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A CLASSIFICATION OF DIFFUSION PROCESSES WITH
BOUNDARIES BY THEIR INVARIANT MEASURES

By Ross PINSKY!
Technion-Israel Institute of Technology

Let D be a connected, compact region in R% If d = 1, then for each nice
probability measure u on D and diffusion coefficient a, there exists a unique
drift such that p is invariant for the resulting diffusion process with reflection
at the boundary. For d > 1, there is no uniqueness. For each diffusion matrix
a, reflection vector J, and nice probability measure u on D, we classify the
collection of drifts such that u is invariant for the resulting diffusion process.
We use the theory of the I-function and, in the course of things, answer a
question about the I-function.

1. Introduction. Let D C R? be a connected, compact region defined by 6
< 0 for some 0 € C%(R?) with V 8 # 0 on § = 0, that is, on dD. Consider a diffusion
process on D with reflection at the boundary generated by L = % V . aV + bV
with boundary condition J - Vu(x) = 0 for x € dD. We will impose the following
conditions on the coefficients: a is a positive matrix with entries a;; € C(D), b,
the drift is a d-vector with components b; € C'(D) (henceforth we will say
b € CY(D)), and J is a C'-vector field on dD which satisfies J - n(x) < a <0
for x € 4D and « a constant. Here n(= V68/| V6 |) is the outward unit normal
on dD.

The above conditions on the coefficients are sufficient to guarantee the
existence and uniqueness of a diffusion process with the above generator [3]. The
conditions on a and J and 4 allow us to write J (up to multiplication by a scalar
function which is of course irrelevant in defining the process) in the form J =
—a - n + T where T is a C'-vector field on dD. Denote by I(a, b, T') the unique
diffusion process corresponding to a, b, and T and let &/ (a, T) = {I(a, b, T),
b € C*(D)}. A unique invariant measure exists for each diffusion process above.
Let P’(D) be the set of probability measures u on D with strictly positive
densities ¥ € C*(D) and let g = /2. We consider the following question. Given
u € P’ (D), for which diffusion processes in the above class is u invariant?

REMARK. In one dimension, T' = 0 automatically and, for any a, there is a
unique diffusion process for which u is invariant, namely the one with drift given

by b =a(g’/g).

In two or more dimensions, there is no such uniqueness. For example, for 2-
dimensional Brownian motion inside the unit circle with normal reflection at the
boundary and with a drift in the §-direction of arbitrary magnitude but depending
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694 R. PINSKY

only on r = (x* + y?)'/?, the invariant measure is uniform, that is, a multiple of
Lebesgue measure. (The generator of the process is L = %4 A + f(r)y(8/dx) —
f(r)x(3/dy) with du/dr = 0 on r = 1.) In general, if T' = 0, then one process for
which u will be invariant is I(a, aVg/g, 0). If T # 0, then no such explicit solution
exists.

To answer our question, we will fix a and T and then describe the class of
drifts for which the resulting process possesses p as its invariant measure. The
method we will employ utilizes the I-function, and, in the course of things, also
answers a question concerning the I-function.

We briefly describe the I-function theory. Let w = x(-) denote a sample path
and define L,(w, B) = (1/¢t) [§ x(8 (x(s)) ds for B C D. Thus, L,(w, B) measures
the proportion of time up to ¢ that the particular path w spends in the set B.
Hence L;(w, -) € #(D), the space of probability measures on D. Define the
I-function by

(W) = —infucon f L
D U

where 9% = {u € 9: u = ¢ > 0} and 9 is the domain of the generator L.
Let P, be the probability measure on C([0, »), D), the space of continuous
functions from [0, ) to D, induced by the diffusion process starting from
x € D. Donsker and Varadhan [1] have shown that for open sets G C #(D),
lim inf, . (1/t)log P.(L:(w, -) € G) = —inf,ccI (1), for all x € D and for closed
sets C C 2(D), lim sup,_,»(1/t)log P.(L;(w, -) € C)< —inf,ecI(n), for all x € D.
Thus for large ¢ and a small neighborhood N(u) of u, P,(L;(w, -) € N(n)) is
“roughly” e, Furthermore I(x) = 0 if and only if u is invariant for the process
(use Lemmas 2.5 and 3.1 in [1]). It is this property of I(-) which we will utilize.

In [2], we gave the following representation for I (x) which is valid for diffusion
processes of the above type. For p € (D) with strictly positive density
¥ € CYD) and g = ¥/,

_1f Ve _ _1><v_g_ )
I(u)—2 D(g abag a’'b |g? dx
_lf V8 1)
2 aD<g T)g do

— infhec@(p)l:% L (Vh — a_lb)a(Vh - a"lb)g2 dx

- lf (Vh . T)g? da].
2 Jap

Furthermore, there exists a unique (up to a constant) h, , (we have suppressed
the dependence on @ and T') for which the infimum above is attained and, in fact,
h,» € C? and satisfies

V . [g%b—aVh,)]=0 in D
2g%b — aVh,) - n=V - (g2T) on aD.

(1.1)

(1.2)
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Thus, we can recast our question in the following terms. Fix a, T' and u and solve
I(u) = 0 for b.

REMARK. Note from (1.1) that I(u) = 0 if and only if h, , = Vg/g.

For fixed a, we establish the following equivalence classes for drifts in C*(D).
We will say that 2 drifts b, and b, are a-equivalent if and only if a~'b; and a™b,
differ by a gradient function. That is, b; ~, b, if and only if a™*b; — a™'b, = Vg
for some q. We have the following simple lemma.

LEMMA 1.3. In one dimension there is only one a-equivalence class. In two or
more dimensions, there exist uncountably many equivalence classes.

PROOF. In one dimension every drift is a gradient. For d > 1 dimensions, let
b. = cav where ¢ € R and v is the d-vector (xz, —x,, 0, - - -, 0). Clearly b, ~, b, if
and only if ¢; = c,.

From each equivalence class, pick out one drift function. Call this collection
of drifts, one from each equivalence class, &,. Define &, (a, T) = {I(a, b, T) €
& (a, T'): p is invariant for I(a, b, T')}.

THEOREM 14. We have b, — aVh,, = by — aVh,,, if and only if
by ~4 bs. Also %,(a, T) = {I(a, b, T): b = b + a(Vg/g) — aVh,;, b € &}.
Hence there is a one-to-one correspondence between elements of &, and elements
of %,(a, T) given by b — I(a, b + (aVg/g) — aVh,z, T).

REMARK. In formula (1.1), the representation of the I-function, there appear
two functions, g and h, ». Of course g has the probabilistic interpretation of being
the square root of the density of u. Theorem (1.4) allows us to give a probabilistic
interpretation to h,, as well, which we state as:

COROLLARY 1.5. Consider a process I(a, b, T') and a measure u € #’(D). The
I-function for the process is expressed in terms of g, the square root of the density
of u and h,, which has the following probabilistic interpretation: Among all
processes I(a, b, + aVq, T) with ¢ € C*(D), the process with Vq = (Vg/g) — Vh,,
is the unique one for which u is invariant.

Except for the fact that Vq need not be in C!(D), this corollary follows
immediately from the theorem. We will prove the corollary in Section 2 in the
course of proving the theorem.

REMARK. Ifwelet L =%V . aV + bV + (aVg/g)V — VhV, then g? is an
invariant density for the process generated by L if and only if [p g°Lu dx = 0 for
all u € C3(D) N (Vu - J = 0 on dD). If we solve this for h, we arrive at
(1.2). Hence the one-to-one correspondence between &, and 7, (a, T') could be
obtained this way. The advantage of our method is that one sees the probabilistic
interpretation of the unique gradient which minimizes the variational part of the
I-function.
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2. Proof of Theorem. Suppressing the dependence on a, T and g, let
Y(Vh, b) = % [p (Vh — a”'b)a(Vh — a7'b)g* dx — % [op (Vh - T)g® do.
Then I(u) = ¢(Vg/g, b) — infrecpy)¥ (Vh, b). To prove the first statement in
the theorem, pick b; ~, b, and say b, = b, + aVq. Then v(Vh, b)) =
¥ (Vh, b, + aVgq), and making the substitution Vh = Vh — Vg, we see that
infrec2p)¥ (Vh, by) = infiecepy) ¥ (Vh, by) — f ap (Vg - T)g2 do.

The infimum of the left-hand side of this equation is attained at h = h,» and
the infimum of the right-hand side is attained at 2 = h,,,. Since VA = Vh — Vg,
we have Vh, ,, = Vh,, — Vq and thus b, — aVh, s, = (b, + aVq) — a(Vh,p, + Vgq)
= by — aVh,,. Conversely, suppose b, — aVh, s, = by — aVh,,.

Then a™'b; — a™'b; = Vh,,, — Vh,;, and thus b, ~, bs.

Now we show that for any b € C'(D), u is invariant for I (a, b + (aVg/g) —
aVh,s, T). We do this by showing that I(u) = 0 for this process. Making the
substitution VA = Vh — (aVg/g) + Vh,;, we have

- AY/
infhecz(n)sb(Vh, b+ a?g - avhu,5>

. 1 \Y
= infﬁec2(p)'¢/(Vh, b) - 5 f (_g . T)g2 do
oD \ 8

+1 f (Vhys - T)g? do
2 Jap
. \V/
— Whs b -1 [ (—g Trdo+ 1 | Ohs i ar
2Jdap \ g 2 Jap
Hence, for the process I(a, b + (aVg/g) — aVh,;, T), we have

Ve . aV v
I(g) = ¢<?g, b+ “?g - thu,,;> - infhecz(mgb(Vh, b+ “?g - th#,g)

N ~ \Y
o5+ 2% - Vhs) = y(¥hs, 6+ 1 [ (% r)e do
8 g 2Jdap \ g

1
~3 j;D (Vh,s - T)g* do

21 = % f (Vh,s — a7 *b)a(Vh,; — a™'b)g? dx
D
- l f <V_g : T>g2 do — 'Q{/(Vh#,E, 5)
2Jdip \ g

1f Ve o) _1f e
+ 2 0D<g T)g do 2 Jp (Vh,; - T)g* do

= Y(Vh,s, b) — ¢(Vh,z, b) = 0.
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In order to complete the proof of the theorem, we must show that if u is invariant
for I(a, b, T), then in fact b = b; + (aVg/g) — aVh,, for some b;.

Let b; = b — (aVg/g) and write b = b, + (aVg/g). Now consider all drifts of
the form b, + (aVg/g) — aVh. Corollary 1.5 states that among all such drifts, the
one with Vh = Vh,, is the only one for which u is invariant for I(a, b +
(aVg/g) — aVh, T). But, in particular, if Vh = 0, then b, + (aVg/g) —aVh =b
and g is invariant for I(a, b, T). Hence Vh,, =0 and b = b, + (aVg/g) = b, +
(aVg/g) — aVh,,,. Thus, to complete the proof of the theorem, we will prove
Corollary 1.5.

We need to show that if h € C'(D) and Vh # Vh,;, then u is not invariant
for I(a, b + (aVg/g) — aVh, T). (We still have existence and uniqueness for
continuous drifts—in fact, for bounded measurable drifts.) Performing the cal-
culation as in (2.1) but with b + (aVg/g) — aVh replacing b + (aVg/g) — aVh, ;,
we obtain I(x) = ¢(Vh, b) — ¢ (Vh,s, b) > 0 if Vh # Vh,, since Vh,, is the
unique gradient which minimizes ¢ (Vh, b) as h varies over C*(D), or equivalently,
over C(D).

REMARK. If b€ C(D), or if the density of u is not strictly positive, then (1.1)
still holds, and h,, still exists in W%(D) and is unique [2]. If it can be shown
that in fact h,, € C*(D), then the theorem and corollary still hold with &, and
#,(a, T) enlarged to include continuous drifts. Furthermore, in this case, we may
consider all measures u with densities ¢ € C*(D).

In fact, even in the case at hand, we may consider measures u with strictly
positive densities ¥ € C'(D). Corollary 1.5 still holds and Theorem 1.4 holds if
we change the notation. The problem is that the one-to-one map b — b +
(aVg/g) — aVh,; no longer maps C*(D) into C*(D). The proof is the same except
that one must check that everything goes through at the step where we define b,
= b — (aVg/g) since now b; & C*(D). The fact that for b, € C(D), (1.1) still holds
and h,,, exists in W3 (D) and is unique is all we need.
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