that any time when £(¢t)
belongs to I'x, we consider it likely that (¢ + h) will have an upcrossing of the
level u, i.e., C%, will occur. We then say that the alarm is set at time ¢ for an
upcrossing at time ¢t + h.

By our definition, any Borel set I' C R” may be used as an alarm region, and
obviously we need some measure of how well it will work as such. The following
probabilities and conditional (Palm) probabilities describe the relevant properties

of T';, as an alarm region,
(7 ap = P(£(t) € Tw),
) vo = P°((t) € T4 | CY)).

We shall call a, the size of the alarm region or the alarm probability, while v,
is the detection probability with warning time h. Thus, aj, is the proportion of the
total time £(t) spends in the alarm region, while v, is the (long run) probability
that the h-alarm is set exactly h time units before the upcrossings; cf. (5).

A further quantity of interest is

9 Y = P°&(t) € Ty | C)),

which describes the “timing” of the alarm considered as a function of h’.

Each warning time h > 0 has its own alarm region T',. An alarm policy is
simply any family {T's}n>o of alarm regions. At any time ¢ the alarm can be set for
different times in the future. Write

(10) H, = {h; £(t) € Tu},

so that ¢t + H, is the (random) set of times for which, at time ¢, the alarm is set
for an upcrossing. As time goes by, this set changes, points or intervals of high
risk may appear or disappear, or may be shifted back and forth. This time
dependence is well illustrated in a diagram showing the set

{(t+ h,h) ER*;tER, hEH,.

The fact that a point (s, h) belongs to this set just means that at time s — h the
alarm is set for an upcrossing at time s; see the example in Section 7.

It is clear that in case of an upcrossing at time ¢, the conditional probability
vn = P°(&(t — h) € T, | C*) should be as large as possible for each warning time
h. Further, since v, is increasing in T, i.e., (with obvious notation) I', C T},
implies v, < w4, it is also clear that it is only meaningful to compare alarm
policies with the same a;-functions. If one is willing to accept a larger total alarm
time one can always increase the detection probability by increasing T';.
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By an optimal alarm policy of size {ap}p=o is meant a family of alarm sets
{Tr}1>0, such that

P(E(t) (S Fh) = Op, h > 0,
P°(£(t) € T»| Ci5)) = suppes P°(£(t) € B| C5)),
where the sup is over all Borel sets B in R?, such that
P(¢(t) € B) < ap,.

An optimal policy can also be described as the policy which, for a given detection
probability v, spends the shortest total time in alarm state. (Note that this is
not the same as having the smallest number of false alarms.)

In practice the total alarm time «), must be balanced against what can be
obtained in detection probability. In order to get a reasonable v, for some
particular h it may be necessary to accept a long total alarm time for that
h-value. Since both the cost of keeping up an alarm and the loss incurred by not
giving it, may depend on the warning time h, here is a possibility to affect total
costs by trading detection probability for total alarm time for some values of h.
The minimal cost and best choice of ay, v is derived in Section 6 under some
simple assumptions.

3. Specific and total risks at alarm. Besides the total alarm time «;, and
the detection probability v, there are a few more quantities which are of interest
for the description of an alarm policy.

Consider an alarm region I'" with smooth boundary 9T, defined by a continu-
ously differentiable function x(x), x € R?, such that

xETle x(x) <O0.

When time is continuous we further assume that the data £(¢) form a continuously

differentiable process.
An alarm from the alarm region I' then starts any time £(¢) enters I'. Let {sz}
be the alarm times for some specific T, i.e.,

(11) s, —1) €T, £(sk) €T, in discrete time,
(12) £(sy) €T, entering I, in continuous time,

and assume that the mean number of alarms per time unit is finite, so there are
with probability one only a finite number of s, in any finite interval.

Then write Bﬁr’ for the event that £(¢) enters the set I' at time ¢, and as usual,
P°(» | BM) for the conditional (Palm) probabilities given an entrance at time ¢.
Expectations with respect to P° are denoted by E°.

The following lemma specifies the stochastic variation of £(s;) and its deriva-
tive at the alarm times in continuous time; for a proof, see Lindgren (1980).

LEMMA 3.1. (a). The long run distribution of £(sy) at alarms s, i.e., the
distribution of £(0) under P°(e | B{?), has the density (over dT")

féo®) = 7 fuo(DE((n: - £'(0))* | £0) = x),
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where n, is the unit normal to 8T at x pointing into T, and n, - £(0) =
Y n¥¢!(0). The normalizing constant c is equal to the mean number of alarms per

time unit.
(b). The long run joint distribution of £(sx) and &' (s) has density

Feo(@)f Eonem=+2) = ¢ nx - 2)*fro)X)fe ©0)120y=(2)
over T X RP.

Now, for any I' C R? with smooth boundary 9T, let u{" be the conditional
u-upcrossing intensity for n(¢ + h) given B, i.e., the upcrossing intensity at time
t + h given an alarm at time ¢. This intensity is a function of h such that, for
any interval I,

(13) E°(#{u-upcrossings by 5(t + h), h € I}) = fha ud dh

is the long run (considered over {s;}) mean number of u- upcrossings in the
intervals s, + I following the alarms.

For x € 9T we also introduce the conditional u-upcrossing intensity p\"(x) for
n(t + h) given B{" and given that £(t) = x. With the density f2(x) for the alarm
point x, given in Lemma 3.1(a) one then has

py = L " wi(2)f Yo (x) ds(x),

where ds(x) is the surface element on 9T

We shall call uj” the total upcrossing risk at alarm, and " (x) the specific risk
at x. Note that every time an alarm is given one knows the value of £(¢) and can
calculate the corresponding specific risk u\"(x).

Further, let

B = P%y(t + h) > u| B),
B (x) = P°(n(t + h) > u| B®, &(t) = x),

be the total and specific exceedance risks after alarms, satisfying

B = f B @)f o (x) ds(x).
x€9T

For a fixed alarm region T, both 8" and . \" describe the risk for an exceedance
at time h after the alarm. Then B},“’ is the total risk that the value exceeds u
exactly at time ¢ + h, while u{" gives a feeling for when the upcrossing is likely
to occur. We shall return to the total and specific risks in Sections 5 and 7 and
see how, for an optimal alarm, they can be calculated as simple or double integrals
of elementary functions.

4. Optimal alarm regions. To obtain an optimal level crossing predictor
or alarm policy one can use an analogy with “most powerful tests”, and consider
the likelihood ratio between the conditional (Palm) distribution of £(¢) given an
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upcrossing 9(¢ + h) = u, and its unconditional distribution. As is clear from the
definition of optimality, and as, ., no other distributions can be of interest in
this respect.

Write p(x) for the (unconditional) density f(x) of £(t), and denote by pi“(x)
the density of £(t) under the Palm distribution P°(s|C%,), i.e., given a
u-upcrossing 7(t + h) = u. Thus p{“(x)/p(x) is the likelihood ratio between the
conditional and unconditional distributions.

LEMMA 4.1. The alarm policy {T'1}=0 with
(14) T = {x € R?; p}(x)/p(x) = ki),
ki, nonnegative constants, is optimal of size

an = P(§(—h) € Ty),
le.,
P%(((~h) € Tx| C3”) = supses P°(&(—h) € B| Cy")

where the sup is taken over all Borel sets B such that P(£(—h) € B) < ay,.

PrOOF. (This is similar to Theorem 2.1 in de Maré (1980), but the interpre-

tation is slightly different.) Let I';, be defined by (14). As in the proof of the
Neyman-Pearson Lemma, for any B € & such that

P(&(—h) € B) = P(¢(—h) €T»)

one has
pi(x)
P%(t(=h) € B|CY) = | “2= dPypy(x) = + < +
B p(x) BN, BT, BN, BT,

()
- J; p;(f;) dPy-n(x) = p°(§(=h) € Tw| C{”),

since

‘Lnl‘fl dPg(_h)(x) = J;‘nrh dPE(_h)(x)
and p{(x)/p(x) = ks on T, pi(x)/p(x) < ky on 5.0

To express the optimal alarm region I';, in more explicit form we have to
introduce a further conditional upcrossing intensity,
ur(x) = the conditional u-upcrossing intensity for 75(t + h) given £(t) = x.

In continuous time this is a function of h such that, for any interval I,

(15)  E(#{u-upcrossing by 5(t + h), h € I}| £(t) = x) = J;ez un(x) dh,
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(cf. (13)), while in discrete time u,(x) is a simple conditional probability. Note
that E(e|£(t) = x) is a regular conditional expectation, and that, e.g., the
unconditional upcrossing intensity is

= J; , kn(x)p(x) dx.

One should not confound pux(x) with the specific risk uﬁ,r)(x), which is the
upcrossing intensity given that £(¢) enters I' at x.

The conditional intensity us(x) can be expressed explicitly as in the following
lemma, the proof of which is standard crossing theory; see, e.g., Leadbetter et al.
(1983), Chapter 7.

LEMMA 4.2. If £(—h), 7(0), n’(0) have a nonsingular distribution, then (cf. (4))
#r(%) = fuong—m=WE(n’(0)* | &(—h) = x, 9(0) = )

(16) >
= froe-m=x(1) ., 2fy ) 16-m=xn0)=u(2) d2.

In discrete time
un(x) = P(n(=1) < u < 7(0) | &(—h) = x).

The optimal alarm region consists of precisely those x for which u,(x) takes
its largest values.

THEOREM 4.3. The optimal alarm region Ty, of size ay, for alarm with warning
time h is given by

Ty = {x € R?; up(x) = knul,
when the constant ky, is such that P(§(—h) € T),) = ay.

ProoOF. By Lemma 4.1 the optimal region consists of those x for which
Pi(x)/p(x) = k.

Here p(x) = fg-m(x), and under the present conditions, by Lemma 2.1,

-]
pi(x) = pt f , 2f20), Uy 2)fe=h)in©O)=un @)=(%) d2.
-

By changing the order of conditioning this is seen to be equal to

o0
1 e (®) frioy6-m=(10) f , 2fy ) 16-m=xn0)=u(2) d2,
=

which in turn, by Lemma 4.2, is equal to

1 feem (@) pn(x).
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Hence
Py(x)/p(x) = p " ualx)

in the continuous case.

Since the same relation holds in the discrete case (as is easily seen by
integrating both sides over any B € &) we can use Lemma 4.1 to get the
statement of the theorem. [

REMARK. The normal assumption is not essential in Theorem 4.3, and the
same optimal alarm region applies for all processes for which the conditional
upcrossing intensity is given by (16).

We shall now investigate the conditional crossing intensity u,(x) further to
get an explicit and intuitively appealing rule for when to give alarm, defined in
terms of the mean square predictor

n(t + h) = E(n(t + h) | £(¢))
and the (conditional) expected growth rate
e+ h) = E(n'(t + h) | £0), n(t + h) = u).

To be precise, by E(n’(¢t + h) | £(t), n(¢ + h) = u) we mean the random variable
8n(&(¢), u) where gx(£(t), n(t + h)) = E(n’(t + h) | £(t), n(t + h)).

From now on, we concentrate on the continuous case; discrete time prediction,
although conceptually simpler, is hindered by heavier notation.

Let, for the rest of the section, time be continuous and 5(t) and £(t) € R” be
continuously differentiable, zero mean stationary Gaussian processes with
V(n(0)) = 1, V(n’(0)) = X, and let the covariance matrix of 5(0), 7°(0), £&(t) =

(gl(t), ) Ep(t))T be
1 0 Z13(t)
2 = 0 As Za(t)

Za(t) Zaet) s
where
Z1a(t) = Za(t)” = ry(t) = Em(0)E(®)T),
Zoa(t) = Zas(t)” = —rpe(t) = E(n’(0)&()T),
Zgs = rg(0) = E(£(0)£(0)7).

As earlier we assume that 7(0), ’(0), £(t) have a nonsingular distribution, so
that in particular 233 is invertible.

LEMMA 4.4. The conditional normal distribution of
(a) &(t) given 9(0) = u, 3’(0) = z has mean
Mgy = uEgl(t) + Z)\g_lzgg(t)
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and covariance matrix
Ae = a3 — Za1(t)Z13(t) — A3* Sa(t) Zas(t),
(b) n(0) given £(t) = x has mean
m,. = Z13(t)Z33x

and variance

o3y =1— Zi5(t) 233 Za(8),
(c) 7’(0) given £(t) = x, n(0) = u has mean

My .ty = 0. A3' Zo3(H) A (X — uZs(t))
and variance
U?wzn = A -1 .
A2 + Zas(t) A7 Zaa(t)

PROOF. (a) and (b) are standard, while (c) perhaps needs a comment. The
simplest way to obtain this form of conditional mean and variance is to split the
joint density of 5(0), ”(0), £(¢) into products of conditional normal densities,

fowe = Fafw Fetow = FeFarefarin
and then identify coefficients in the exponents, i.e.,

u
(uz xT)EZ1<z> =u? 4+ N\%22 + (x — mep)TAT (X — My.py)
x

=xT33x + 073w — my.)® + 0%z — myy,)? O

Now define the p X 1 matrices
Ay = 213(—h)25,
B, = 2 ., A3 Zas(—h)AZE,
and the constant
Ch = 05.5\2" Z23(—h) ATk Z51(—h),
so that
My.: = ApX, My . = Bpx — Chu.
Thus the mean square predictor of n(¢ + k) at time ¢ based on £(¢) is
a7 M(t + h) = E(n(t + h) | £(8)) = Ant(?),

while the conditional predictor of »'(¢ + h) given data £(¢f) and given the
hypothetical event 5(t + h) = u, is

(18) {ut + h) = E('(t + h) | £(t), n(t + ) = u) = Bu£(t) — Chu.
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We shall occasionally use the summarizing notation

= — iy — [+ R)) _ (A (0
for the predicted value and the (conditionally) predicted derivative.

THEOREM 4.5. If 5(0), n°(0), &(—h) € R? have a nonsingular distribution, the
optimal alarm region of size ay, for u-upcrossing by n(t + h), based on &(t), is

2
T, = {x € RP?; <w) — 2 log \P(M) — 2 log In'etn o Kh} ,

Op-¢ Oy'-tn Oy-¢

where K, is such that P(¢(—h) € T}) = oy and ¥(x) = ¢(x) + x®(x), ¢ and ® being
the standardized normal density and distribution functions.

ProoF. By Theorem 4.3 and Lemma 4.2 the optimal alarm region consists
of those x for which
17 un(x) = 1 yermizo=<(WEM (t + h)* | £@1) = x, n(t + h) = u) = k.

Here u = (27)"'v; exp(—u?/2), and since for any normal variable { with mean
m and variance ¢2,

E({%) = a¥(m/0),

1 1 u— Anx 2 Bix — Cru
un(u) = exp(——< ) )a . \If<-—— ,
" gp. V2T 2 Oy.¢ v Oy’ .ty
so that

2
2 log pu 7 'ua(x) = u? — (u'ﬁ> + 2 log W(M) +2log 2B _ ¢

On-¢ Oy’ -n

we have

where ¢ = log(2w/);) is independent of x and u, which proves the statement of
the theorem. [

The optimal alarm region T, is of course the same as that derived by de Maré
(1980), Corollary 3.7, but it is written here in a slightly different form to allow
easy comparison with the mean square predictor 7,(t + h).

COROLLARY 4.6. The optimal alarm for a u-upcrossing, with warning time h,
starts any time the mean square predictor 7:(t + h) exceeds the varying lower
alarm level

2 1/2
t=u- a,,.5<2 log W(M) + 2 log T 4 Kh) .

Oy’ -n On-¢
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The alarm stops when the predictor returns below the level, meaning that the risk
for an exceedance is low, or when it exceeds the upper level

U+ 0,42 log W(&(t + h)/oy.t) + 2 10g(0y.co/0,.0) + Kn)2,

in which case the risk for an upcrossing is low but when one expects that n(t + h)
is well above u already.

The optimal crossing predictor depends only on 7,(t + k) and &t + h) and
one can therefore always reduce data to these two variables and define the
reduced optimal alarm region T, for & = (4:(t + h), &(t + h))T by

2 ’
19) Iw= {(m, m’) € R?; (u m) — 2 log \If( n ) — 2 log T o Kh}.

Oy-¢ Oy’ -t Oy

5. Size, detection probability and risk for the optimal alarm. The
optimal alarm depends only on two linear functions of available data and is
therefore easy to analyse for normal processes. As shall now be shown, the
probabilities as, v, and the total and specific risks u\", pi(x) and B3, B (x)
defined in Section 3, can all be expressed as integrals of simple functions, and
easily evaluated numerically.

Recall the notation

5 = E(t) = (At + h), §(¢ + h)T = (ﬁ)ﬂt) - <Cgu)

introduced in Section 4 and write for short H = (n(t + h), 7’(t + h))”; think of
= as an estimator of H. Obviously, Z and H are jointly normal and we use the
following notations for means and covariance matrices (unconditional and con-
ditional):

mgz = E(E)’ EE = COV(E)’
and

mz.u(2) = E(E|n(t + h) = u, 9’(t + h) = 2),
Ze.g = Cov(E|n(t + h), n'(t + h)).

The size ay, of the optimal alarm with reduced alarm region I',, defined by
(19), is

ap=P(E € TY).

For any bivariate normal distribution of random variables X;, X, with mean
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m = (m,, my)T and covariance matrix T (with V(X,) = o?), define

aK(m’ 2)

2
= p((“ X‘) <2log w( X ) +2log Tt 4 K)
Oy-¢ Oy’ £ On.¢

) = l¢<——"2 - "”)

xg=0,. ¥ UK T2 02

2
. P((u Xl) =<2log \I'( a: ) + 2log Inen 4 g
On-¢ O’ -gn On-¢

where ¥! is the inverse function of V.

X2 = xZ) dx27

THEOREM 5.1. The optimal alarm region with constant K, in T, has size
ap = ag,(mz, 2z)

and detection probability

Yr = f—o Xz; eXp(—Zz/Z)\z)aK,.(ms.H(z), Zz.n) dz,
where ax(m, Z) is defined by (20) and = is N(mz, 2z) and E|H = (u, 2)T is
N(mz.u(2), 2z.5).

PROOF. The statement for o is just the definition (20), while for v, we have
to note that the derivative (¢t + h) at a u-upcrossing (n(t + h) = u) has a
Rayleigh distribution, so that

yh = f )\i exp(—2z%/2\)P(E € f‘hln(t + h)=u,n'(t + h) = 2) d,
2=0 Ag

and hence the result follows. 0

This theorem makes it possible to calculate a;, and v, numerically as functions
of K and hence select a suitable combination of size and detection ability; for an
example, see Section 7.

We now turn to the more complicated specific and total risks, defined in
Section 3, which describe the exceedance and crossing risks under the condition
that an alarm has been given for some specific warning time hy, i.e., that £(t) has
entered I'y,, or equivalently that Z(t) = (7, + ho), {:(t + ho))T has entered I‘ho at
time ¢.

Thus we fix the warning time ho > 0, the alarm region I‘,,o, and consider alarms
given by the alarm process Z(t) = (7.(t + h), (¢t + h))T. We shall then describe
the conditional behaviour of (¢ + h) for various values of h after the alarm. The
conditional (Palm) distributions of 5(t + h) then depend not only on where =
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enters ', but also on the derivative

B =E') = (it +h), St + )T = (g%)e'(t).
ho

Write y = (y1, ¥2)7, 2 = (21, 2;)T and let
(21)  u(y, 2) = faesmiz=(WEM (t+ h)* |E=y, E' =2, 9(t + h) = w)

be the conditional upcrossing intensity for (t + h), h>0, given ZE =y, &' = 2.
Since all involved variables are normal, the conditional distributions in (21)
are also normal. We shall use the following notation for conditional means,

covariance and variances,

mz.z(y) = E(E' | E = y),
Zz.z = Cov(E’ | E),

J| ve(y, 2) = Ealt + b | E = 5, E' = 2),
= = V(n(t + h)| E, &),

.

My .zz9(y, 2) = E(n’(t + B) |E =y, E' = 2, 9(t + h) = u),
0%y = V(n'(t + h) | E, E', n(t + h)),

which are easily obtained from the covariance matrix of #(t + h), n’(t + h), £(t),

£ ().
Note that the conditional upcrossing intensity (21) then is

1 yz= (9, —
22 w2 =~ ,¢(’" & z))  opz W(&)

n-EE Oy.55" Oy .55y

The next step in the derivation of the risk functions is to describe the
distribution of & = (#.(¢t + ho), &:(t + ho))T over the boundary 61‘,,0 and of the
derivative E’ at the entrance points of the alarm region Fh., for the fixed warning

time hy.
By Lemma 3. l(b) we then need the unit normal n, of 81‘,,0 at the entrance

point y. Since 8I‘,,0 is defined as a level curve of the function

x(y1, ¥2) = (u — yl) — 2 log \I/<

Oy.t

22 ) — 2log B _ K

Oyt Oyt

we have (depending on hy)

e /)
(23) o = Ny <3y1’ dya CAZ) * CAY) ’

where
8_x__i<u> 6_x____2__2( 2 )
A% Oy-¢ Oy ’ dy2 Oy tn ¥ \0Oy gy '
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LEMMA 5.2.  The long run conditional distribution of Z’ (sx) at the alarm points
s, Where E(sp) = y € 81‘,,0 has density

(24) 21z=(2) = ¢ (ny - 2)*far1z=y(2)
where fzz=y is normal and specified above and the normalizing constant
¢ = E((n, - )" |E = y) = 6(y)¥(i(y)/6(y))
with
m(y) = ny - mz.2(y), 6y) =n,2z.zn;.

PROOF. Since Z(t) is a stationary bivariate Gaussian process we can apply
Lemma 3.1 to find the distribution of the values of Z(s;) and Z’(s:) at the points
of entrance into I, as

fEfE1z5(2) = ¢Hny - 2)*fa(@)fariz-(2)

and hence the expression (24).
Since the conditional distribution of n, - E’, given Z = y, is normal with mean
m(y) and variance ¢%(y) we get the result. 0

THEOREM 5.3. The optimal alarm region T = T, has specific upcrossing risk

piox) = c; f f (n . 2)* e izey(2)unly, 2) dz

where y = (Apx, Brx — Cnu)”, and pn(y, 2) is given by (22). The specific
exceedance risk is

Biro)(x) _ c;l ff (n;ro) . 2)+fE'IE=y(z) . (1 — Q(M)) dz
2€R? B

where n(t + h) | E =y, &' = z is N(m,.z=(y, 2), 02.22).
The total upcrossing risk is

pifo = ¢t f ; 2N - 2 fez(2) - paly, 2) dz ds(y)
y€EdT'), Y2€R

and similarly for B}/; here ds(y) denotes integration along the curve 81", and the
normalizing constant c is defined in Lemma 3.1.

6. Balance between alarm size and detection probability. As men-
tioned in Section 2 the total alarm time «; must be balanced against what can
be obtained in detection probability v,. The likelihood ratio method in Section
4 assures that for given v, one gets the smallest possible «;, and what remains
is to decide what is an acceptable alarm time and what detection probability
should be strived for. This is a complicated task and here shall only be mentioned
a few components that ought to be embodied in a complete theory. To get a
compelling terminology we shall use the word “catastrophe” to denote an upcross-
ing of a level u by the process 5(t).
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The alarm costs consist of monetary, human, and other expenditures in order
to reduce losses from an expected catastrophe. They should include possible costs
for standstill in production and psychological losses caused by false alarms,
perhaps leading to less confidence in the alarm system.

All these costs can depend on the warning time h and on the vagueness of the
prediction, e.g., measured in terms of the width of the interval H, specifying the
set of likely catastrophe times; see Figures 1 and 2 in Section 7.

The catastrophe costs are similarly monetary, human, cultural and other losses
due to catastrophe. They depend on whether or not any alarm was given and on
the warning time and vagueness of the alarm.

We shall here see how simple consideration of alarm and catastrophe costs
can be of some help when selecting a reasonable balance between «;, and v;,. The
cost structure is overly simplified and the result should only be used as illustration
of the influence of cost consideration.

Suppose one can specify a cost per time unit a(h) to maintain an alarm with
warning time h. The expected cost of h- alarms per time unit is then a(h)ah, and
the total expected alarm cost

(25) J; a(h)ay, dh.

Further, suppose the total cost of a catastrophe which was alarmed exactly h
time units ahead, causes a loss of the amount G(h) and write

G(h) = G(x) + J’: g(x) dx.

Here G(») is the inevitable loss which is independent of alarms, while g(h)
represents the reduction of losses attained by an alarm given a time h ahead.
The total loss caused by a catastrophe at time 0 is then

G() + J; gMI{E(=h) & T} dh

and the expected loss per catastrophe is

(26) G(x) + J; &(h)(1 — v4) dh.

Since there are on the average u catastrophes per time unit, for each warning
time h the average alarm cost minus the average savings is
(27) a(h)ar, — ug(h)yn,

and this can be minimized for each h by a correct choice of «y, and v,. The total
expected cost per time unit, for all possible warning times is

J; a(h)ay dh + pG() + J(: &(h)(1 = v4) dh

= u(G(°°) + J; g(h) dh) + ), (@hon — pg(h)ys) dh.
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THEOREM 6.1. If the expected alarm cost per time unit is

J; a(h)an dh

and the expected loss per catastrophe

G() + L &(h)(1 — v») dh,

then the optimal alarm region T, giving the long run minimal costs, is defined by
Tn = {x € RP; ux(x) = a(h)/g(h)}
where the conditional upcrossing intensity u;(x) is defined by (16).

PROOF. Recalling the notation p(x) and p{“(x) for the unconditional and
conditional densities of £(¢) given a u-upcrossing 5(t + h) = u, the alarm
dependent cost term (27) at warning time h is

a(h)an, — pg(h)yn = I {a(h)p(x) — ug(h)pi(x)} dx.

This is obviously minimized when
= {z € R?; a(h)p(x) — ug(h)py(x) < 0}
and since py”(x) = p~'p(x)ux(x) we have found the optimal alarm region
T = {x € R”; p(x)(a(h) — g(h)pa(x)) =< 0}

proving the result. 0

Of the two cost structures for alarms and catastrophe, respectively, (26) is
probably the most realistic one, even if it does not account for the positive effects
of displaced alarms such as those in Figure 2 in Section 7. In any case, it could
well be possible in practice to specify the function g(h). The form (25) is more
questionable, since it does not consider the number of alarms, nor whether the
alarm has been in effect for a long time or not. It might be a suitable structure
when alarm costs mainly consist of loss of production due to standstill.

7. An example. To illustrate the characteristic features of the optimal
level crossing predictor and to compare it with another natural alarm criterion
we have simulated a stationary normal process 75(t) as the solution of

7" () + azn”(t) + a1n’(t) + aon(t) = cW'(2)

where W'(t) is whlte noise, E((dW(t))?) = dt. With ay = 0.034, a, = 0.210,
a, = 0.400, and ¢ chosen so that V(5(t)) = 1 we have A\, = 0.085.
The process n(t) was simulated exactly by sampling the vector (5(t), n’(t),
7”(t)) at a small sampling distance; see Astrom (1970), Section 3.10.
The predictor was based on five values of 5(®), a distance 2 apart,
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£(t) = (n(t), n(t — 2),---, n(t — 8))7, continuously updated, and to obtain a
sufficient number of upcrossings and alarms in the illustrations the level u was
chosen as low as u = 2.

At each simulated point ¢ the mean square predictors

(¢ + h) = E(n(t + h) | £(t)) = An&(®),
Gt + h) = E(n'(t + h) | £(t), n(t + ) = u) = By£(t) — Chu

were calculated for h between 0.5 and 10, in steps of 0.5. The obtained residual
standard deviations o,.; and o,.4,, given in Lemma 4.4, can be found in Table 1.
For each simulation step ¢ the optimal alarm boundaries ufyer and ugbs., from

Corollary 4.6, i.e., (with K, = 6)

opt o , 1/2
(28) uuppe!} =u+ "n-f(z log W(M) + 9 logo'_"'_fﬂ + 6) ,

opt
lg)wer Oy -ty Oy.¢

were calculated, and if uffye: <7:(t + h) < ughpe: an alarm was set for an upcrossing
att + h.
To see how an alarm developes and changes with time, the points

{(t + h, h); alarm at ¢ for upcrossing at t + h} = {(t + h, h); £(t) € T4}

were plotted in a separate diagram; see Figure 1 which also shows %(t) for
0 =<t=100.

As was shown in Theorem 4.5 the optimal alarm region I'f** has the shortest
total alarm time

ap = P(&(t) ETY)
of all alarm regions TI';, with the same detection probability
Yr = y#* = P(£&(t) € T | n(t + h) = u, upcrossing).
To see how this fact is reflected in the timing of the alarms we have also
TABLE 1

Residual standard deviations when predicting 5(t + h) and v’ (t) from
£(t) = (n(t), n(t — 2), - - -, n(t — 8))7 (and conditioned on 4(t + h) = u)

h Oy¢ Oy.ta hk Oyt Oy.ta
0.5 .035 .012 5.5 72 157
1.0 .085 .026 6.0 .826 172
1.5 149 .040 6.5 871 .186
2.0 222 .054 7.0 906 .200
2.5 .303 .068 7.5 933 214
3.0 .388 .083 8.0 952 227
3.5 473 .097 8.5 964 238
4.0 557 112 9.0 970 249
4.5 .636 127 9.5 973 .258

5.0 .708 142 10.0 974 .266
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FiG. 1. (a) Process n(t), 0 < t < 100 and levels u = +2. (b) Sets {(t + h, h); £(t) € T} showing
where alarm was given by the optimal alarm (28); = indicates the occurred u-upcrossing.

TABLE 2 .
Alarm size and detection probability for the optimal alarm levels
(28) and the naive levels (29); K, = 6 and A\, = 1.64

h o AP A
0.5 .005 998 .006 876
1.0 .014 992 015 .840
15 027 979 .026 .790
2.0 .043 953 .039 124
2.5 .060 911 .053 .648
3.0 074 849 .067 .567
3.5 .086 .765 .082 .486
4.0 .093 .660 .095 409
4.5 .089 540 107 .340
5.0 079 418 117 .280
5.5 .064 .307 124 231
6.0 .049 .218 126 .190
6.5 .037 155 122 .158
7.0 .028 115 112 131
7.5 .023 .094 .096 .110
8.0 021 .085 077 .093
8.5 .021 .083 .058 .083
9.0 .021 .082 .046 078
9.5 .020 079 .039 .080

10.0 .018 072 .037 .085
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considered the naive alarm levels

(29) uuppel‘} =ux >\a0',,.g,

Ulower

where 1 — ®(\,) = a. Since o2 is the residual variance of n(t + h) given
7:(t + h) we have that if 7.(t + h) > Uiower then

P(n(t + h) > u| 9t + h))

=1_¢<M€:‘L>)Zl_fp(uw):l_@(;\a):a,

Ot Ot

meaning that the alarm is set as soon as the (regular) conditional probability of

an exceedance is at least a.
Since 7:(t + h) is normal with mean zero and variance a% the total alarm time

for the naive alarm region is
ap = P(tiower < n:(t + h) < uupper) = ‘I’(uupper/ Uﬁ) — P(tiower/ Gﬁ)-

Further, the conditional distribution of #.(t + h) given 5(t + h) = u,
n’(t + h) = z is normal with mean m;.,,(2) and variance a%,,m, and we can get

A 7/

O\

Vet vamvzan

F1G. 2. (a) Process 5(t), 0 < t < 100 as in Figure 1(a) and levels u = +2. (b) Sets {(t + h, h);
£&(t) € T4} showing where alarm was given by the naive alarm (29); * indicates the occurred
u-upcrossing.



824 GEORG LINDGREN

the detection probability

Yh = J; f; exp(—2%/20) P(iower < A(t + h) < Unpper | 1t + h) = u, 0’(t + h) = 2) dz,
where the probability is given by the normal distribution.

The quantities o5, v 3 for the optimal alarm region, and ay, v5 for the naive
region defined by (29) are given in Table 2 for the special case K}, = 6 illustrated
in Figure 1 and with A, = 1.64.

For comparison with the optimal alarms in Figure 1 we have plotted the
resulting alarms for the naive predictor in Figure 2, showing the set {(¢t + h, h);
£(t) € T} for the same section of the process as in Figure 1. As is seen the
optimal alarm locates the upcrossing correctly in time at an earlier stage, while
the naive predictor has a tendency to give later alarms. Also note from Table 2
that for this choice of parameters, the naive predictor either has much smaller
probability of being in the alarm state at the proper time, or spends much longer
total time there.
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