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FISHER INFORMATION AND DETECTION OF A EUCLIDEAN
PERTURBATION OF AN INDEPENDENT
STATIONARY PROCESS

BY J. MICHAEL STEELE

Princeton University

An independent stationary process {X,}2, in R”" is perturbed by a
sequence of Euclidean motions to obtain a new process {Y;)?2 ;. Criteria are
given for the singularity or equivalence of these processes. When the distribu-
tion of the X process has finite Fisher information, the criteria are necessary
and sufficient. Moreover, it is proved that it is exactly under the condition of
finite Fisher information that the criteria are necessary and sufficient.

1. Introduction. The purpose of this article is to provide results which tell
when an independent stationary process in R, which has been perturbed by
Euclidean motions, can be distinguished from the original process. The first
results of this nature are due to Feldman (1961), Shepp (1965), and Renyi (1967).
In p.larticular, Shepp settled the question completely in the case of translations
in R

Here we will obtain extensions of Shepp’s results to R¢, but, more pointedly,
we extend the group of perturbations from translations to the whole group of
proper rigid Euclidean motions (i.e., rotations, translations, and their composi-
tions).

One benefit of this extension comes from having to spell out the proper
analogue of finite Fisher information. A second benefit comes from the fact that
the noncommuting perturbations studied here do not have a convenient harmonic
analysis. This forces one to develop tools which are different from those used in
the commutative case. A final benefit comes from seeing how several simple facts
from the local theory of Lie groups can be put to work on a statistical problem.

Before stating the main results some notation needs to be developed. We will
let G denote any closed continuous subgroup of the group of rigid motions of R<.
It is known that such a G must actually be a differentiable manifold, and hence
that there is a tangent space T,G at the identity e. The elements A € T,G can be
viewed as matrices, and for all ¢ one can define a new matrix exp(¢A) by the
converging sum L°_.(¢"/n!)A", which we will denote by p(¢). The set { p(¢):
t € R} can be verified to be a group, and it is called the one-dimensional
subgroup generated by A.

To concretize these notions and to develop some facts which will be used later,
we now consider the important special case where G is the full group of rigid
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motions on R2 The usual real parametrization of G is given by the 3 x 3
matrices.

cos@ —sinf a
R(0,a,b) = | sing cosé b, —r<f<m, - <a,b<oo.
0 0 1

Here, by parametrizing R? by the two-dimensional set in R? given by -

(=

one sees that matrix multiplication by R(8, a, b) corresponds to a rotation by 6
followed by a translation by a and b along the x and y axes. A basis for T,G is

given by
0 -1 0 . 0 0 1 0 0 O
Ag= |1 0 0}, A,=|0 0 0], Ay,=10 0 1
0 0 0 0 0 0 0 0 0
and direct power series computation establishes
cos§ —sinfd O 1 0 a
exp(0A,) = | sinf cosf 0|, exp(lad,)=|0 1 0],
0 0 1 0 0 1
1 0 0
exp(bA,)=|0 1 b].
0 0 1

If H= {p(¢): t € R} is a one-parameter subgroup, we say a measure p is
invariant under H if p( p(¢)B) = u(B) for all measurable B and all ¢. Naturally,
Lebesgue measure is invariant under any subgroup of the rigid motions. Also,
note that if p has a radially symmetric density (say in R?), then p is invariant
under the subgroup of rotations.

Finally, we recall that there is a neighborhood N of the identity and an ¢ > 0
such that each g € N can be written uniquely as g = exp(tA) for some A € T,G
with ||A]| = 1 and with |f| < e. Here the norm | - || is computed by expressing
A = (a;;) with respect to a fixed basis and taking ||A| = (£a?)"/%. For any
& € N we define ||g|| = ¢ where g = e’ is the canonical representation of g. If
g € N we just take ||g]| = 1. Referring to the previous examples, we see that
lA4ll = V2, so for the rotation g = exp(#A,) we have ||g|| = |8]v2 . Similarly, for
g = exp(aA,) we get ||g|l = |a|. [For the facts used in this paragraph and
subsequently, the handiest reference seems to be Auslander and MacKensie
(1977), Chapter 7, pages 117-134.] With these conventions it is now possible to
state the first results.

THEOREM 1. Suppose that X, X,,...is a sequence of independent random
variables with distribution p on R%, which is not invariant under any continuous
one dimensional subgroup of rigid motions. If g; is any sequence of rigid motions
converging to the identity, but such that ¥ ,(g;||*> = oo, then the processes
(X, X,,...} and {g,X,, §,X,,...} are mutually singular.
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Before stating the next result, it is worth observing that the case of radial
symmetry in R? shows the necessity of ruling out invariant distributions u. The
possibility of discrete symmetry underlies the necessity of restricting attention to
&; converging to e.

To state the second theorem we need the notion of finite Fisher information.
To motivate our definition we recall that if f(-) is a smooth density on R, the
translation family f,(x) = f(x — #) has Fisher information
2

I~ {1 /i(x)} ax

— 00

= 4f_ww(%m)2dx.

This last equality suggests that we generalize the notion that the derivative of
h(x) = Jf(x) isin L% For any continuous one-parameter subgroup H = { p(¢):
¢t € R} we define an operator on C*(R?) by setting

ad
1B, 35108 1))

(Lo)(x) = o(p(2)2)

t=0

This operator is called the infinitesimal operator associated with the subgroup H.
For example, if H is the subgroup of rotations in R2, then one can easily check
that L = x(d/dy) — y(3/0x).

The infinitesimal operators can be extended from Cg° in the usual way to the
class of distributions (generalized functions) on R®. In particular, LA is well-de-
fined for any function 4, although LA may not necessarily be a function. We can
now give the main definition.

We say that a density f on R? has finite Fisher information, provided for A
= ﬂ we have Lh € L%(R?) for all infinitesimal operators associated with
continuous one-parameter subgroups of rigid motions.

Here it is useful to recall that a distribution » is said to be in L2, provided
sup »(¢) < oo for all ¢ € C§° with ||¢||, = 1. We also note that such a » must be
in the dual of L? which is just L? again, so the statement LA € L%R%) entails
the conclusion that Lk is a function and is in L2(R?) in the usual sense.

The next result shows that /? Euclidean perturbations of distributions with
finite Fisher information are equivalent. This result thus provides large class of
examples of a particularly strong type of quasi-invariance [c.f. Feldman (1961)].

THEOREM 2. If X,, X,,... are independent with density f on R? with finite
Fisher information, then the processes {X,, X,,...} and {g,X,, 8,X,,...} are
mutually absolutely continuous whenever £L_,||8,l1% < 0.

“The final result shows that finite Fisher information is much more than a
convenience in the detection problem. In fact, the class of distributions with
finite Fisher information is precisely the class for which /2 perturbations never
permit certain detection.
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THEOREM 3. If {X,, X,,...} is an independent stationary process on R4
and {X,, X,,...} and {g,X,, 8,X,,...} are mutually absolutely continuous for
all sequences {g;} such that £ ||g;||*> < o, then the X ;s have a strictly positive
density f(x) with finite Fisher information.

The proofs of these theorems are given in the next three sections. The fifth
section discusses some related literature and mentions some open problems.

2. Proof of Theorem 1. The main tool used in the proofs which follow is the
theorem of Kakutani (1948) on the singularity and equivalence of product
measures. If p and » are any two probability measures which are absolutely
continuous with respect to a measure m, then the Hellinger integral H(u, ») is
defined by

H(u,v) = [(fg)"* dm,

where f = dp/dm and g = dv/dm are the Radon-Nikodym derivatives. One can
check without difficulty that H(u, ») does not depend upon m and that 0 <
H(p,v)<1.

Now if pj, £ =1,2,... and v, k = 1,2,... are any two sequences of probabil-
ity measures such that p, and », are mutually absolutely continuous for each %,
then the theorem of Kakutani states that the infinite product measures

0 0
p=1TIp, and »v=[1»,
k=1 k=1

are either mutually singular or mutually absolutely continuous accordingly as
o0
l_[ H(py,v,) =0
k=1
or
0
kljllH(Mka vy) > 0.

To prove Theorem 1 we first note that since g; are converging to the identity e,
there is no loss in assuming that all the g; are in the neighborhood N where each
g € N can be written as g = exp(ZA) for a unique A € T,G with ||A||=1 and a
unique £, 0 < £ <& < o0.

We now take a sequence Z; which are i.i.d. N(0, I) and consider the sequences
(X} ={X;+ Z) and {Y}} = {g(X; + Z))}. It is intuitive that if { X/} and {Y}"}
are singular, then so are {X;} and {g;X;}. To establish this rigorously we first
note that {g,(X; + Z;)} =,{(&;X; + Z;} by the affine character of g; and the
spherical symmetry of Z;, By Kakutani’s theorem we see therefore that the
singularity of { X/} and {Y;’} implies the singularity of {X; + Z;} and {g,X; + Z}.
Now, we use a Fubini argument. By the singularity of { X, + Z,} and {g, X, + Z,}
there is a measurable subset B C R* such that the events E, = {{X, + Z,} € B}
and E,= {{g,X, + Z,} € B} have measures 1 and 0, respectively under the
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product measure P X P’, where P is the measure on @ given by the { X} process
and P’ is the measure on ' given by the {Z,} process. By Fubini’s theorem there
is a subset Q2 C £ of P’ measure one such that for all ' € Q) the events
E(w)={{X; +Z(w")} € B} and Eyw)= {{g,X, + Z,(w')} € B} have P
measures 1 and 0, respectively. We choose some fixed wj C 2 and define a new
measurable subset B C R® by B = B — {Z,(w})}. We then have P({X, e B)=
1 and P({g,X,} € B) = 0 which proves that {X,} and {gka} are singular.
Our objective is now to start computing Hellinger integrals in order to use the
assumption XF_,[|g,l|%> = oo to show {X/} and {Y;} are singular.
We let f(-) denote the common density of the X/ and consider the Hellinger

integrals
= [Vi(=)i(gi'x) dx = [h(x)h(e ") dx

where h(x) = /f(x) and g, = e™. Setting y 4(t) = fh(x)h(e““‘ )dx we note
that ¢,(0)=1 and that it is not difficult to show that ¢ ,(-) is infinitely
differentiable.

By the change of variables y = e “4x one also sees that y,(-) is an even
function and that consequently the two-term Taylor series with remainder is just

(2.1) Yat) =1+ f¢ {(w)(t - u) du.

By computing the first derivative and then changing variables before comput-
ing the second, one has

(22) VA(t) = = [{Vh(e'y) - Ae*y} (VR(y) - Ay) dy,
which simplifies for ¢ = 0 to
¥i(0) = - [(Vh(3)4y}* dy = - [(Lh)*dy.
Now, if y%(0) = 0, we will show that A is invariant under the one-parameter

group p(t) = e*4. To see this, first note that ¥/{(0) = 0 implies 1 — ¥ ,(£) = O(t%),
since ¢ ,(¢) is even. But setting 0 = ¢, < ¢, < --- < ¢, =t we have

0=1- [M(e)n(p(0%) de = X [h(x)(h(p(ts-1)2) ~ h(p(1)2)) d

1/2

IA

kz; (f{h(p(tk—l)x) - h(p(ty)x))* dx)

1/2

IA

3 ([1h(p(t1 = t)5) = b)) i

IA

kE (2 = 29a(tp-y — tk))1/2~
-1
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Now the fact that 1 — y,(¢) = O(#*) shows the last term above can be made
as small as we like. Thus [A(x)A(p(t)x)dx = 1 for all ¢; and since H(»,p) =1
only if » and p are equal, we see f(x)= f(p(¢t)x) for almost every x. Our
assumption that f is not invariant under a one-parameter subgroup therefore
implies that J%{(0) < 0 for all A € TG, ||A| = 1.

By the continuity of y/(¢) as a function of (¢, A) and by the compactness of
the set K = {(0, A): ||A|| = 1}, we obtain an open neighborhood ¢ containing K
and a 8 > 0 such that Y{(¢) < —4 for all (¢, A) € 0.

Applying this bound in the Taylor expansion (2.1) we see

(2.3) Ya(t) <1 82/2

for all A, ||A||=1 and all ¢ in an & neighborhood of 0. Since the g, are by
assumption converging to e, there is no loss in assuming g, = e%4*, ||4,| = 1,
|t,] = ||&:ll < e If u, is the measure corresponding to the {X, + Z,} and »,
corresponds to {g,(X, + Z,)}, then

(2.4) klilH(#k, V) < klojl {1 - 8”gk”2/2}'

Since =F_,||8:lI? = o by assumption, the right side of (2.4) diverges to zero.
By Kakutani’s theorem this shows { X/} and {Y;’} are singular and by the earlier
reduction this completes the proof. O

3. Proof of Theorem 2. Let ¢, denote a normal density with mean zero and
covariance matrix eI. Under the hypothesis of Theorem 2 it is easy to check that

lim [ 43 (x) - 7(x) dx = [f(x)dx=1.
* We can therefore choose ¢, | 0 so rapidly that
(3.1) | k]:[lf o f(x) - f(x) dx > 0.

If the Z, ~ N(0,¢,I) 1 < k < oo are independent, then (3.1) and Kakutani’s
theorem will give

(32) {Xp} ~ (X + Z,}
and '
(3.3) {82 X0} ~ {8:( X + Z,)) ~ {8 X, + Z,).

Here “ ~ ” is used to denote measure theoretic equivalence or mutual absolute
continuity of the processes. One should note that the second equivalence of (3.3)
comes from the fact that g(X, + Z,) =,gX,, + Z, which is due to the spherical
symmetry of N(0, I).

Now letting h(x) = |f *¢(x); g = ' and y(¢, ¢, A) = [h(x)h (e~ *x) dx,
we see, as in (2.1) and (2.2), that

(3.4) W(t, e, A) =1+ foip"(u, e, A)(t — u) du
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and
(3.5) V(e A) = - [{Vh(e'y) - Ae'y} (VR (y)- Ay} dby.

Applying the Schwarz inequality to (3.5) and using the invariance of Lebesgue
measure we have

(3.6) W't e, A)| < [{(VR)() - Ay} dy.

To bound this last integral, first re-express it and then use Schwarz’s in-
equality

f{(Vhe)(y)~Ay}2d =% (ng*cbe(e”‘x)) /f*qbe(e““x)dx

and
(G- etem)] = ([ ies - o &)
< f¢e(y)(%f(e“*x - y))z/f(e“‘x —y)dy
- [#(e*x = y)8.(y) dy.
Hence

JUTR)(5) - AyY dy < %ff%(y)(if(e“‘x - ) 2/f(e“‘x ~ ) dydx
-1 ( (e ) /f(e“‘x)dx

=/{(V f(y))-Ay} dy < 0.

The finiteness of the last integral naturally is just the application of the
hypothesis of finite Fisher information.
Since the last integral is just a quadratic function of A, we have a uniform

bound
2

sup J(vV(3)) -4y} dy= B < w,

IlAlI=1
which in (3.4) and (3.6) yields
(3.7) 1-Bt?/2 <y(t,e,A) <1
for all 0 <e< o0, ||A||=1, and —c0 <t < —oo0. From (3.7) it follows im-
mediately that TTX_,¥(¢,, &, A) > 0 whenever X2 ||g,]|> < . By Kakutani’s

theorem we then have {X; + Z;} ~ {g,(X; + Z,)}, so by the equivalences (3.2)
and (3.3) the proof of Theorem 2 is complete. O
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4. Proof of Theorem 3. If p is any measure on R¢, we define the translated
measure u,, a € R% by u(A) = p(A + a) for all Borel A C R<.

LeEMMA 4.1 [c.f. Shepp (1965), Lemma 5]. If p ~ p, foralla € R", then p is
absolutely continuous with respect to Lebesgue measure and corresponds to a
strictly positive density. .

Proor. Letting A denote Lebesgue measure we have by Fubini’s theorem
that

(4.1) /Rd,L(A + a)da = MN(A).

Now, if p(A) = 0, then p, ~ p for all @ implies p(A + a) = 0 for all a, which by
(4.1) shows A(A) = 0. The Radon-Nikodym theorem then shows p has a density
).

Now, to prove Theorem 3 we suppose that {X,, X,,...} is equivalent to
(8, X,, 8,X,,...} for all (g,)2, such that X2 ||g,||> < co. Since we can take g,
to be an arbitrary translation and then take g; = e for i > 2, we see from Lemma
4.1 that the X; must have a positive density f.

Next, let L be any infinitesimal operator associated with a one-parameter
subgroup H rigid motions. We have to show that Lh € L¥R?) where h = /f.

There are two cases to consider: H compact and H noncompact. It is well
known that if H is compact, it must be conjugate to the subgroup of rotations in
the x,—x, plane. Further, if H is noncompact, it must be conjugate the subgroup
of translations along the x,-axis.

We consider first the harder case of H compact. Writing H = {e’4: t € R} we
known there is a rigid motion M so that

(4.2) exp(tA)M = Mexp (tA,),

where exp(tA,) corresponds to rotation in the x,-x, plane.
Now we let Ay(x) = h(Mx) and calculate

I(t) = / R(x)h(exp(tA)x) dx = fh(Mx)h(exp(tA)Mx) dx

(4.3) )
= fh(Mx)h(Mexp(tA(,)x)dx = /ho(x)ho(exp(tAo)x)dx.

We write (x;, X5,...,%x,) = (pcosf, psinb, x;,...,x,;), and define
hoo(0, 0, X3, ..., x45) = ho(xq, Xg,..., Xg) to obtain

1(2) = [holx)ho(exp(t,)x) dx

(44) = thO(a’ Py Xgyeeey xd)hoo(o + t; P, X350, xd)

‘pdpdldxg,...,dx,.
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Setting

R 1
hoo(n,p, x5,...,25) = TQ‘,,‘]_ e "R (0, p, xs,...,x,) do,

one obtains by Parseval’s identity that
4 2
(45) I(t) = f{z [Roo(n, p, 235 %4) ] cos(nt)}p dpdx,,...,dx,
z

and

1-1(¢) =j{zmw(n,p,x3,...,xd)|2cos(nt)}pdpdx3,...,dxd
y 4
(4'6) t2 : ) 9
ZZ‘/‘{ Z n2|h00(n,p,x3,...,xd)|}pdpdx3,...,dxd.

|nt] <1

Now, we note that Lh € L? if and only if

d
—d'zhoo(a, p,xa,...,xd) (S5 L2(pdpd0dx3,..., dxd).

Therefore, if Lh ¢ L2, the function

T(t)=f{ Yy n2|izoo(n,p,x3,...,xd)|2}pdpdxa,...,dxd

|nt| <1

satisfies T(t) » o0 as t = 0.
We can now use an elementary lemma on real sequences which is from Shepp
(1965).

LEMMA 4.2. If T(x) > o as x — 0, there exists a real sequence a, with
Ya? < oo, but Lail(a,) = .

Applied to (4.6) this lemma shows that if Lh & L? there exist (a,) € {? such
that 11¥_,(1 — I(a;)) = 0. By Kakutani’s theorem this says that the processes
(X, X,,...} and {exp(a;A)X,,exp(a,A)X,,...} are singular. This contradicts
the hypothesis of Theorem 3, and therefore establishes the fact that Lh € L? in
the case that H is compact. For the noncompact case, one performs a similar
reduction to the case of a one-dimensional translation. After that reduction the
proof can be completed just as above except that the Fourier transform replaced
the Fourier series. O .

5. Final remarks. There is an intimate connection between equivalence
under [? Euclidean perturbations and finite Fisher information. Shepp (1965)
posed the question of determining the class of distributions F which are equiv-
alent for all I? translation perturbations with p # 2. This problem was settled
definitively by Chatterji and Mandrekar (1977). It would be interesting to know
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if the results of Chatterji and Mandrekar (1977) can be extended to the case of [?
Euclidean perturbations with p + 2.
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