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ON THE INFLUENCE OF THE EXTREMES OF AN LIL.D.
SEQUENCE ON THE MAXIMAL SPACINGS

BY PAuL DEHEUVELS

Université Paris VI

Let X;, X,,... be an ii.d. sequence of random variables with a continuous
density f, positive on (A4, B), and null otherwise. Under the assumption that
Y, = min{X,,..., X,,} and Z, = max{X,,..., X,,} belong to the domain of
attraction of extreme value distributions and that f(x) - 0 as x - A or
x — B, we show that the weak limiting behavior of Y, and Z, characterizes
completely the weak limiting behavior of the maximal spacing generated by
X,,..., X,, and obtain the corresponding limiting distributions. We study as
examples the cases of the normal, Cauchy, and gamma distributions.

1. Introduction. Let X, X,,... be an i.i.d. sequence of random variables,
and let
X < o0 < Xn, .

1,n =
be the order statistics of X,..., X,. For n > 2, define the corresponding spacings
by
Si(n)=Xi+1,n_Xi,n’ i=1,...,n_1.
Denote the order statistics of S{™, ..., S{®), by

M™ < - < M{™ < M™.

The aim of the following is to characterize the weak limiting behavior of the
kth maximal spacing M{™ under various assumptions on the distribution
function F(x) = P (X, < x).

Although a great deal is known about M ™ in the case of the uniform
distribution on (0,1) (see Devroye, 1981, 1982; Deheuvels, 1982, 1983), very few
results are available when F(-) is arbitrary.

Let A = inf{x; F(x) > 0}, and B = sup{x; F(x) < 1}. In the case where F(-)
has a continuous density f(-) > 0 on (A, B), strong limiting bounds for M{™
have been given by Deheuvels (1984) where it was proved, among other results,

that, under general regularity assumptions on F(-), for any fixed £ > 1, M{™ — 0 .

a.s. as n — oo, if and only if the extremes X, , and X, , of X,,..., X, are
strongly stable, i.e., iff there exist nonrandom sequences {8,} and {b,} such that

X, ,-B,20 and X, ,—b,—>0as. asn— o0.

This hints that, in the case where (A, B) is unbounded, the limiting behavior
of M{™ as n — o should be closely related to the limiting behavior or the
extremes X, , and X, , as n — co.
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EXTREMES AND MAXIMAL SPACINGS 195

The main achievement of this paper is to show that it is the case, and that,
under very general assumptions, the weak limiting behavior of X, , and X, ,
completely specifies the weak limiting behavior of M{™ as n — oo.

In Section 2 we present these results whose proofs are detailed in Section 3.

2. Theorems. We shall make, unless otherwise specified, the assumption:
(H1) F(x)= P(X, < x) has a continuous first derivative f(x) > 0 on (4, B),
where

A = inf{x; F(x) > 0} < B = sup{x; F(x) < 1}.
We shall start with the case where
(H2) —w0<A<B=+0w, f(A+)= liln:lf(x) existsand f(A +) > 0.
X

It will be useful to introduce the function G(u), 0 < u < 1, defined by
G(u) = (1 - F) '(u) = inf{x;1 — F(x) < u}.

Let us consider the upper extreme X, , and assume that it belongs to the
domain of attraction of an extreme value distribution. In this case (see Gnedenko,
1943; Galambos, 1978, pp. 49-62), the only possibilities are given by the Gumbel
and Fréchet limiting types, for which we have:

(H3) Gumbel limiting type. We have

lim P(a, (X, ,—b,) <x)= lim F*(a,x +b,)=e ¢ = A(x),
-0 <x < + o0,
where
1 1 1
b, = G(—) and a,= G(——) - G(—).
n ne n

In this case, we shall make the complementary regularity assumption that
F(x) = P(X, < x) has a continuous first derivative f(x), ultimately nonincreas-
ing in the upper tail.

(H4) Fréchet limiting type. We have, for a > 0,

lim P(b;'X, ,<x)= lim FY(bx)=e*"=d,(x), x>0,

N oo n n,n=
where
1
b, = G(—).

n

Next, we consider the case of distributions with bounded support, assuming
that: '

(H5) ~w0<A<B<+w, f(A+)= lin:‘f(x) existsand f(A +) > 0.
B ’ x|
In this case, if X, , belongs to the domain of attraction of an extreme value

distribution, the only possibilities are given by the Gumbel limiting type (H3),
and the Weibull limiting type:
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(H6) Weibull limiting type. We have, for a > 0,
( X, .,— B

lim P
im B—b,

n— oo

< x) =e V' =¥ (x), x<0,

where
1
b, = G(—).
n

For each of these cases, the following theorems hold.
In Theorem 1, and other theorems and lemmas, ; are independent exponen-
tially distributed random variables with parameter 1.

THEOREM 1 (Gumbel limiting type). Under (H1), (H2), and (H3), or, under
(H1), (H3), and (H5), we have:

+ 00
lim Pa,'M™<x)=T](1-e),
j=1

n—oo

and, for any fixed k > 1,
lim P(a,'M{™ < x) = Hy(x),

n— oo

where Hy(x) is the distribution function of the kth maximum of {w;/j, j = 1}.
Furthermore, if I = I,, , is the index such that S§™ = M{™, then
w; o, . w; .
lim P(I, ,=n—1i)=P|— isthe kthmammumof{—ji, J= 1}),
n— oo ! [/
i=1,2,....
THEOREM 2 (Fréchet limiting type). Let A = inf{x; F(x) > 0} > — co. Then,
under (H4), we have, for any k > 1,
im P(b,'M{™ < x) = K,, ,(x),

n— oo

where K, (x) is the distribution function of the kth maximum of

J -1/a Jj+1 -1/a
{g,:(zwi) +(zwi) ,121}.
i=1 i=1

Furthermore, if I = I, , is the index such that S{™ = M{", then
lim P(I, , = n— i) = P(§ is the kth maximumof {{;, 7> 1), i=12,....

n— oo

THEOREM 3 (Weibull limiting type). Under (H1), (H5), and (H6), if a > 1,
then, for any fixed k > 1, we have

n— oo - 0,

M™
lim P(B o< x) =L, (%),
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where L, (x) is the distribution function of the kth maximum of

j+1 1/a J 1/a
{vj=(§w,~) —(.gwi) ,jzl}.

Furthermore, if I = I, , is the index such that S{™ = M{™, then
lim P(I, ,=n—i)= P(»,isthe kth maximum of {v,7=1}),
n— oo
i=1,2,....

REMARK 1. (1°) In Theorem 3, it is obvious that as j — oo, v, ~
(1/a)j"® Yo, ,, which shows that the sequence {»;, j > 1} is bounded as, iff
a>1.1If X, , belongs to the domain of attraction of ¥, for 0 < a < 1, then we
must have

limsup f(x) = o
x1TB

It is shown in Deheuvels (1984) that, in the case of a bounded support, the
major influence on the limiting behavior of M{™ is exerted by the behavior of the
density f(-) in the neighborhood of the point where it reaches its minimum. It
follows that, in the case 0 < a <1, the limiting behavior of X, , does not
influence, in general, the limiting behavior of M{™.

(2°) If we assume that a = 1 in Theorem 3, then, the result subsists partially
in the specific case of the uniform distribution on (0, B). In this case, taking
B =1 without loss of generality, it is well known (see, e.g., Pyke (1965)) that
nM(™ has the limiting distribution of the kth maximum of {w;,1 << n}
However when the distribution is not uniform, the behavior of X . and X
does not characterize completely the behavior of M.

+ (38°) It is easily seen that the conclusions of Theorems 1, 2, and 3 subsist if we
assume that —X,  is attracted by ¥,(-) for some 0 < « < 1, and also if the
distribution has a positive weight at A > — oo.

(4°) By changing X, X,,... into —X,, —X,,... we obtain from the preced-
ing theorems the description of the influence of the minimum X, , on M{™. We
will not state the corresponding results, which can be deduced from Theorems 1,
2, and 3 in a straightforward manner.

In general, the preceding results can be combined to cover a wide range of
situations, as is shown in the following theorem.

THEOREM 4. Under (H1), let us assume that:

(i) X, , belongs to the domain of attraction of an extreme value distribution
MS( )E {A( )’(I)( ),\Pb( )aa>0 b>1}

(i) —X, , belongs to the domain of attraction of an extreme value distribution
M(-) € (A(), @), (), a> 0, b > 1).

Let A < C < B, and consider for a fixed N > 1, the limiting behavior of the N
maximal spacings M["s generated by {max(C, X;), 1 <i < n} and of the N
maximal spacings M (”} generated by {min(C, X;),1 <i<n},1 <k < N.
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Assume that both cases are covered by Theorems 1-3 and Remark 1 (3°) and
that there exist two sequences {c},, n < 1} and {c}/, n > 1} and two independent
sequences of random variables gvi’, i 21} and {v/’, j = 1} such that the limiting
Joint distributions of {c;”'M{", 1 <k <N} and of {c 'M{"), 1 <k < N}
coincide, respectively, with the joint distributions of the N largest values of
{vi,i 2 1} and {v}’, j = 1}, respectively. )

Then, for any fixed k> 1, if pi» stands for the kth largest value of
{epvl,ev!,i 21, j > 1}, we have

n¥j
lim {sup|P(M,§") <x)-P(pp < x)|} =0.
n—-oo \

EXAMPLE 1°. The normal distribution. It is well known (see, e.g., Galambos
(1978), p. 65), that for the N(0, 1) distribution,
lim P(a;l(Xn,n - bn) = x) = lim P(a;I(_Xl,n - bn) = x) = e—e‘—',
n— oo n— oo
where
loglog n + log4w

2(2log n)'?

It follows that, in the case of the normal N(0,1) distribution, the limiting
distribution of (2logn)2M{™ as n — oo is that of the Ath maximum of
{1/0)w;,(1/))w/,i 21, j = 1}, where {«},i > 1} and {w/, ] 2 1} are two inde-
pendent i.i.d. sequences of exponentially distributed random variables with
parameter one. In particular, for £ = 1, we have

+ o0
lim P(2lognM™ <x)=[](1-e %), x>0.
=1

n—oo

a,=(2logn)™"? and b, = (2logn)"* -

ExaAMPLE 2°. The Cauchy distribution. We have
1
f(x) =

(1 + x?)’
and (see Galambos (1978), p. 68)
lim P(b;'X, ,<x)= lim P(-b;'X, ,<x)=e"/%, x>0,

n n,n =
n— oo n— oo
where
b T @ n
=tan[— — —| ~ — n - .
" 2 n a’

It follows that
T .
lim P(-—M,g") < x) = P(0, < x),
n

n—oo
where 6, is the £th maximum of -
i -1 i+1 \"L () BRI VAR S
{(Zw;) —(Zw;) ,(Zw;’) —(Zw}’) ,izl,jzl},
=1 =1 1 =1

=
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and where {w,i> 1} and {w/, j > 1} are two independent i.i.d. sequences of
exponentially distributed random variables.

ExXAMPLE 3°. The gamma distribution. Let

r-1

I'(r)

e %, x> 0.

f(x) =
We have

lim P(M™ <x)=T](Q1 - e *).
n— oo k=1

The result is independent of r > 0. For r = 1, it has been obtained by Devroye
(1984).

Comments.
(1°) The preceding results show that, under (H1), if A or B is infinite and if
the extreme values corresponding to an infinite tail of the distribution are
attracted by the Gumbel A(-) limiting type, then, we must have (see Remark 4 in
the sequel)
lim M"/{X, ,— X, ,} =0P.
n— oo

(2°) On the other hand, if at least one of the extreme values is attracted by a
Fréchet @, limiting type, then M{"/{X,  — X, ,} cannot converge to zero in
probability.

It follows that the ratio M{"/{X, , — X, ,} has a limiting behavior which
enables characterization of the limiting types of X, , and X,, .

(3°) If f(x)l L or t L as x 1 B, then, if X, , is attracted by an extreme value
distribution, we must have L = 0 in all cases except when the limiting type of
X, ,is ¥, for some 0 < a < 1. It follows that the cases covered by Theorems 1-4
correspond to the cases where f(x) > 0as x » B or x — A.

(4°) The preceding arguments directly yield the limiting distribution of the
kth maximal j-spacing, where the j-spacings are defined by

S{" =X, X

ivjn— Xip 1=1l...,n—].
(5°) The limiting distribution of Theorem 1 uses the infinite product

+ o0

IT@a - 2%).

k=1

This function has been introduced by Euler for applications in number theory.

2. Proofs of the theorems. - Throughout this section, we shall assume that
U, U,,... is an ii.d. sequence of uniformly distributed random variables on (0, 1),
and, without loss of generality, that X, = G(U,), X, = G(U,),...,where G(u) =
inf{x;1 — F(x)<u},0<u<1l,and F(x)= P(X; <x),i=12,....
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We shall denote the order statistics of U,,...,U, by 0=U, , < U, , <
< U, ,<1=U,,,, and the order statistics of X,,..., X, by X, , = G(U, ,)
< - <X, ,=GU,,).

We start with the proof of Theorem 1 which will be broken up in a series of
lemmas.

LEMMA 1. Let w;, w,,... be an i.i.d. sequence of exponentially distributed
random variables. Put S, = w, + -+ +w,, m>1, § = 0. Then {U, ,,0 <i <
n + 1} is identical in distribution with {S;/S,,,,0 <i<n + 1}.

PrOOF. See, e.g., Pyke (1965, p. 403).

LEMMA 2. Let ¢, ,= (U, /Uy, .}, 1 <i<n. Then the (¢, w1 <i<n)
are independent and uniformly distributed on (0, 1).

Proor. See Malmquist (1950), David (1981, p. 21).

LemMA 3. Under (H1), X, , = max{X,,..., X,} belongs to the domain of
attraction of the Gumbel distribution A(-), if and only if one of the following
equivalent conditions holds.

(i) Foranyx >0, y> 0, y # 1, we have
e G(ux)—-G(u) log x
u10 G(wy) — G(u) logy'

(ii) There exists a function g(-), slowly varying at infinity, and a constant c,
such that

6w =<+ s(1/u) + [ED 4

ProoF. See De Haan (1970, Theorems 1.4.1 and 2.4.1). The equivalence
between (i) and (ii) requires G(1/¢) to be strictly increasing in the upper tail.
This follows from (H1).

LeEMMA 4. For any fixed N > 1, for any x, > 0,..., x5 > 0, we have, under
(H1) and (H3),

D=

N
lim P( {a;IS,(,’_’} < xj}) = ]_[1(1 —e™%),

PrRoor. We have
G(U;,n) = G(Upss,n) _ G(S(n/S,11)/n) — G(1/n)

G(1/ne) - G(1/n) G(1/ne) — G(1/n)

G(S;+1(n/8,:1)/n) — G(1/n)
G(1/ne) — G(1/n)

1
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Since n/8S,., — 1 in probability, it follows from Lemma 3(i) that the above
expression tends to —logS; + log S;,; = — J~'log ¢, , in distribution. An appli-
cation of Lemma 2 completes the proof of Lemma 4.

LEMMA 5. Under (H1) and (H3), for any X > 0, the function G(Au) — G(u)
is slowly varying as u — 0. .

ProOF. See De Haan (1970, p. 34). It follows from Lemma 3(i).

LeEMMA 6. Let (H1) and (H3) be satisfied, jointly with (H2) or (H5). Let
v € (0,1) be fixed. Then, we have

{ 1 G(Au)-G(u)
—log A G(u/e) — G(u)

sup sup
O<u<l1l y<A<l

}=F)\<OO.

PROOF. We remark that, by (H3), there exists a § € (0,1), such that —G'(u)
= 1/{(G(w)) is nonincreasing in (0, 8). It follows that, for any u € (0, 8), we have

~uG'(u) - —uG'(u) _ e
G(u/e) — G(u) ~ u(l/e—1)G(u) e—-1"

Next, we have, for 0 <A <1land 0 <u <39,

e 1-A

®(Au)——,

G(Au) - G(u) = —u/}\lG’(us)ds < —uG'(\u)(1 - A) < =

where O(u) = G(u/e) — G(u) is slowly varying as u — 0 by Lemma 5.
Hence

. { 1 G(Au)-G(u) }
1msu S
P S | —log X G(u/e) — G(u)

e { O(Au) }{ 1-A }
< imsup{ sup ——— sup ————; <
e—1 L0 |y<a<a O(u) y<A<l1 —Alog A

by the uniform convergence theorem for slowly varying functions.
Now let A € (0,1) be fixed. We have evidently, for any u € (4,1),

G(A\u) = G(u)  A=1 [supy,.,1/f(G(v))
Gluse) -~ G(u) = 1/e— 1| infy, <, -1/f(G(v)) }
~ where p = min{A,1/e}.

The proof of Lemma 6 follows directly from the above inequalities.

“LEMMA 7. For any ¢ > 0, tﬁere exists an M > 1 and a y € (0,1), such that,
with probability larger than 1 — ¢/2, we have, foranyj, M +1<j<n -1,

+

l]/n l]jln 2 .
0<y< <1 and log| =———| < —log .
U | T

j+1,n
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Proor. By Lemma 2, ¢ . » 18 uniformly distributed on (0, 1), and hence
P(-log¢; ,>2log j) = P(¢, , <j %) =2

It follows that
n—1 ) 2 n—1 U. . 2
P( U {—logé},/,’, > —log J}) =P U {log( L ) > —log f}
J j=M+1 U, » J
< X J* .

J=M+1
J=M+1

Let us now choose M such that ¥%_,,,,7 % < /2. We can see that with
probability larger than 1 — ¢/2, we have, forany M + 1 <j <n — 1,

U.
L <,

log j 2
0<y=exp|—2 sup - <exp——logj

Jj=M+1 J i+1,n

The proof of Lemma 7 is now completed.

LeEmMA 8. For any ¢ > 0, there exists an « > 1 and an n, such that, for
n = n,, we have

P( N {j—a‘/jloglogj<nU+1,,<]+a‘/jloglog })>1——

3<j<n—-1

Proor. Using the notations of Lemma 1, we have nU, i1, n = Sj1i(n/S, 1)
By the law of the iterated logarithm apphed to the sequence {S;}, we have

N
lim sup P U{|Sj+1—j|>—‘/jloglogj} = 0.
aloo N>1 j=3 2

Since n/S,,; — 1= Op(n'l/ ?), and noting that loglog j is positive for j > 3,
the lemma follows.

LEMMA 9. Let H(x), x > 1, be a continuous positive slowly varying function
as x = oo. Then we have, for any v > 0,

{logt H(x/t)} _

lim sup 7 m

Too T<t<x

Proor. By Karamata’s Theorem (see, e.g., De Haan (1970); Seneta (1975)),
we can assume that

xs(t) '
H(x) = C(x)exp j; Tdt , where, forl < x < o0,

* 0<C, <C(x) < Cy< oo, &lx)<in,
and where
lim &(x) =0

X — 00
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It follows that

{logt H(x/t)

WP SUP) T i)

T<t<x x=>1

} < (Cy/C, )exp( sup {loglogt - —log t}) -0

t>T
as T — oo,
which proves Lemma 9.

LEMMA 10. Let (H1) and (H3) be satisfied, jointly with (H2) or (H5). Let
x > 0 be fixed. Then, for any ¢ > 0, there exists an N > 1 such that

n—1
lim sup P( U {a;IS,(,’ﬁ)j > x}) <e.

n— o0 J=N+1

PRrOOF. Let £ > 0 be fixed. Define M > 1 and y € (0,1) as in Lemma 7, and
T, as in Lemma 6. We then have, with probability larger than 1 — /2, for any
M+1<j<n-1,

S =G(U;,,) — G(Uy, ) = G(Au) — G(u),
where

j,n

O0<u=VUyy ,<1 and y<A= <1.

J+l,n
It follows from Lemma 6 that
(n) U]+l n -1
8i%) < Tjlog| === | {G(e™ Uy 1) = G(U;)}-
J.n
By Lemma 7, we have also

U,..\ 2
log( {]“' )<;logj.

J,n

It follows that

n—1
P( n {s,s"> <21, (G ‘t/;+1,,)—G(lf,-+1,,,))}21—§-

J=M+1 J

Let now a and n, be defined as in Lemma 8. Using this lemma and the
inequality above, defining G(u) = A for u > 1, and event E; by

azlSm < ogj G((] — ay/j loglog j )/ne) ((] + ay/jloglog j )/n)
hy S G(1/ne) — G(1/n)
one gets ’

(A) P( nhl Ej) >1-—c¢.

J=M+1
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Let now 0 < 8 <1 be given. Then, there exists an M, such that N > M,
implies, for any j > N + 1,

o T | 5| 0029,

ne ne n

By taking H(x) = G((1 — B)/(ex(1 + B))) — G(1/x) in Lemma 9, it follows
that

- {logj G((J(1 = B))/me) - G((4(1 + B))/n)} o
(B)  Niizj<n| Jj G((1/ne)(1—B)/(1 + B))—G(1/n)

as N — oo.
Next, by Lemma 3(i), we remark that
G((1/ne)(1 - B)/(L+ B)) - G(1/n) 145
©  Jlim G(1/ne) — G(1/n) =1+ log{ T B)'

(A), jointly with (B) and (C), proves that, for any x > 0,

n—1
lim inf P( N {a,:lS,ﬁ’_’)j < x}) >1-—¢,
n— o0 J=N+1

provided that N > max(M, M,) is large enough. This is all we need for
Lemma 10.

Proor oF THEOREM 1. The result follows as a direct consequence of Lemmas
4 and 10.

REMARK 2. (i) In general, the conclusion of Lemma 6 is invalid when f is
not assumed to be nonincreasing in the upper tail (as required by (H3)).

(i) If f is assumed to be ultimately nonincreasing, then, a necessary and
sufficient condition for X, , to belong to the domain of attraction of A is
(De Haan (1970), Theorem 2.7.3, p. 110) that

(H7) f(x)~ {1- F(x)}2/j3(1 — F(t))dt asx - B.

If f is arbitrary, then (H7) is still sufficient for X, , to be attracted by A. If
(H1) and (H7) are satisfied, then we have (see De Haan (1970, Corollary 2.5.1, p.
90)

He(w) ~w/ 7 (1= Fo) e~ uw/{e( ) - 6(w) - wet/w)

asu — 0.

. This last result can be deduced from Lemma 3(ii). It implies that —uG'(u) =
u/f(G(u)) ~ g(1/u) is slowly varying as u — 0. A close look at the proof of
Lemma 6 shows that its conclusion holds also under (H7). It follows that the
result of Theorem 1 is also true under (H1), (H2), and (H7).
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REMARK 3. If we do not assume f to exist, then the result of Theorem 1 may
not hold. It suffices to assume that there exists (¢, d) C (A, B) with P(X; €
(¢, d)) = 0, and to take a,, — 0 to obtain a counterexample.

REMARK 4. By Lemma 3(ii), g(1/u) ~ G(u/e) — G(u)> 0, as u — 0. It

follows that
1 w81
g(—)=o(/l/ &dt) asu — 0.
u 1 t

Hence, if (H2) is satisfied, then a, = G(1/ne) — G(1/n) = o(b,) = o(G(1/n))
as n — oo.

Proor OF THEOREM 2. The domain of attraction of the Fréchet @, distribu-
tion is characterized by:

LEMMA 11. Let X,, X,,... be an i.i.d. sequence with distribution function
F(x) = P(X, < x). Put G(x) = inf{x; 1 — F(x) < u}. Then, X, , belongs to the
domain of attraction of the Fréchet ®,(-) distribution if and only if one of the
following equivalent conditions holds:

(i) For any x > 0, we have

1R
e 1-F(2)
(i) For any x > 0, we have
G
lim (ux) =yx"l/e
ul0 G(u)
(iii) There exists functions c(+) and ¢(-) such that
lim c(u) = ¢ € (0, 0), lim &(¢) = 0,
ulo0 t1 o0

and

1/"5(—? dt).

G(u) = u_l/"c(u)exp( f1

PrOOF. See Gnedenko (1943) and De Haan (1970, Theorems 1.2.2 and 2.3.1,
pp- 19 and 72).

By Lemmas 1 and 11, we get easily:

LEMMA 12. Under (H4), for any fixed N > 1, the joint limiting distribution
of{b, 'S\™;,1 < j < N} is the distribution of

J -1/a j+1 -1/a
{(Zwi) —(Zwi) ,lstN}.
i=1 i=1



206 P. DEHEUVELS

ProOF. We proceed as in the proof of Lemma 4.

LEMMA 13. For any x > 0 and & > 0, there exists an N > 1 such that

<eEe.

-1
lim sup P( nU {B;'s(m. > x)

n— oo Jj=N+1

Proor. Without loss of generality, assume that A = 1. By Lemma 8, for
n = n,, we have, with probability larger than 1 — ¢/2,

(j — ay/jloglog j ) B G(j + ay/jloglog j )

n n

S(”), < G

n—j —

n

 — ayJj loglog j
sG(] i gj), M+1<j<n-1
By choosing M large enough, we get, for some 8 > 0,
S, < G(i(l — ’3))
n—j — n M

Hence, by Lemma 11, the result will be proved if we show that
G(j/n(1 -
(D) lm  sup (j/n(1-B)) _
M- Mii1<j<n G(1/n)

Note that G(u) = u~'/*H(u), where H(-) is slowly varying at zero. It follows
that (D) is equivalent to

lim sup
M- M+1<j<n

{jll/a H( 12'(11(;1—) B)) }

This, in turn, follows from Lemma 9.
The proof of Theorem 2 follows from Lemmas 12 and 13 in a straightforward
way.

PrOOF OF THEOREM 3. The domain of attraction of the Weibull ¥, distribu-
tion is characterized by:

LEmMA 15. Let X, X,,... be an i.i.d. sequence with distribution function
F(x) = P(X, < x). Put G(x) = inf{x;1 — F(x) < u}. Then X,, ,, belongs to the
domain of attraction of the Weibull ¥, distribution if and only if B =
sup{x; F(x) < 1} < oo, and if one of the following equivalent conditions holds:

(i) For any x > 0, we have

a

. 1-F(B-tx)
lim =x°.

ti0 1—-F(B—1t)
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(i) For any x > 0, we have

B G(w)

a0 B— G(u)
(iii) There exists functions c(-) and &(-) such that

lim ¢(u) = c € (0, ), lim &(¢) = 0,
ul0 t1 oo

1/a

and

G(u)=B - ul/ac(u)exp(fll/“e—(;—) dt).

ProOF. See Gnedenko (1943) and De Haan (1970, Theorems 1.2.2 and 2.3.2,
pp- 19 and 75).

The proof of Theorem 3 is essentially the same as the proof of Theorem 2, with
Lemma 15 replacing Lemma 11. Details will be omitted.

Proor oF THEOREM 4. Theorem 4 says that the spacings in the upper and
lower tail of the distribution are asymptotically independent. This follows easily
from the fact that, for the uniform distribution, these spacings are stochastically
equivalent to {w,;/n,2 <i < N} and {w,_,/n,1 <i< N+ 1} (see Lemma 3),
where the {w;,1 <i < n + 1} are ii.d. exponentially distributed random vari-
ables. The result follows.

REMARK 5. Lemmas 4 and 13 can be considered as corollaries of the represen-
tation theorems of Hall (1978).

3. Acknowledgment. I am indebted to the referee for Remark 2(i). I thank
him for his suggestions and remarks which lead to improvement of the paper
originally submitted.
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