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APPROXIMATIONS OF SOLUTIONS OF STOCHASTIC
DIFFERENTIAL EQUATIONS DRIVEN BY SEMIMARTINGALES?

By PHILIP PROTTER

Purdue University

The classical results on the instability of the solutions of stochastic
differential equations are extended in two directions: the coefficients are
allowed to depend on the paths of the solutions, and arbitrary semimartingales
(not simply continuous ones) are allowed as differentials. This extends the
results of Wong and Zakai, McShane, Nakao and Yamato, etc.

1. Introduction. The instability of the solutions of stochastic differential
equations due to the Ito calculus has been of interest to researchers since Wong
and Zakai first discoverd it in 1965 [18]. It inspired McShane to develop his
integral [10] and it has justified a continued interest in the Stratonovich integral
(where the rules of classical calculus apply), which has been especially popular
with engineers. Recent work with the stochastic calculus on manifolds, moreover
(e.g., [14]), has shown the Stratonovich calculus to have a natural importance
for stochastic differential equations.

The “classical” result, due to Nakao and Yamato [15] for continuous semi-
martingale differentials, can be stated in simplified form as follows:

(L.1) dX? = f(t, XV, ZF)dZ?
1.2) dX,=f(t, X;, Z,) ° Z,
(1.3)  dX; = f(t, X, Z,)dZ, + L{(f)(3f/dx) + (3f/0=)}(¢t, X,, Z)d[Z¢, Z°),

where Z" are piecewise ' approximations of Z; the small circle ° denotes the
Stratonovich integral, with the standard notation meaning the Ito integral. As
Z" tends to Z, the X" of (1.1) tend to the solution X of (1.2), which is equal to
the X of (1.3) by the well-known relations between the It6 and Stratonovich
integrals. Note that if Z itself is €' (or even simply of bounded variation), then
Z° = 0 and this result is no longer surprising.

We extend here Nakao and Yamato’s result in two directions. Coefficients are
allowed to depend on the paths of the solutions, and arbitrary semimartingales
are permitted as differentials. The limiting equation remains that of the Stra-
tonovich differential, giving it an enlarged usefulness. Our theorems ((3.1), (4.2),
and (5.3)) are stated, however, in the notation and form of the semimartingale
integral as presented in [14] or [2].
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Allowing general semimartingales (i.e., those with jumps) as differentials is
presented here for the first time. Differentials with jumps have been considered
previously: Marcus [11] considers them, but his hypotheses require that there be
only a finite number of jumps on bounded intervals; Kushner [9] makes the same
restrictions while considering a related problem, with a different perspective.
These restrictions avoid the interesting (and only difficult) case where the
semimartingale contains a “purely discontinuous” local martingale component
with paths of infinite variation on compacts. Since the semimartingale differen-
tial M in general contains two terms with paths of infinite variation (a continuous
local martingale N° and a “purely discontinuous” local martingale N¢), it is
desirable to approximate both N° and N¢ simultaneously by processes with paths
of finite variation, and also to determine the limiting equation. This is the
content of Theorem 5.3.

Coefficients that depend on the paths of the solutions have been useful in
applications and date back to Ito and Nisio’s classic paper [7]. In our context,
pioneering work was done by Wong and Zakai [19], and more recently Doss and
Priouret [3] have considered a particular coefficient that depends in some way
on the paths of the solution. The case for continuous semimartingale differentials,
with the technical restrictions imposed by Nakao and Yamato [15] having been
removed, is presented in Theorems 3.1 and 4.2.

Care is taken to prove the results for systems and for an arbitrary number of
semimartingale differentials, since historically some techniques did not work for
systems [18], and others did not work for arbitrary numbers of differentials [17].
The recent book of Ikeda and Watanabe [6] presents the classical result for
systems with simple coefficients and Brownian and Lebesgue differentials; it
together with the article of Marcus [11] provides a bibliography of past work in
this area. Between the first and second versions of this article, the results of
Konecny [8] have appeared. He removes the technical restrictions on the contin-
uous semimartingale differentials imposed by Nakao and Yamato, and he also
considers semimartingale differentials with jumps, but only as in [11], where at
most a finite number of jumps are permitted on compact time intervals.

2. Preliminaries. Throughout this article there will be a fixed underlying
probability space (Q, %, P), where ¥ is P-complete, and there will be a right
continuous filtration (%):0, With % containing all P-null sets (the “usual
hypotheses”). Semimartingales will always be taken to be right continuous. The
notations and general assumed knowledge will be that of the book by Dellacherie
and Meyer [2]; however for the more technical and less well-known results that
we need, specific references with page numbers will be given.

DEFINITION 2.1. A process V will be said to be an F'V process if it is adapted
and if it a.s. has right continuous paths of finite variation on compacts.

A process V will be called a raw FV process if the requirement that V be adapted
is dropped.
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We let [§ |dV,| and/or | V|, denote the total variation of the paths of V on
[0, t]. The #F norm of an FV process (or even a raw FV process) is simply
I /& |dVs| |l L, but we will also use freely the notion of #” semimartingales,
p =1 (cf. [2, page 30]).

DEFINITION 2.2. For p = 1, we denote by %#” (resp. raw %#”) all adapted
(resp. measurable) processes H indexed by [0, o[, having right continuous paths
with left limits, having a limit at o, and such that

| Hllar = | H* || r < o,
where H* = sup, | H,|.

#° (resp. raw #°) will denote finite valued adapted (resp. measurable) processes
of the above type.

The question of existence and uniqueness of solutions of stochastic differential
equations with semimartingale differentials is by now well studied. Emery [4]
has established the existence and uniqueness of a solution of:

t
Xt= Ht +f F(X)s— dZs
0

where H € #° Z is a semimartingale, and F' € Lip(K), which is defined as
follows:

DEFINITION 2.3. An operator F mapping .Z° processes into itself is said to
be in Lip(K) for a constant K if the following two conditions hold: for X, Y €
R°,

(i) X7 = YT implies F(X)T~ = F(Y)T for any stopping time T

(i) (FX-FY)}=KX-Y)}, 0<t<oo, (where X} = sups<; | X; |).

Emery’s condition is not the most general one known, but it is a particularly
simple one and sufficient for our purposes. We now introduce a new type of
operator. Let . denote all processes X = (X!, ---, X% where each X' is a
semimartingale. Let ¢ (resp. raw 7°%) denote all processes V = (V?, ..., V9
where each V' is an FV process (resp. raw F'V process).

DEFINITION 2.4. An operator A mapping.”¢ @ raw 7 ¢ into raw 7! processes
will be said to be an FV operator if the following three conditions are satisfied:

(i) A restricted to .#?is in Lip(K), for some constant K.
(i) If (X", X are in .#? @ raw 779, and lim, . || X — X |l 42 = 0, then
lim, . | AX"|,=|AX]|;as5.,0<t <00,
(iii) If X € 9 then AX € 7. (i.e., X adapted implies A X adapted).

Examples of F'V operators include:

(2.5) The Ito-Nisio operator [7]: for a diffuse measure u finite on compacts
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and a Lipschitz function g, define

AX, = j; 8(X,)u(ds).

(2.6) The operator AX,= Xf.
(2.7) The operator of Doss and Priouret [3]:
AX; =X, — inf..(X; A 0), for X continuous.

We are now ready to describe the coefficients we will use in our differential
equations.

(2.8) Let f: Ry X @ X R? X R" X R — R be such that for f(¢, w, X, 2, \):

(i) f, its first-order partials, and the first-order partials of df/dx* and df/dz*
(1=a=d;1=<i=<r)areall boundedon [0, t], 0 < t < o,
(ii) There exists a constant K such that

f(t’ w, X, Z, )‘) _f(s’ w,y, W, ﬂ) )

maxl

‘;fa(t w,x,z,k)—aa—fa(s,w,y,w,u)

‘;—f,(t w, X, 2, A)—;—f,(s,w,y,w,u)

1
J

<=Kf{lt—s|+|x—-yl+llz—w]+|rx—u|}. QA=a=sd;l=si=r).
We will call the above condition (2.8).

DEFINITION 2.9. F'is called an acceptable coefficient if there exists

(1) an f = (f{)1=a=a;1=i=r satisfying condition (2.8);
(ii) an FV operator A as defined in (2.4); and if X € 9@ raw 7% Z € ¥ ®
raw 777,

then the following holds:

(2.10) F(X, Z); = f(s, w, X,—, Zs—, A(X),-).

When Z is fixed during a discussion, we will sometimes write F(X) instead of
F(X, Z).

DEFINITION 2.11. Let F; (1 = i < r) be acceptable coefficients as defined in
(2.9), and let f¢ be their associated functions (cf. (2.10)). For X € .%¢ @ raw 7°¢,
Z € " ®raw 77, let G§ be given by:
af b f :

(212) ng(xy Z)s = 2ﬁ=1,d {ff(& . ( S, - ’) S, )}

where (s, ---) denotes (s, w, X,—, Z;_, A(X),-). Then we call G the associated
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coefficients of (F;). When Z is fixed during a discussion, we sometimes write
G3(X), for G(X, Z)s.

PROPOSITION 2.13a. Let Z € .%", M € %" and let F; be acceptable coefficients,
as defined in (2.9). Let G¢; be the associated coefficients of F;, and let V € 7.
Then the system of equations (1 < a < d)

t

t
X¢=x%+ Yim1,r J; Fi(X, Z)s M3 + Y j=1, J; Gi(X, Z), dVy
has a solution, and it is unique in %°.

PROPOSITION 2.13b. Let Z € raw 7", M € raw 7", and let F be an acceptable
coefficient, as defined in (2.9). Then the system of equations (1 < a < d)

t
Xt =x"+ i1, f F(X, Z), dM;
0
has a solution, and it is unique in raw .%Z°.

PRrROOFS. Proposition 2.13a is an immediate consequence of Emery’s theorem
(see the description preceding (2.3)). As for Proposition 2.13b, change the
filtration to the trivial one % = 7, for t = 0, and now Z, M are both in 7" C .&",
and thus Proposition 2.13b is a corollary of Proposition 2.13a.0

DEFINITION 2.14. Given a sequence (II") of refining partitions of [0, o[ such
that lim,_.mesh(II") = 0, and a continuous semimartingale Z with Z, = 0, we
define the nth polygonal approximation of Z to be

ZM =7, + ((Zy,, — Z:)/ (b — )t — t,)

when t, < t < t,4, and t,, t,4;, are in I1". We write A*Z for Z,,, — Z, and A’t for
t,+1 — t,. Also, we let II} denote the restriction of the partition I1" to [0, t].

3. Continuous case: polygonal approximations. This section begins
with a statement of our main theorem when the semimartingale differentials
have continuous paths and are approximated polygonally (cf. Definition 2.1).

Let II" be a sequence of refining partitions of [0, ) such that lim,,_,..mesh(IT")
= 0.

THEOREM 3.1. Let Z', 1 < i < r, be continuous semimartingales, Z = 0; let
F# (1 = o < d) be acceptable coefficients as in (2.9); and let Z™' denote the nth
polygonal approximation of Z' (cf. (2.14)). Let X = (x*)1<.=q4 be a point in R%, and
let X{™ denote the solution of (1 < a < d):

t
(3.2) X% = 2% + Tim1r fo Fr(X®™, Z™), dZ{™.
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Further, let G¢; be the associated coefficients (2.12) and let X; denote the solution
of 1=a=d);
t t
(33) X? = xa + 2i=l,r L F;X(Xy Z)s dZ; + %Zi,j=l,rf ng(x9 Z)s d[ i,c’ Zj’c]s.
0

Then X™ converges in probability to X uniformly on compacts.

While Theorem 3.1 is the chief object of interest in this section, we will prove
instead the following theorem, which involves more work but is also an essential
lemma for the case of arbitrary (i.e., right continuous) semimartingale differen-
tials considered in Section 4. Theorem 3.1 is clearly a corollary of Theorem 3.4,
since one need only take Vi=0,1<i<r.

THEOREM 3.4. Let V', 1 <i=r,be FV processes (cf. (2.1)). Let the hypotheses
of Theorem 3.1 hold with M™ = Z™ + Vis M' = Z' + V¢, any Y™ denote the
solution of (1 = a <d):

t
(3.4a) Y = 2% + Tie1s f Fg (Y™, Z™), dM{™.
0
Further, let Y, denote the solution of (1 < a < d):
t t
(3.4b) Y =2+ T, fo F(Y, Z), dM; + % Sij1r l Gy(Y, Z), d[M', Mi<],.
Then Y™ converges in probability to Y uniformly on compacts.

Before formally beginning the proof of Theorem 3.4, we state and prove a
sequence of lemmas used in the proof. Several “well-known” technical results are
needed, and the reader is referred to the excellent book of Dellacherie and Meyer
[2]; we give the appropriate pages, when possible. The proof of Theorem 3.4
follows Corollary 3.41.

LEMMA 3.5. If Theorem 3.4 holds for continuous semimartingales Z l=sis
r) in #*, and FV processes Vil=i=rin# 4, then it holds as well for arbitrary
continuous semimartingales Z* and arbitrary processes V' (1 < i <r).

PrOOF. A refinement of Stricker’s Theorem ([2], no. 63 bis, pages 271-272)
lets us change to an equivalent probability measure, Q, if necessary, so that the
Z' and V' of Theorem 3.4 become, respectively, #* continuous semimartingales
and #* FV processes under @ (1 < i < r). Since the stochastic calculus is
invariant under a change to an equivalent probability ([2, page 338]), and since
convergence in probability is also invariant under such a change, the lemma is
proved. O

At this stage, we need to make a technically simplifying assumption on the
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operator A, which we will later remove:

HyPOTHESIS 3.6. There exists an increasing process K in raw %#° such that,
for any process H € @ raw 7% one has | AH |, < K,.

Let []% denote the partition II" restricted to [0, t], where ¢, is taken to be a
partition point.

LEMMA 3.7.  Under the hypotheses and notations of Theorem 3.4 and under
Hypothesis 3.6, and where M™: = Z™i + Vi one has

t

Fe(Y™, Z™), dM™:
= Soem FE(Y®, Z0), (N2 + AV

0

(3.8)

+ Zt,,EH? 1/2 2j=1,,- G:](Y(n), Z(n))tyA”ZiA”Zj + I?,

where I? tends to 0 in probability uniformly on [0, t]. If, in addition, Z* and V' are
taken to be in #*, then I" tends to 0 in raw %>

PrOOF. For simplicity, we write F¢(Y™) for F¢(Y™, Z™).

t
f FE(Y®™), dV;
0

(39) tys1
= Yoenp FE(Y™), AV + 3, f [F(Y™), — F(Y™),] Vi,
L,

v

t
f dV, denotes f dV,.
s Is,t]

| FE(Y™), = FE(Y™), |

where, in general,

Also

(3.10) =Kfls— 6| +21Y"” - YR, I + 12" - ZR, 13}

<Kfls—t |+ I|1Z. — ZawllZ, + IV. = VaaslZ,}

where in the second inequality we used that Y™ is the solution of equation (3.4a)
and each F{ is bounded on compacts. Since the last term in (3.10) tends to 0 a.s.
as mesh(II") tends to 0, the dominated convergence theorem tells us that the
second term on the right in (3.9) tends to 0 a.s., and hence in probability, as
n— oo,

By the above, we need only verify (3.8) for the continuous semimartingale
approximations. For ease of notation, let us fix a v, and seta = t, and b = t,.;.

Then
b vz
(8.11) f Fe(Y™), dzz""'=ﬂ

b
a (n) .
At f F{(Y™); ds;
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consider [ F#(Y™), ds and integrate by parts:

b
(3.12) J‘: F?(Y("))s ds
=F3(Y™)a(b — a)

b

(3.12)(i) + | (-9 a—t" (s, ---) ds

(3.12)(ii) + Zﬂ-ldf (b~ s) 35',, - {Z,_nf,(s, A”ij} ds
(3.12)(iii) + jeir f b-s) -5 af ACIED "ij ds

(3.12)(iv) f (b —s) -~ f = (s, --+) dA(Y"),,

where of course (s, - - -) denotes the argument (s, w, Y, Z&, A(Y"),):
Consider first (3.12)(i):

th v+1 a ¢
’ Zteﬂ' At f (tye1 — S) f (s, --.) ds

=< K(w)sup,| A*Z*

1 tr+l
A j; (t,41 — 8) ds
=< K(w)sup,| A’Z!| ¢,

where K(w) bounds df#/ds on [0, t]; the above tends to 0 a.s.
Consider next (3.12)(iv):

llZl v+1 a:g
l Zter" A j: (t,-1 — 9) % (s, ---) dA(Y("))s

v

< K(w)sup,| A’Zi| | |dAY™],

which also tends to 0 a.s. as mesh(7™) tends to 0, by Hypothesis 3.6.
Consider next (3.12)(ii): integrating by parts again gives

Zﬁ—ldf b - 8) 0f, . ){21 1rﬂ?(3’ ) i’f} ds

b —a)? of; N/
= 2ﬁ=1d {( 20) a:f ) Zj—lrfj (a, ) A”t}

b _ 2 uZl:
+ Zﬁ=1,d I (b 9 S) l:gflﬁ ( S, - ') {Zj=l,r f}p(s’ o .) AAvtj]r]

and multiplying by A’Z‘/A’t (from (3.11)), (3.13) becomes, letting {s, xxx} :=
{Yj=1-f¥s, - - -)} and continuing with the notational convention that v is fixed and

(3.13)
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a=tu; b= v+1e

AL Sy L@ ) (s 1, )
+A(”iif;2z' _uf (b_s)z[;{; (s, -+ s, xxx)
Zf; ) S L]
2oty [0S fr Zh
(3.14) + L. {2,-1, off )} dY®
("i:f;f' -wf (b"s)z[ et a:g'h(s,~ s, xxx)
;’f; . {z & (s,-.->}-: dzo*

3f. [ 8._.ff 1] (n)
+ 3056 B, B (s, )| .

Since all the ff and its partials given above are assumed to be bounded on
compact time sets, all but the first term in (3.14) above is bounded by

vziAvyj

1422 {Kl(w)(AVt)f* + Ky(0)(47)?
(A%t)
b
+ Ka(w)(A”t)2<2k=l,, | A"Z*| + f |dV§|)

(3.15) . .
+ Ky (w)(A) (Xh=r,r | A’ZF])

b
+ Koan? | IdA(Y‘"’)sI}-

By Hypothesis 3.6, [§ | dA(Y™),| is bounded uniformly in n. One easily verifies
that (3.15), summed over », tends to 0 as mesh (II") tends to 0, provided
Yeen | A*Z'A*Z/| stays bounded in probability. This is proved in Lemma 3.18.
Thus, for (3.12)(ii),

%22 5 f e (s,---){zjﬂ,,ff(s,--.) AZ} ds

(3.16) AT/ o
=y, AZ47 AZ Somta Lt ) Sias it )

+3, {right side of (3.14)},
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where Y, {right side of (3.14)} = Y, (3.15), which tends to 0 in probability as
mesh(I1”) — 0. Finally, consider (3.12)(iii); integrating by parts a second time

yields
21—1"f (b - 8) 3f; (3, o) l"’ZtJ ds

e - a)2 AZ7 off

= 2]=1,"_—— At 37 (@ )
3.17) f b-9)?A "Z’ [ T

le}-lr az}a ( )dS
2f,
+ Bpmra aj—(,i,, 5, ---) dY?

o’f¢ o, Ofi
4+ Yy ——— R 4 = (s, - Wy &,
Dk=1d 302" (s, ---) dZ + o ion (s, +-+)| dA(Y™)
One can show by an argument exactly analogous to the preceding one (summa-
rized in (3.16)) that the terms contained in the brackets “{ }” on the right side
of (3.17) tend to 0 in probability when multiplied by A’Z*/A’t and summed over
v, as mesh (I1") tends to 0. Recalling from (2.12) that

G ) =L, ) 4 Bemra L s, s, -,

and noting that b — a = At in this context, combining (3.12)(i) through (3.12)(iv)
establishes Lemma 3.7. 0

During the course of proving Lemma 3.7, we needed the following technical
result, established here for completeness.

LEMMA 3.18. Let Z! and Z’ be any two semimartingales, and (I1 ") a sequence
of refining partitions, where lim,_,.mesh(II") = 0. Then Y, enr | A’Z'A*Z’ | stays
bounded in probability as mesh(I1") tends to 0 (0 < t < ).

ProOOF. “Bounded in probability” means that for any ¢ > 0 there exists a K
such that sup,P(Z,en | A*Z'A*Z| > K) < e. We have (3, | A"Z'A'Z'])? <
3, (A*Z9)2 Y, (A*Z7)? but each of ¥, (A’Z%)? is convergent in probability (cf. [2,
page 344]) and hence bounded in probability. 0

LEMMA 3.19. Let Z, 1 < i < r be continuous #* semimartingales, and let V',
1=<i=<r, be FV processes which are also #*. Let the hypotheses and notations of
Theorem 3.4, and also let Hypothesis 3.6 hold. Then there exists a sequence of
finite-valued stopping times (T*) increasing a.s. to o such that (Y )™ is Cauchy
in %2

PROOF. We first establish some notation. For n > in, the partition II"” is a
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refinement of II™ by hypothesis. For t, € I1", we write

[t]m = supg <. en’"(tu)o

w=tu

When n and m are fixed and there is no danger of confusion, we will write [t,]

for [t,]m. Thus for n > m fixed, and for general semimartingales Z and processes
H,d,

Zt,en" Ht,AVZ - Zt,,en"' Jt,‘A”Z =3, {Ht, - J[t,]}A"Z.

For n > m, by Lemma 3.7 we have

t
Y = Y = N, ]If Fe(Y®™), d(Z{ + Vi)
0

t
- f F3(Y™), d(Z{™ + V:;)}
(

(3.20) . .
= Yi=1,r Jvem? {F?(Y(n))t, - F?(Y(m))[t']}(Ath + A'VY)

+ % Yenp [Bijm1r {GE5(Y™), — GE5(Y ™) )}A*ZIAYZ7)

+ ("= I™).

With the added hypothesis that Z‘ and V' are in /#*, we havé by Lemma 3.7 that
I" and I™ tend to 0 as n, m — o in raw %2
Now let T be any stopping time bounded by a fixed t,(0 < ¢, < ®). Let

1Y = YNl = Tamsa (Y = Y5,
Consider
E{[(Y®™ = Y% )%
< 5E{Zim1, (Tnp {FE(Y ™), — Fe(Y ™)y, }A%ZH)*
(3:21) + BE(Zim1, (Sng (FH(Y™), — Fe(Y ™), 47Vi)*)
+ 5/2E{¥ny. (Tij=1, {GEH(Y™), — G (Y ™M) )AZ A Z)*2)
+ S5E{(I™)**} + 5E{(I")*%}.
Introduce the notation:
Fr(Y™), = FE(Y™),, 6, <t =t

the ¢, running through the partition I1”. Since Z' is a continuous semimartingale,
let Z* = M’ + A’ denote its unique decomposition into a continuous martingale
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M and continuous F'V process A’. Inequality (3.21) then yields
E{[( Y(n)a _ Y(m)a) #‘_ ]2}

T *2‘[
= 5E{<2,-=1,, fo Fe(Y®™), — Fe(Y™), dz:;> [

T *2
5E( Sicir f Fe(Y®™), — fre Y<'">st:;) |
(3.22) + ‘{(2 v g, (Y™) ( ) [

T 2
+ 5E{(2i,j=l,r J; [G2(Y ™), — G(Y™),] d[M, M’L) }

+ BE((Dijmrr {G5(Y ™), — GE(Y™),}
AAMIATAT + AAIATME + APAINA) + oy,

Consider the second to last term on the right side of (3.22); in general we have,
for example,

| S HP A'M'A*AY| < sup,| AMY| | 3 H A’A/|
t
= supsemy| A'M'| || H™¥|| 1= J; | dA;|

which tends to 0 a.s. as mesh(I1") tends to 0. Reasoning analogously for A’A*A*M’
and A’A’A’A’, the second to last term in (3.22) tends to 0 by the dominated
convergence theorem,; of course, e,» = 5E {(I™)*?} + 5E{(I")*?}, which also tends
to 0 as n, m tend to o,

By elementary properties of the stochastic integral (cf. [2, 13]) and the Cauchy-
Schwarz inequality, (3.22) becomes

E{[(Y(n)a — Y("')")’fv_]z}

T . 1
sclE{zi f [Pr(Y ), = P (Vi) I M

(3.23) ~ ) \
+C2E{Ei(|AiIT+I Vi T—)J; [Fe(Y™), = Fe(Y™)¥1%(| AL + IdVil)[

T
+ C3E{2i,j | [MF, M7] | rj; (G5(Y™), — G(Y™)*1? | d[MF, M), | } + enm,
where lim,, ;»—oén,m = 0. Note that by our hypotheses on the coefficients (cf. (2.8)),
| B¢ (Y ™), — Fe(Y™),|*

(3.24) = K{lt,—t,| + 2| Y =YD + | Ze, — Z, 11}
< 2K{m(w) + | Y — Y|},
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where §,, = max{|t, — t,|, || Z;, — Z,,||}. Continuing with (3.24):
| Fe(Y™), — Fe(Y™),|*
S 2K(om + 1YY - YU+ 1YY - Y

(3.25) . . ; .
< 2K{om + 1 Y™ =YL+ C X (12, - ZL| + | Vi, = Vi)

= Kifdn + | Y™ = Y72,

where lim; . E (A%Z) = 0 by the continuity and right continuity of the paths of
Z* and V*. An analogous result holds for the G;;.
Define an increasing process L as follows:

(826) L=t + Zics, (IM', M), + | A'|; + | V| + Zijmrsr | M, M.

The process L is right continuous and strietly increasing. Combining (3.23) with
(3.25) and summing over « then yields

E{|Y® - Y™ |1}

(3.27) T-

< CE\Ly (A2 + | Y® — YO |22 gL, b + g,
0

Define Ry, = inf{s > 0; L, > k}. To avoid the problem of large jumps, we stop the
processes at R, —; for Z* we could as well stop at Rk,. since !;he paths are
continuous. Thus, for a fixed k, we replace the processes Z* and V* as follows:

Z i = ZZAR,,
Vi = Virge—- = Ving, — AVE, li=ry),

where AV, = V, — V,_ (the jump at ¢). Note then that~l~,t = L?E < k as. Let
1. = inf{s > 0: L, > t}, the right continuous inverse of L. Then 7, is a stopping
time for each ¢ (cf., e.g., [1]), and (3.27) yields (for t < k)

E{IY"™ - Y™}

(3.28)

(3.29) e .
< CkE{ f AZ + | Y™ — Y| %2 dL,,} + enm,
0

and absorbing the Ck2E(AZ) into the ¢, ., (3.29) becomes
(3.30) < CkE{ f | Y™ — Y| *2 df,s} + enm-
0

Let I' = [0, 7.[ = {(s, w): 0 = s < 7;(w)}. Then using Lebesgue’s lemma, we have
from (3.29) and (3.30)

L,
E{IY®™ - Y™|#2) < KE»{ f Le(r) [ Y™ = Y 22 ds}- + tnm
0
(3.31) ¢
<KE f IY® = Y™ %2 ds + ¢, (£ < k)
0
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and letting a(n, m, s) = || Y™ — Y™ || #2, (3.31) simplifies to
Ela(n, m, t)} < Kf E{a(n, m, s)} ds + enm.
0

Taking v, (t) = E{a(n, m, t)} and using the Bellman-Gronwall lemma (e.g.,
[5, page 393]), one obtains from (3.31)

t
(3.32) Yam(t) < enm + Kf e mds < e, m(1 + €X).
0
Since lim, ym_=énm = 0, we have that (Y™)®% is Cauchy in L? uniformly in s. O
Two technical lemmas used in the proof of Lemma 3.40 follow.

LEMMA 3.33. Let (H") be a uniformly bounded sequence of processes in raw
#°, and suppose for any t lim,_,.(H" — H)} = 0, with convergence in probability,
and H € %° (note that the limit process H is assumed adapted). If I1" is a sequence
of refining partitions of [0, t] with lim,_,.mesh(II") = 0, then

lim, ¥,em HZ(Z,,,, — Z;) = J; H,_ dZ,
uniformly in t on compacts, in probability, for any semimartingale Z.

PrROOF. By changing to an equivalent probability if necessary, assume
Z € #2 Then

*
(z HIAZ — f H, dz,,>
t

(3.34) .
= (Z (H:: - Ht,)AvZ)* + (Z Ht,A”Z - f Hs dZs) .

The second term on the right side of (3.34) tends to 0 in probability as is well
known (cf. [2, page 339]).

Let Z = N + A be a decomposition of Z such that N is locally a square
integrable martingale. Then

(3.35) (X (H — H,)A’Z)* = (¥ (H;, — H,)A’N)* + (¥ (H;, — H,)A’A)*
But
< (HZ—H,y)A"A)*SZeA"lA|+f 2K | dA,|,

{|H"~H|>¢)

(where K is a bound for | H”|, n = 1)

<o+ 2K f | dA,|.
{|H"—H|>¢}

Since lim, ,.P(| H" — H|* > ¢) = 0, we have lim, (¥ (Hf — H,)A’A)* = 0 in
probability.



730 P. PROTTER

It remains to show that
(3.36) lim(¥ (Hf — H,)A’N)* = 0 in probability.

Since N is locally square integrable, and since we only need convergence in
probability, without loss of generality we may assume that N is stopped at an
arbitrarily large stopping time, so that it is square integrable. Set

= (H — H,), T'"™ =sup,|I'}|.
Then I'"™ tends to 0 in probability and is bounded. Moreover,
E[(X,(HE, — H,,)A’N)**] = E[(3, T} (A’ NY)*?)

(3.37) <E[(T™ X, | A’N|)?]
S E[(T™)*{X,(A’N)?+ 3%, | A’N || A*N | }],

and since {¥,(A’N)? + ¥, | A’N||A*N |} is uniformly integrable as the mesh
of the refining partitions tends to 0 (cf., e.g., [13, pages 355- 356]), we deduce
from (3.37) the convergence in probability of (3.36). O

LEMMA 3.38. Let (H") be uniformly bounded processes in raw %°, H a process
in (adapted) #°, such that lim,_.(H" — H )e, = 0, some to > 0, with convergence
in probability. Let II" be a sequence of refining partitions of [0, to] with
lim,_,.mesh(I1") = 0. Let Z and Y be continuous semimartingales. Then

t
limp o Y enr HLA'ZA'Y = J; H, d[Z°, Y*],,
uniformly on [0, to], with convergence in probability.

ProoF. By changing to an equivalent measure if necessary, assume Z and Y
arein #2. Let Z=M+ A and Y= N + B, where M and N are the continuous
martingale parts. It is simple to check that

Y H:A’MA'B, ¥ HA’AAN’B, Y HiA’AAN'N
all tend to 0 a.s. as mesh(I1") tends to 0. Consider the remaining term:
(3.39) 2 HIAMA’N = ¥(H? — H,)A’MA’N + ¥ H,A"MA’N.
The second term on the right in (3.39) tends in probability to

t t
f H, d[M, N] = f H, d[Z°, Y°],
0 0
(cf. [2, pages 340, 344]).
An argument analogous to the one used to establish (3.36) shows that
E{Y, |Hi — H,|| A’M||A’N|} = E{T™ 3, | A’M|| A’N |},

where ¥, | A’M || A’N| is uniformly integrable as the mesh of the refining
partitions goes to 0. Thus the first term on the right side of (3.39) also tends to
0 in probability.
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LEMMA 3.40. Let Z', 1 <i<r, be continuous #* semimartingales, and let V',
1=1i=r, be FV processes which are also #*. With the hypotheses and notation
of Theorem 3.4, and with Hypothesis 3.6 holding, there exists a sequence of finite-
valued stopping times (T*) increasing a.s. to  such that (Y ™)+ converges in #?
to YT,

PROOF. Lemma 3.19 assures us that (Y™) 7" is Cauchy in the Banach space
%*%. We must show that the limit is, indeed, Y7+~. This, however, is a trivial
consequence of Lemmas 3.7, 3.33, and 3.38. O

COROLLARY 3.41. Under the additional Hypothesis 3.6, Theorem 3.4 holds.

PrOOF. Fix a t and an ¢ > 0. Choose k so large that P(T* < t) < ¢. Then
apply Lemma 3.40 and Lemma 3.5.

PrROOF OF THEOREM 3.4. By Corollary 3.41 it remains only to remove
Hypothesis 3.6. By Lemma 3.5 we may assume Z%, 1 < i < r, are continuous #*
semimartingales, and that V' (1 < i < r) are VF processes that are also #*. We
now define a new operator 3 as follows, defined for X in the domain of A:

BX, = (AX):1po,rc01(t) + (AX)reo-1ir0),m0 ()
7 |R(X) =inf{s > 0: | AX|, = /).

(R will be a stopping time only if X is adapted; but this poses no problems as 3
is well-defined in any case.)

Let F{(Xo-, BX,-) be as is F{(X,-), where 3 replaces A. We must show
equations of the form

t
(3.42) X, =x+ f F(X,-, 8X,-) dM,
0
have solutions and that they are unique. Let Y be the unique solution of
t
Y,=x+ f F(Y,—, AY,-) dM;,,
0

which we know exists by Emery’s theorem, since A and hence F are in Lip(K).
Define
T=inf{t > 0: |AY|, = /}.

Then the operator H defined by
H(Z), = F(Z,, (AZ)])

is again in Lip(K), and hence the equation Z, = x + [§ H(Z),. dM, also has a
unique solution. Moreover, ZT = Y7, and hence R(Z) = T = R(Y). Thus Z is a
solution of

t
Z,=x+ J; F(Z,-, (BZ),-) dM,.

To show uniqueness, suppose Z and W are two solutions of equation (3.42). Let
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S = min(R(Z), R(W)). Then

tAS

Z:‘g= x + ‘]; F(Zs—-9 (ﬂz)s—) dM,
tAS

=x+ J; F(Z,-, (BZ)Y) dM,

tAS
=x+ f F(Zss—9 (ﬂzs)s—) dMs,
o

since (8Z5),— = (BZ),- on [0, S],where S < R(Z). Moreover, since (AZ),- =
(BZ),- on [0, S] when S = R(Z), this becomes:

tAS
=x+ f F(Z,-, (AZ)s-) dM,.
0
Analogously, we have that
tAS
Wi=x+ j; F(W,_, (AW),_) dM,.

Thus, both W* and Z¥ are solutions of

t
Ve=x+ J; F(V,-, (AV),-) dM5,

and by uniqueness we have WS = Z5. This implies (AW)$ = (AZ)5, and hence
R(W) = R(Z), since S is the minimum of R(W) and R(Z). Thus both W* and
ZS are solutions of

t
U=x+ f F(U,-, (AU).) dM?,
0

which has a unique solution. Hence Z = W up to R(W) = R(Z).
Since we have established existence and uniqueness for general equations of
the form

Xi==x+ J; F(X,-, (8X),-) dM,

for M a semimartingale, we can apply this result for the approximating differ-
entials M™*. (Taking the filtration to be & = %, for all ¢, each M™ is a
semimartingale since it has paths of bounded variation on compacts.)

To complete the proof, set

(3.43) Y. =x+ j; F(Y,-(AY),-) dM,
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and let R = R(Y). Then
¢AR
Y®=1x+ f F(Y,-, (AY),-) dM,
0

¢AR
=x+ J; F(Y,-, (BY)s-) dM,

since (AY);- = (8Y)s- on [0, R]. Let U be the (unique, up to R(U)) solution of

(3.44) U=x+ J; F(Us-, (BV)s-) dM,.

Then Y? = U%, and so (AY)® = (AU)%, and thus R(Y) = R(U) =R.
Analogously, R(U™) = R(Y™) = R", where Y™, U™ are solutions analogous
to (3.43) and (3.44), respectively, with M replaced by M™.
Next implicitly stop Z: and V¥, 1 < i < d, as in (3.40), at T*—, so that for each
k the differentials are in .#*. Then as in Lemma 3.19 we have that U™ converges
to U in #?, using that U™ = Y™ on [0, R,]. Therefore lim, .. R(U™) =
lim,,.R(Y™) = R in probability by (2.4)(ii). Therefore

P Y™ = Y| >¢) < P(JU™ - Ul >¢) + P(R" <R).

tends to 0 as n — . Since ¢ was arbitrary, and since T* increase to ® a.s., this
completes the proof.

4. Continuous case: ! approximations. In Section 3 we considered
polygonal approximations Z ™ of continuous semimartingales Z'. In this section
we consider processes W™ with paths that are ' and which converge to the
paths of Z. The processes W™ must be reasonably close to the polygonal
approximations, and we make the following hypotheses, similar to those of Nakao
and Yamato [15]. :

DEFINITION 4.1. Let Z', ---, Z" be continuous semimartingales. (W), ;.
will be said to be a #' approximation of (Z!, ---, Z") if the following four
conditions hold foreachn=1,1<i=<r:

(4.1)(i) W™ have piecewise @ paths, a.s.;

(4.1)(ii) there exists a sequence II" of refining partitions with lim,,_,.mesh(II")
= 0 such that
(a) WM =Zi forallt, € I"™;
(b) W™ is &, -measurable, for all ¢ < t,;
(c) Foreacht, 0 <t < o, and II" restricted to [0, ¢]

Auzi " A'Z “2

3 .
i=1,r SU — Wi — =
z i=1,r SUDP¢,<s<t,,, s s At t A't

THEOREM 4.2. Let Z', 1 < i < r, be continuous semimartingales, Z} = 0; let
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F# (1 <= a = d) denote acceptablg coefficients (cf. (2.9)); and let W‘")",.l <i<r,
n = 1be a %" approximation of Z' as described in Definition 4.1. Let V\, 1 <i<r
be FV processes (cf. (2.1)), and let X{™ denote the solution of (1 < a < d):

t
4.3) X = 1%+ B, f FE (X, W), d(W + Vi),
0
Let G?; be the associated coefficients (2.12), and let X denote the solution of

t
X =2+ Sin,s f F2(X, Z), d(Z + Vi)
(4.4) o

1 ¢ . .
+ 5 Zi,j=l,r L G:](X’ Z)s d[ l,c’ Zj'C]a-
Then X™ converges uniformly on compacts, in probability, to X.

The proof of Theorem 4.2 begins with a lemma that lets us use our polygonal
approximation result of Section 3. For simplicity, write F¢(X™) for Fg(X®™,
Z™), etc.
LEMMA 4.5. Let X™ be as in Theorem 4.2, and Y™ be as in Theorem 3.4. If
X" = Y = T em Sima,r [FEX®),, = FE(Y™),1(A°ZF + A"V)

+ Yoemr V2 Vij=1r [GH(XM),, — GH(Y ™), A ZIANZ) + I,
where I, tends to 0 in raw %> (1 < a < d), then X™ converges uniformly on
compacts, in probability, to X.

PROOF. Since
P(IX® = X|I¥ >¢) s P(1X™ = Y?F >e) + P Y™ = X ||} > ¢),

and since
lim, o P(| Y® =X ||¥>¢) =0

by Theorem 3.4 (note that X = Y in our notation), it suffices to show
lim, .P(| X™ — Y® ¥ >¢) = 0.

By changing to an equivalent probability if necessary, assume without loss of
generality that Z', V* are all #* (1 < i < r). Proceed as in the proof of Lemma
3.19 ((3.19)-(3.27)) to establish for any stopping time T

T—
E{(X"™ — Y™)8 < CE{Ly- f (A% + | X — Y2 dL),
0

where lim, .. E(A7) = 0 and L, is given in (3.26). The rest of the proof proceeds
analogously to obtain that, for t < k, || L* || 1~ < oo,
E{|X™ = Y? |3} < e(1 + &),

where ¢,, tends to 0. Since 7, = o, we have (X™ — Y™)%«._ tends to 0 in probability
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for stopping times R* (defined in (3.28)) tending a.s. to . This proves the
theorem. [

LEMMA 4.6. Under Hypothesis 3.6, Theorem 4.2 is true.
PRrROOF. Recall that Hypothesis 3.6 assumes | AH |, < K, for H in the domain

of A, with K, increasing in raw .%°.
With Y™ as in Theorem 3.4,

t
X{e = Y = By, [ I F oo, rawes - 2
1]
t
(4.7) + f (F5(X®), — F3(Y®),} dW
0
t
+ f (Fr(X®), — F(Y™),) dvz;].
0
Consider the second term on the right side of (4.7). Integration by parts yields

¢
f Fs(X™), — Fg(Y™), dW
0
(4.8) = Y.en? {F?(X("))t, - F?(Y(n))t.}AyZi

v+1

ty+1
+ Toeny f (Wi — W) dIFs (X®), = Ff(Y™),).
7

v

But
d[F#(X™), — F£(Y™),]
. AN ZF
= St GUX™) AW — G (¥™), =S ds
(4'9) + {QL" (S, w, X(n)y ° ') - afl (39 w, Y(n)’ . ’)} dS
ads ads
6f,~°‘ (n) _.0f"a (n)
+ an (s, )dA(X™), an (s, YAA(Y™),

and integrating again by parts, when appropriate, changes (4.8) to

t
I v, - Frerm) awes
0
@I = Yo (FrX®), - FE(Y™), )22
+ Y% Yij=1r (GH(X™),, — G (Y) A ZIAZ7 + " - J7,

where I"” and J " go to 0 in raw %2, since (3.6) holds, provided Z%, V' are in #*%, 1
=<1 =<r, by arguments analogous to those used in Lemma 3.7. (Note that without
loss of generality we may assume once again that Z‘, V' are in #* by the
arguments presented in Lemma 3.5.)
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The third term in (4.7) is easily disposed of:
t
f Fg(X®), = F5(Y™), dVi
0

(4.11) = Yy [FE(X™), — F#(Y™),]A* V!

+ Sy f (Vi = Vi) dIFX®) - FY™)),

v

where the second term on the right side of (4.11) tends to 0 by arguments
analogous to those establishing that I" and J" tend to 0.

Finally, we are left with the first term on the right side of (4.7). Integrating
by parts yields

t
| Freeen, arwe - 20
0

= S F5 (Y ), (AZ' - A'Z)

ty41 ty41

ty+1 ) ) ]
+ Zn;'f (Wi iy _ (z™E _ zmiy gpey ®),
t,

v

(412) ty+1
= O + Zn?f
L,

v

vzn2 (b o (3
SKtZH?MI (b—s)[%(s,---)+%(s,---)

oW
ot

(c(s)) = AA—”ﬂ(tm — ) dFf(Y™),

At at

A*Z
+ Yj=1r GHY ™), A"t] ds

where c(s) is a value in [¢,, t,+1],
(4.13) < K 3up (1A"Z128°Q + | A’Z (T j=rr | A’Z7]))

where @' is an FV process, and where the mean value theorem gives the second
equality. The right side of (4.13) is dominated by

K(sup,| A’Q| + X, | A’Z]) Tzl A’Z || = C(w)(sup,ensl| AQ | + X, | A’Z7])),

which tends to 0 a.s. and in L%
The conditions of Lemma 4.5 are now satisfied, implying Theorem 4.2, under
Hypothesis 3.6. 0

PROOF OF THEOREM 4.2. In view of Lemma 4.6, it remains only to remove
Hypothesis 3.6. But this can be done exactly as in the polygonal case, and we
refer the reader to the conclusion of the proof of Theorem 3.4 in Section 3 (which
follows Corollary 3.41).
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5. Right continuous case. Consider now equations of the form (1 <
a=<d):

t
X§ = 2%+ Simi, f F$(X), dM;
()

where M’ are arbitrary right continuous semimartingales. Every such M can be
decomposed: M, = N + N¢ + A,, where N¢ is a continuous local martingale, A
is an FV process, and N¢ is a “purely discontinuous” local martingale (cf., e.g.,
[20]). Both N°¢ and N¢ can have, in general, paths of infinite variation on
compacts; thus it is of interest to approximate their paths with processes with
smooth paths and find the limits of the approximating solutions. Unlike the case
for continuous martingales, however, one can approximate N¢ by a sequence of
local martingales with paths of finite variation (e.g., Example 5.2 below).

DEFINITION 5.1. For a (purely discontinuous) local martingale N, a sequence
N* will be called an approximating martingale sequence of N if

(i) N* is a local martingale with paths of finite variation on compacts
(k=1);

(ii) N* converges to N locally in .#; that is, there exist stopping Fzmes T/
increasing to ® a.s. such that limy -E{[N — N*, N — N¥#} = 0,
(z=1)

(iii) there exists D € #° such that [N*, N¥] < D, for each k = 1.

CoMMENTS. For a local martingale N, the #! norm, | N || »1, is defined to
be E{[N, N]¥2}. Every local martingale is locally in .#*. Moreover one can check
that | N|l»: < E{[§ | dN,|}, and also that | N| »1 = sup,|| N¥| 41, for any
sequence of stopping times 7, increasing to o a.s.

We write [M] for [M, M] when there is no ambiguity.

EXAMPLE 5.2. One way to obtain such a sequence is to take
Al = Foei AN 1o ian, 500, NE= AF — AL

where A% is the compensation of A, and where ¢, is a sequence decreasing to 0.

Any semimartingale M can be written M = Z + N + V, where Z is a continuous
semimartingale, N is a purely discontinuous local martingale, and V is an FV
process. Such a decomposition is not unique, and in particular the choice of the
continuous semimartingale part Z is, in general, arbitrary. Here is our main
result of this section.

THEOREM 5.3. Let M’ 1 < i < r, be right continuous semimartingales, and let
M = Z' + N' + Vi be any decomposition of M such that Z' is a continuous
semimartingale, N* is a purely discontinuous local martingale, and V' is an FV
process. Let W™ be @' approximations of Z* (cf. Definition 4.1), and let N be
an approximating martingale sequence of N'. Suppose Fi(1 < a < d) denote
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acceptable coefficients (cf. (2.9)), and let X ™* denote the solution of (1 < o < d):
t
G4 XM=+ B, f Fr(X®R, W®), d(W™ + N + Vi)
0

Let G§; be the associated coefficients (2.12) and let X denote the solution of
(l<a=<d):

t t
(5.5) X?=x“+2i=1,rf Fi (X, 2), dM:;+2,~,,~=1,rf G#(X, Z), d[M*, M”],.
0 0

Then for any t and for any 8, ¢ > 0, there exists a K and a function n(k) such that
k> K and n > n(k) implies

P(| X™ — X|1¥ > 8) <e.

Most of the work involved in proving Theorem 5.3 is contained in the proof of
Theorem 3.4. Nevertheless, we will need the following lemma. Again, for simplic-
ity write F¢(X®®), for F#(X™® W) etc.

LEMMA 5.6. Let M' be semimartingales (1 <i<r), M'= Y'+ N, where each
N is a purely discontinuous local martingale. Let N*®* be an approximating
martingale sequence of N°. Let F; (1 < a < d) be in Lip(K) and bounded. Let X*
and X be solutions, respectively, of (1 = a < d):

t
=2+ By f Fs(X®), d(Y: + NJ™)
0

t
X§=x%+ Yisar f F3(X), dM:.
0
Then limy_,.X® = X, in probability, uniformly on compacts.

PrROOF. For simplicity of notation assume r = d = 1 (the extension to general
finite r, d is easy). Let T“ be stopping times increasing to % a.s. such that
limj_ E{[N — N®]#2} = 0. Without loss of generality we assume Y, N® and M
are all stopped at T, for a fixed Z By changing to an equivalent probability @, if
necessary, we may further assume that N and Y are in #%(Q) on compact time
intervals and that the process D in Definition 5.1 is in L'(dQ). Further, one can
choose @ so that the density d@/dP is bounded (cf. [2, page 271]).

Under Q, the processes N, N* need not be local martingales, but they are
special semimartingales. Let

(5.7) N=N+A, N'=N*k+ Ak

be their canonical decompositions under Q. Let J; = E{dQ/dP | %;} and we take
the right continuous version of this bounded martingale. The martingale J is
nonnegative, and letting R? = inf{t: J; < 1/p}, we have R” increases to « a.s. as

p increases to .
Fix t, and let ¢ > 0 be given. Choose p sufficiently large that P(R” < ;) < e.
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The processes A and A* of (5.7) are known to be given by

L3
A= ) T d(N, J),

t
Ak = f Jl d(N* J), (cf. [2, page 259]);
O 8§

For p fixed let R = R?. On [0, R] we have | 1/J,-| < p, and therefore

R
EQ{IA—A'*IR;SEQH J1_|d<N—N'*,J>s|}
R
1
SEP{Jf |d<N_Nk’ J)sl}
o oJ,
B
S.Ep{f J_—ld(N—Nk,J)sl} )
o Js
R
=EP{J; Id(N—N",J)sl}
R
=Ep{£ Hsd(N—Nk,J)s}

(where H is predictable and takes on only the values +1)

R

= EP{J; H, d[N — N*, J]s}
R

= EP{J; |d[N — N¥ J]sl}’

< CEp{IN — N"I¥*},

by Fefferman’s inequality and using that J is bounded (cf. [2, page 295]).
Summarizing the above, we have that

(5.8) Eqf| A — A*|&} = CEp{[N — N¥I¥?},
and thus
(5.9) lim,oEq{| A — A*|g} = 0.

Since F is bounded, this then implies that if

t 2
(5.10) ox(R) = Eq‘{suptsn(fo FX! d(A* ~ Ak) }’,
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then
Next, observe that, for any stopping time T,

t 2
EQ{SuptsT(f FX* d(N* — N),;) }
0

T
< 4EQ{ f (FX%)? d[N* — N, N* — N]s}
0

< 4CEo{[N* - N, N* — N}
< 16CEq{[N* — N, N* — N},

since F is bounded and where the last inequality follows since N* — N is the local
martingale in the canonical decomposition of N* — N (cf. [2, page 264]). Thus if
we set

t 2
(5.12) vu(T) = EQ{suptsT(f FX* d(N* — 1\7)3) },
(1]
we have from (5.11) and by [N — N*, N — N*] tending to 0 in probability and
being dominated by 2([N, N] + D) € L}(dQ), that
(5.13) lim_»v:(T) = 0, for any stopping time T.

Finally, we recall the following fundamental result of Métivier and Pellaumail
[12]: for Z a semimartingale, there exists an increasing process B that “controls”
Z in the following sense:

¢ 2 T-
(5.14) E<llsupt<T(f H, dZ,) } < E{BT. f H: st}
o o

for any locally bounded predictable process H and any stopping time 7. Let L
denote a process controlling the semimartingale M of the hypothesis. Then we
have, for any stopping time T < R,

t

t 2
Ef{sup<r(X, — XF)% < E{supKT( f FXt dME - f FX, dMs) }
0 0

t 2
= 2E<|[sup,<T< f (FX% - FX,) dMs> ]f
0

t 2
+ ZE{supKT(J; FXkd(Mk - Ms)) }'

(5.15)

t 2
= 2E{Supt<T<£ (FX{: - FXg) dMs) }'

+ C[ox(R) + vi(R)]
where C is a constant, lim;_,,C[6:(R) + v:(R)] = 0, from (5.10), (5.11), (5.12),
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and (5.13). Let ax = C[8x(R) + v&(R)]. Then (5.15) becomes

t 2
E{sup,<r(X, — X})?% < 2E{supt<q-<f (FX* - FX,) dMs) } + ap
0
T_
(5.16) =< ZE{LT_ f (FX* - FX,)? dLs]f + ag
0

T—
= 2KE{LT_ J; [(X*— X)x])? dLs} + ag

using (5.14) and the Lipschitz property of F.
Define 7, = inf{s: L, > t}, and let T = min(r,, R). Then for ¢t < t,, we have
from (5.16)

T
Efsup,<r(X, — X5 = 2KEJlt f (X* - X)¥ dLs}> + oy
0 .

T—
= 2KtE{f 1|[0’T|[(S)(Xk - X):,k_2 dLs} + &
0
(5.17) L
= 2KtE{J; I[O,RA,t[(Ts)(Xk - X)::z_ dS}’ + o

t
< 2KtoE{f (X* = X) i, ds} + o,
(]

where we have used Lebesgue’s lemma ([1, page 91]). Letting
ﬂ(k’ t) = E{supKR/\fJ Xs - Xﬁlz}y
we have from (5.17) that

B(k, t) = 2Kty J; B(k, s) ds + ap,

and hence, by the Bellman-Gronwall lemma ([5, page 393]),
t
B(k, t) = ap + 2Kty f ec("“)ak ds
(V]

which tends to 0 as k — o since lim,_,ca = 0. Thus (X — X*)* tends to 0 in
L?*(dQ) on [0, R[, and hence in probability (Q); since Q and P are equivalent, we
have convergence in probability (dP). Since P(R < t) < ¢, ¢ arbitrary, we thus
have (X — X*)* tends to 0 in probability on [0, t,]. But ¢, was arbitrary, and the
proof is complete. 0

PrOOF OF THEOREM 5.3. Let X(n, k) be as given in (5.4), and let X be as
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given in (5.5). Under the same hypotheses, let Y be the solution of (1 < a <
d):

¢
gk) = x* + 2i=1"f F?(Y(k))s dZ: + N,(,h)i + Vi)
(i
¢
+ % Yij-1r f G (Y W), d[M*, M7,
0

Given 6, ¢ > 0, for each k, Theorem 3.4 assures the existence of an m, such that
if n = my, then

(5.18) P(| X®0 — YR * > 5) < ¢/2.

Analogously, Lemma 5.6 ensures the existence of a K such that, for k = K,
(5.19) PIY® = X|I¥ > 5) < ¢/2.

Since

P(IX™ = X|I¥ > 8) < P(IX™ = Y®| > 5) + P(|Y® - X |17 > 6),
(5.18) and (5.19) yield the result. O
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