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TAIL BEHAVIOUR FOR SUPREMA OF EMPIRICAL
PROCESSES

By ROBERT J. ADLER' and LAWRENCE D. BRowN?

Technion and Cornell University

We consider multivariate empirical processes X, (t) == ‘/7; (F(t) — F(t)),
where F, is an empirical distribution function based on i.i.d. variables with
distribution function F and ¢ € R*. For X}, the weak limit of X,,, it is shown
that

c(F, k)Nk=De=28 ¢ P{ sup X, () > A} < C(k)Nk= D28
t

for large A and appropriate constants ¢, C. When k = 2 these constants can
be identified, thus permitting the development of Kolmogorov—Smirnov
tests for bivariate problems. For general % the bound can be used to obtain
sharp upper—lower class results for the growth of sup, X,,(¢) with n.

1. Introduction. It is well known that the Kolmogorov—Smirnov (KS) sta-
tistic, based on a sample from any univariate random variable with continuous
distribution function (d.f.), is distribution free. It is also well known that in the
multivariate situation this is not the case, and it is to this situation that we shall
soon direct our efforts. In the beginning, however, Kolmogorov (1933) showed
that the one-sided statistic, T, = sup{Vn (F,(x) — F(x)): x € R'}, where F de-
notes the underlying d.f. and F, the empirical d.f., satisfies

(1.1) P(T,>A} 5 e VA asn-— co.

Smirnov (1944) extended this result to the two-sample problem, Feller (1948)
gave it a neater proof, and Doob (1949) followed by Donsker (1951, 1952) and the
theory of weak convergence explained it in terms of the convergence of Vn (F, —
F) to a limiting Gaussian process whose maximum had the tail distribution
exp(—2A%).

In the multivariate case, there is no simple analogue to (1.1), and the best one
can hope to obtain is either a limiting distribution for some specific F, or bounds
that may be valid for a family of F sharing, perhaps, some regularity properties.
The first attack on this problem was made by Kiefer and Wolfowitz (1958), who
showed that if T(%) is the one-sided KS statistic in % dimensions, then for some
a=alk)>0and c=c(k) < oo,

(1.2) P{T® >} <ce=® Vn,\,F.
Despite the fact that this bound is obviously very crude, it did at least suffice to
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2 R.J. ADLER AND L. D. BROWN

prove the existence of a limiting distribution for 7,(*) as n - oo. [The full weak
convergence of the empirical d.f. to an appropriate limiting Gaussian random
field was later established by Dudley (1966, 1967).] However, although Kiefer and
Wolfowitz established the existence of this limiting distribution, no explicit form
for it is known. Indeed, there is only one nontrivial case where reasonably
accurate bounds are known, this being the case where F is uniform on the unit
square. Here the limiting distribution of vn ( F, — F)is that of a pinned Brownian
sheet, and fairly close lower and upper bounds on the distribution of its maxi-
mum appear in Goodman (1976) and Cabaha and Wschebor (1982), respectively.
We shall have more to say on this later, when Goodman’s lower bound is
extended to arbitrary dimensions.

In a classic paper, Kiefer (1961) greatly improved on (1.2) and showed that for
all ¢ > 0 there is a ¢ = ¢(k, ¢) such that

(1.3) P{T® > \} < ce™21-9% ¥ p ), F.

This is a particularly interesting bound since, viewed as a result on the maximum
of the limiting Gaussian field, rather than as a result on T® itself, it is one of
the few forerunners of the general inequality for continuous Gaussian processes,
X(t), that states that for all a < (262)! and A > A(a) large enough

(1.4) P{supX(t) > )\} <e ¥,
t

where ¢? = sup,{var X(¢)} (Fernique, 1970, 1971, Landau and Shepp, 1971, and
Marcus and Shepp, 1971). Note that since supx{var[\/rT (F(x)—F(x)]} =%,
Kiefer’s bound, for fixed A, is obtainable from (1.4) and weak convergence.
Kiefer’s result, as a bound for all A, is not, however, thus obtainable. In any case,
historically, (1.3) is particularly interesting, since its consequences for the limiting
Gaussian field represent, to the best of our knowledge, the first time that a
uniform bound was placed on the maxima of a large family of Gaussian processes.
(The statistical significance of such a lower bound is that it permits construction
of “confidence intervals” for an unknown F.) Furthermore, Kiefer exploited (1.3)
to prove a law of the iterated logarithm (LIL) for the multivariate KS statistic.
The main thrust of the current work will be to further refine (1.3), in two
directions, and then to investigate the consequences of the refinement. For a
start, it follows easily from the results of Section 4 and an embedding theorem
(Section 5) that (1.3) can be replaced- by: There is a ¢ = ¢(F) such that for
n > n(\)
(1.5) P{T{® > X} < cAN¥k~Dg=2N,
This, as with Kiefer’s result, is of interest beyond the KS situation, since, in the
Gaussian process setting, it provides a family of processes for which (1.4) can be
improved upon. However, we can do better than just (1.5), and we shall also show
that as long as F satisfies mild regularity conditions, there is a ¢ = ¢(F) such
that for n > n(A)

(1.6) P{T® > A} > c\Uk-De=2¥,
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The upper and lower bound together enable us to improve on Kiefer’s LIL and to
obtain an exact upper—lower class result in its place (Section 5).

An upper bound similar in spirit to (1.5) has recently been obtained by
Alexander (1984). Treating a more general situation of empirical measures, »,,
indexed by a Vapnik—Cervonenkis class of functions, .# say, he showed that

P{sup|vn( > A} < 16\%%e"2¥ v\ > 8,

fesF

where v is a strictly positive integer describing the “size” of #. Alexander’s
result, while clearly being an improvement on (1.3), also gives, for the cases we
consider, an enormous overestimate of the power of A in the upper bound. (In
fairness to Alexander, we should point out that he was not primarily interested in
sharp powers of A, so it is not surprising that his power is so large.)

Unlike Alexander, however, we shall have little to say about the sizes of the
constants in our bounds, other than to guarantee their finiteness. Thus, from the
point of view of actually applying the KS statistic in a statistical setting, these
results are of limited interest. We shall remedy this situation in Section 3, where,
for the two-dimensional case, we shall develop an explicit, sharp upper bound,
and a reasonable lower bound. The various applications of these results are
spelled out in detail in Brown and Adler (1985). The argument leading to the
upper bound is rather interesting, since it is based on finding the worst possible
(a task actually performed by Kiefer) and comparing it, via Slepian’s (1962)
inequality, to all other cases. The distribution of the maximum in the worst
possible case is what then provides the bound. In fact, this methodology of
“comparison” will also be used to obtain the lower bound (1.6), and may, in a
certain sense, be considered the main methodological theme of this paper.

The following section is devoted to peripheral and support material. There we
obtain lower bounds for the distribution of the maximum of the pinned Brownian
sheet in %2 dimensions and some related distributions. While these do have some
intrinsic interest, our main interest in them will arise from their usefulness as
“comparison distributions.” We close this section with notation and some back-
ground results.

Let X,, X,,..., be independent random variables with d.f. F(x), which we
assume to be continuous, and which can therefore, without loss of generality, be
taken to be concentrated on the unit cube I* = [0,1]% of R* with univariate
marginals uniform on [0, 1]. We denote a point in I* by either x or (x,,..., x};)
and introduce the usual partial order.

x<yex; <y, i=1,...,k, x,y € Ik

For x < y we write [x, y] for the set IT1%_,[x;, ], and use I 4(+) for the indicator
function of the set A c I*. Thus we can formally introduce the empirical d.f. F,
as. ’

(1.7) F(x)=n"1 é I (X,
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Let Wy be the pinned Brownian sheet based on Fj i.e., the zero mean Gaussian
process with covariance function

(1.8) Rp(x, y) = E{Wp(x)Wp(y)}

=F(x/\y)_F(x)F(y)’ x,yEIk,

where x A y is the coordinatewise minimum (x; A y;,..., %, A ¥,).

Then, as is well known [k = 1, Donsker (1952); & > 1, Dudley (1966, 1967)],
Vn (F, — F) converges weakly to W} in the space of all bounded functions on I*
under the topology of uniform convergence. Thus, in particular, if

(1.9) T} = T}(F) = sup{Vn (F,(x) — F(x)): x € I*}
is the one-sided KS statistic, then
(1.10) THF) - o Mg = sup{Wp(x): x € I*} asn - oo.

This last result provides the obvious motivation for the next two sections, both
of which are concerned with the distribution of M. In fact, one can go beyond
the central limit result (1.9) to a much stronger embedding type result. However,
since we shall not need this result until Section 5, we shall introduce it only then.

2. Two special cases. We consider firstly the distribution of M, when F is
the uniform distribution, U say, on I*. We shall, however, require a slightly more
general result later, and to this end let W denote the (unpinned) Brownian
sheet on I*, i.e., the zero mean Gaussian process with covariance function

2
E{WH()WHP(y)} =T1(x;A5), xyel
i=1

and write W for the pinned version of W on I*. Then a version of W can be
obtained from W by the correspondence
(2.1) WH(x) = WHB(x) — |x] WB(Q), x el

where |x| = [T~ ,x;. In the general notation of the previous section W® = W,,.
The result we shall need is

THEOREM 2.1.
k-1 [ZA(A - w)]”

n!

b

(22) P{sup WH(x) > A | WD) = w} = e 900
Ik

n=0
a.s. for all A > w. Furthermore, the case w = 0 yields

k-1
(2.3) P{ sup W®(x) > )\} >e 2V Y (2A2)"/(n!).

n=0

When £ = 1, (2.2) follows from the Brownian line crossing probabilities (Feller,
1971, pages 340-341). When k = 2 (2.3) is given explicitly in Goodman (1976),
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and (2.2) is also there implicitly. Cabafia and Wschebor (1982) and Park and
Skoug (1978) also have (2.2) in the two-dimensional case, and shortly after
obtaining the above result for general k, we received a copy of Cabaha (1984)
which states the same result with a virtually identical, albeit more detailed,
proof. However, for the sake of completeness, we shall give a brief proof of the
theorem.

PrOOF. The proof proceeds by induction. As noted above, (2.2) is known to
be true when £ = 1 and k& = 2. Now write a,(A, w) for the conditional probabil-
ity on the left in (2.2) and define

A7 (k) —

(2.4) hy(\w) = P{sup [W_(x)_}\} > w}.
I* Ix I

Then, after some calculation, it readily follows from (2.1) that ay(A,w)=
hy(\, —w). If we now follow the formulation of Goodman (1976) of treating the
(k + 1) parameter, real-valued, W(x) as a Cy[0, 1]*-valued, single parameter
process, then by applying Goodman’s Theorem 2 and mimicking his manipula-
tions on page 980, it is straightforward to establish the relation

(2.5) apa(Mw) 21— [ (1= e @) hy(N, du).
A

Exploiting the above relationship between a, and A, thus yields a recurrence
formula for a,,,, and it is now a matter of elementary calculus to check the
induction hypothesis and so complete the proof.

There are two points worth noting here. The proof uses the fact that W+
can be treated as a Cy[0, 1]*-valued, Markov process in real time. The Markovia-
ness is extremely important and is also a property of W for any F. However,
also used is the fact that W®)(x) — |x| W*)(x) and W*)(1) are independent.
(Here W™ is the C,[0, 1]*-valued process.) This is not true for general Wy and so
the above proof only works in the uniform case.

The second result which, unlike Theorem 2.1, is of little independent interest,
will be extremely useful for us later. To state it, we introduce, for each ¢ € (0, )
the d.f. F(x) = F(x,,..., x;) which distributes probability 2¢ uniformly on the
cube A, = [1 — ¢ 1 + €]*, with the remaining probability of 1 — 2¢ distributed
uniformly on that part of the main diagonal of I* disjoint from A,.

THEOREM 2.2. There is a finite c = c(¢, k) such that for all A > 0

(2.6) P{ sup Wy, (x) > A} > c\Xk~Dg= 2N,

I,

PrOOF. We commence with some necessary notation. Let ¢ (u, v) denote the
two-dimensional normal density with zero means and covariance matrix 2,
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defined by

(2.7)

5 [e ive) (h-e) }
(-9 (-oG+e)

Furthermore, let 2 be the matrix identical to 2., but with the sign of the
off-diagonal entries reversed and let xl/ be the two- dlmensmnal normal density
with zero mean and covariance matrix 2 For each positive € and A, and integral
k, set

k-1 [(u — 2eX)(v — 2eN)/e] ™) .
@9 w0 T IO o) duce

and write @ (A) for the normal quadrant integral

(2.9) Q(A)—l—f j ¥(u,v) dudo.

— 00 —00

We can now turn to the main part of the proof.

We shall obtain only a lower bound for P{sup(Wy(x): x € A,) > A}, which,
a fortiori, will provide the lower bound required. Let @, and b, be the two
extreme corners of A, ie, a,= (3 —¢&...,5 —¢€), b,=(3 +&...,5 + ¢). Then
define the process Z(x) on I* by

(2.10) Z(x) = {Wy(a, + 2ex) —(1 = |x) W (a,) — x| Wy, (b,)}/V2e.

Then it is straightforward to check that Z(x) is a standard pinned sheet on I* as
in (2.1). Consequently, for u, v < A, it follows that

P{sup We (%) > N W (a,) = u, Wr(b,) = v}
AP

(2.11)

W®(x) —(A — u)/V2e )
e

But this is precisely the probability defined at (2.4). Thus, using the equivalence
noted there between this probability and a,, we can bound it by Theorem 2.1.
Using this bound, (2.11), and the fact that the joint density of (Wy(a,), Wr(b,))
is given by ¢, we obtain '

= P{sup

I* le

P{sup Wy (x) > }\} > P{Wg (a,) > Aor Wy (b,) > A}
Ik

(2.12) / / - (A—w)A-0)/e

— 00" —o0

{Z [(A — u)(A — o) /e]”

n!

}%(u, v) dudv.

n=0

Consider the integrand and make the transformations x = u — A(1 — 2¢), y =
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v — A1 — 2¢). Tedious but straightforward algebra yields that it is equivalent to
k-1
e ™Y (x,5) L [(x — 2eA)(y — 2e1) /] "/n!
n=0

Substituting this into (2.12), changing the bounds on the integral, and replacing
the rightmost probability by @ (A) now yields that for every A > 0

(2.13) P{s?p W, (x) > A} > QN) +e 2y, (A).

To obtain (2.6) now simply take X large enough so that the dominant term in
the sum in ¢, , is O(A**~P). Then choose an appropriate c. This completes the
proof.

In general, we shall use Theorem 2.2 to form a basis for comparison between
the maxima of pinned sheets based on different d.f.s. The crucial result that
underlies all these comparisons is a basic result of Slepian (1962), which we record
here as

LEMMA 2.1 (Slepian’s inequality). Let X and Y be two zero mean a.s.
continuous Gaussian processes defined over some set T. If var X(t) = var Y(t), V
teT, and

(2.14) cov(X(t), X(s)) < cov(Y(¢),Y(s)) Vs, teT,
then
(2.15) P{sng(t) > )\} > P{sgp Y(t) > )\} VA

Note that Slepian’s inequality does not extend to comparisons of |sup X| and
|sup Y|, and so the sharp results of the following section are not easily extendable
to the two-sided KS statistic. Nevertheless, we can always use the fact that for
symmetric processes

(2.16) P{supX > A} < P{sup|X| > A} <2P{sup X > A}

to obtain bounds for the two-sided case. For the bounds of Section 4, in which
constants are not identified, this is clearly sufficient.

We now consider, as an example of our “comparison methodology” the
two-dimensional case. As already noted, the bounds we obtain here are somewhat
more precise than those we succeeded in obtaining in higher dimensions.

3. The two-dimensional case. Throughout this section, we shall denote
points in 12 by x = (x,, x,) and F will denote a continuous d.f. on I, possessing
uniform marginals. The degenerate distribution, uniform on the negative slope
diagonal x, + x, = 1, will be denoted by G(x); i.e.,

(3.1) G(x)=(x,+x,—-1)", «xelI
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Our aim in this section will be to devise good (nonasymptotic) bounds for
P{sup W; > A}. We start with

THEOREM 3.1. For any two-dimensional d.f. F satisfying the above condi-
tions and for any A > 0,

(3.2) P{ sup Wy (x) > )\} < P{ sup Wy (x) > )\}.
? 2
Furthermore,
(3.3) P{sup Ws(x) > )\} < Y (8n2M2 — 2)e 27N,
r n=1

PROOF. Let m be the mapping I? onto {(x,, x,) € I% x, + x5 > 1} defined
by
(3.4) G(m(x)) = G(m(x), my(x)) = F(x), Vxel?
(3.5) my(x) —my(x) =x, — x, Vxel
We must check that m is well defined. But this is easy, for by (3.5) we see that we
are mapping lines of slope one onto themselves. At the beginning of each such line
F =G =0 and, as each line leaves I2, the marginal uniformity of F and G
ensures that they are again equal. Since both F and G are nondecreasing along
such lines, and G is continuous and strictly increasingly when it is not zero, it is
easy to arrange (3.4) in a unique fashion.

Now consider the processes W; and W,;. We shall compare sup{Wy(x):
x € I?} to sup{Wg(x): x € m(I?)} = sup{Wg(x): x € I?}. Note firstly that for
xel?

(3.6) var Wy(x) = var Wg(m(x)),
a simple consequence of (3.4) and (1.8). We want to show that
(3.7) F(x Ay) 2 G(m(x) Am(y)), «x,y€el?

from which it would follow

(38)  cov(Wp(x), Wi(y)) = F(x A y) — F(x)F(y)
> G(m(x) Am(y)) — G(m(x))G(m(y))
= cov(Wg(m(x)), We(m(y))).

But then we shall have completed the proof of the first part of the theorem, viz.
(3.2), since (3.6) and (3.8) are precisely the ingredients for Slepian’s inequality.
Returning to (3.7), consider firstly the case x < y. Then F(x A y) = F(x) =
G(m(x)) = G(m(x) A m(y)) so (3.7) holds. The case y <'x is obviously identical,
so now consider (3.7) for x, y with x; > y; and x, < y,. (The remaining case is
handled analogously.) Then x A y.= (y,, x,). Write w = (m(y), my(x)). There
are three possible cases to consider: m(x) > w > m(y), m(y) > w > m(x), and
w = m(x) A m(y). We shall consider only the third case explicitly, but the
reasoning is valid for all the cases. Note (drawing a picture helps to see the
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inequalities) that
F(x Ay) = F(y,x,)
> [F(x) —(x, = »)] V[F(y) = (3 — x,)] by marginal uniformity
> 3 {F(x) + F(y) - [(%, = x5) = (1 — 2]}
= 3{G(m(x)) + G(m(y))

—[(my(x) = my(x)) = (mi(y) = my(y))]} by (3.4),(3.5)
> my(x)+m(y)—1 by(3.1).
Hence, if my(x) + m(y) — 1 > 0 then the above yields
(3.10) F(x Ay) 2 G(my(y), my(x)).
On the other hand, if my(x) + m,(y) — 1 < 0, then G(m(y), my(x)) = 0 and so
(3.10) is trivially true. Thus, in general,

F(x A y) = G(my(y), mo(x)) = G(w) = G(m(x) A m(3).

From this we immediately obtain (3.7) and the proof of (3.2).
It remains to establish the inequality (3.3). To this end, let W(¢), ¢t € [0,1] be
a standard Brownian bridge with covariance function

(38.11) E{W(t)W(s)} = (s A t) — st.
Define the two-parameter field X on I? by

W(x,) - W1 - x,) X, +x,—1>0,
X(xl’xQ)_{o X, +x,—1<0.

Then comparison of covariance functions shows that X is a version of W;,. Thus
P{supWy(x,,2,) > A} = P{sup[W(x,) — W(1 — x,): x, + x, — 1 > 0] > A}
= P{sup[W(s) — W(¢): s > t] > A}
(3.12) < P{sup[W(s) — W(¢):s,te [0,1]] > A)
= P{[sup(W(s))++ sup(W(s))_} > )\}.
[0,1] [0,1]

But the last probability is known exactly, having been determined in Kac, Kiefer,
and Wolfowitz [(1955), Equation (4.6)], and is precisely the sum given on the
right of (3.3), and so we are finished. [Note: the original KKW formula is for
é[sup(VoV) *+ sup(W)~] and so needs to be slightly corrected to obtain our (3.3).]

(3.9)

REMARK. Note that the inequality in (3.12) is far from sharp, and a little
reflection shows that this inequality, while retaining a bound of the right order of
ntagnitude, “costs,” roughly, a factor of two, i.e., we expect that the final upper
bound in (3.3) is too large by a factor.of at most two, while the inequality in (3.2)
contributes further imprecision. Indeed, comparison of the general upper bound
(3.3) with the specific lower bound in the uniform case, (2.3) with & = 2, shows,
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for large A, a difference between the bounds of precisely a factor of four. The
precise value of the probability in (8.3) is given by P{sup[W(s) - Wt):o0<t<
s < 11> A} [cf. (3.12)], but this seems hard to calculate. However, numerical
estimates of this probability are easy to obtain via simulation and some are listed
in Brown and Adler (1985). Furthermore, calculation of (3.3) and comparison with
(2.3) for moderate A, say A € [1, 3], yields that for the uniform distribution (3.3)
overestimates the true probability by less than a factor of four and that the KS
test statistics derivable from (3.3) are in fact quite useful. For details see Brown
and Adler (1985).

We now turn to the more difficult problem of finding a uniform lower bound
for the two-dimensional case. Here we shall need to impose assumptions on F in
order to avoid degeneracies (e.g., F concentrated on the diagonal x, = x,, which
reduces to the one-dimensional case). Let |x|| = |x;| + |x,| denote the “city
block” norm of x. Then we shall prove

THEOREM 3.2. Let F be a d.f. on I?, with uniform marginals, such that
there exists an x, € I, a neighbourhood N of x,, and a constant 8 € (0,1]
satisfying

(3.13) F(x,) =1

and

(3.14) ifx, y € N and either x, = y, or x, = y, then |F(x) — F(y)|> Bllx — y|l.
Then there exists a finite ¢ = ¢(F) > 0 such that

(3.15) P{supWp(x) > A} = cA% 2V,

REMARK 1. The impact of (3.14) is that it guarantees that F is strictly
increasing along horizontal and vertical lines in N (and so on all increasing paths)
and thus “spreads mass.”

REMARK 2. Theorem 3.2, as it stands, is a special case of the more general
result Theorem 4.2. What makes it of special interest, however, is the fact that in
two dimensions it is possible to obtain estimates for ¢. We shall discuss these at
the end of the proof. Furthermore, the two-dimensional case turns out to be
somewhat simpler than its higher-dimensional analogue, thereby making its proof
more transparent and interesting.

It is clear that the conditions of Theorem 3.2 hold if F' has a density bounded
away from zero. However, absolute continuity is not a requisite of the theorem,
and it is easy to build examples of non-absolutely continuous F satisfying (3.13)
and (3.14). A trivial example is the extremal case (3.1).

ProoF OoF THEOREM 3.2. The aim of the proof will be to compare W with
Wy, where F, is the distribution function of the preceding section, and then use
Slepian’s inequality and Theorem 2.2 to complete the argument. The comparison
will only be possible over a region in the neighbourhood of (3, 3) in the domain of
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1 1
2-¢ 2 2% €

F1G. 1. The map m takes lines of slope one in A, to lines of slope one in N.

Wg, together with a subset of N in the domain of W, but it will turn out that
such a comparison will suffice for our purposes. We start by building a mapping
between the above two neighbourhoods, and by noting that the reader’s path
through the forthcoming algebra will be considerably simpler if the argument is
followed graphically with pen and paper. Figure 1 provides a starting point for
such a venture.

For x € R?, let £ be the projection of x on the diagonal {x: x, = x,}, ie, £
has both coordinates equal to 3(x, + x,). Define

(3.16) d=d(N)=inf{]x — x,, x&N.)

Let ¢ = df/3 and define a map m from A, into N, sending lines of slope one to
lines of slope one, satisfying

(3.17) m(y) —m= xo— &, +(y—5)/B
and
(3.18) F(y) = F(m(y)),

with F, as in Section 2. It is necessary to demonstrate that this map is well
defined and one-one.

To this end, fix y € A, and let m,=x,+ (y — ¥)/B. Since |my, — x,|| =
ly — 3I/B < 2¢/B < d, we have that m, € N. Also, let m, = m, + p(1,1) for
real p. Now note that by (3.14) F(m,) is strictly increasing in p as long as
m, € N. Furthermore, if p = ¢/f, then m, > x, since (y — §); <e for y € A,.
Similarly, p = —e&/p implies m, < x,. Consequently,

(3.19) F(m_,;) <3< F(m,z).

Now consider for what values of p we shall” have m, € N. Clearly,
(m,); — (x0); <e/B+p, i=1,2, since y € A. Hence m, € N for |p| < 2¢/B.
Now take p > p’, with |u| V |u'|'< 2¢/B. Then by (3.14)

F(m;t) - F(mn’) > B(H’ - lu',)'
But since F(m,, ) > F(m, ;) + Be/B > 5 + e and F(m_,, ) < 3 — ¢, it fol-
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lows that there is a unique p € [—2¢/B,2¢/8] such that F(m,) = F(y) since
y € A, implies ; — e < F(y) < ; + & Let m(y) = m, for this u. Then clearly
(3.18) is satisfied as is (3.17), so that m is well defined for each y€ A,.
Furthermore, the above argument also establishes that m is one-one. This
completes the first part of the argument.

Let m(A,) be the image of A, under the mapping m and consider Wj(x) for
x € m(A,). Clearly, for y € A, (3.18) and (1.8) imply

(3.20) E{Wi(m(y))} = E{W(y)}.

Now take x <y, x, y € A,. Then F(x) < F(y) and so F(m(x)) < F(m(y)).
Thus (1.8) immediately yields

E{Wp(m(x))Wy(m(y))} = F(m(x) A m(y)) = F(m(x))F(m(y))

< F(m(x)) A F(m(y)) = F(m(x))F(m(y))
= F(x) - F(x)F()

= E{Wp(x)WF(y)}

By symmetry, (3.21) also holds for x > y. Now suppose z = x A y is distinct from
both x and y. Set u = m(x), v = m(y), and w = u A v. Observe, either geomet-
rically or algebraically, that

(3:22) llx =zl + 11y — 2l = li(x = £) = (¥ = ).

Now take any x, y in the interior of A_. Then since F, has uniform marginals it is
easy to see that

F(x) + F(y) = 2F(2) < (llx = zll + |y — 2l)
=z = 2) - (y =3

Now suppose that v > u. We shall show that this is impossible. Write ¢ = (u,, v,).
Then by geometry and assumption (3.14)

F(v) — F(u) = F(v) — F(t) + F(¢t) — F(u)
2 B{llo =t + |1¢ — ul}}
2 Bll(v—u)—(d—a)
=y —x) = (5 -2,
the last line following from (3.17). The above and (3.23) now yield
0 < F(v) = F(u) = F(y) - F(x)
< F(y) + F(x) - 2F(z)
< F(v) — F(u),

which is clearly untenable. Thus we cannot have v > u nor, by symmetry, u > v.
Consequently, w = u A v is distinct from both u and v. Then, again by geome-

(3.21)

(3.23)
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try, assumption, and (3.22), we have
F(u) + F(v) — 2F(w) 2 B{llu — w|| + |lv — wll}
= B{lI(u— &) —(v—9)l}
=[(x—2)—(y-3)|
=llx =2l +y -3
> F(x) + F(y) — 2F(z).
Thus, since F(u) = F(x), F(v) = F(y)
F(z) = F(m(2)) > F(w).
From this it immediately follows that for all x, y € A,
E{We (x)W; ()} = E{Wy(m(x))Wp(m(y))},
with strict inequality if u A v # u or v. But this is all we need, for by Slepian’s

inequality,

P{sup We(x) > }\} > P{ sup Wp(x) > )\}
g m(A,)

> P{supWFF(x) > }\}.
AE

The last probability is precisely that given by the RHS of (2.13), which, with
k = 2, is asymptotically of the form cA% 2. This completes the proof of the
theorem.

It is interesting to note that there are “1}-dimensional” d.f.s that yield
supremum tail probabilities strictly between the one-dimensional O(e2") and
two-dimensional O(A%e~2""). As an example, take H to be the d.f. on I? with

density
(3.24) h(x,y)= {2 (x’ y)< (%’é) or (x’ y)> (éa%),
0 otherwise.

Clearly, H fails to satisfy the conditions of Theorem 3.2. However, it is a
relatively easy exercise to estimate the exceedence probabilities of Wy, using the
fact that the two processes

Wi(x, y) = V2 {Wy(x/2, 3/2) - Wu(4,3)},

Wy(x, ¥) = V2 {Wy(1 = x/2,1 - 2/2) = Wy(3, )]},
(x, y) € I?, are both versions of the pinned Brownian sheet W®, This fact,

together with Theorems 2.1 and 3.2, conditioning on and then integrating out
Wy(3, 3), readily yields '

(3,25) P{31I12p W,(x) > }\} = O(Ae 2V,

thus indicating that noneven powers of A in tail bounds cannot be excluded.
[Indeed, there is no good reason even to exclude noninteger powers, as these do
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occur as tail bounds for other classes of Gaussian processes; see, for example,
Section 12.2 of Leadbetter, Lindgren, and Rootzen (1983).]

4. Bounds for the general case. Our aim in this section will be to obtain,
in & > 2 dimensions, bounds of the same general form as those we have just
obtained for two dimensions. In particular, if F is a continuous d.f. on I* with
uniform (one-dimensional) marginals, then the two central results are as follows:

THEOREM 4.1. There exist constants c;, k > 1, independent of F and \,
such that for F as above .
(4.1) P{supWy(x) > A} < ¢, N2k D= 2¥,

THEOREM 4.2. Suppose, in addition to the above, there exists an x* € I*, a
neighbourhood N of x* and a constant Y > 0 satisfying
(4.2) F(x*) =1,
and throughout N, F possesses continuous first-order partial
derivatives ;== dF/Jx, satisfying

inf infy;(x) = ¢ > 0.
i N =

(4.3)

Then for each such F there exists a constant ¢ = c(F), independent of \, such
that

(4.4) P{ sup Wp(x) > )\} > A2k~ Dg=2N,
II:

Both of these results, while clearly indicating the correct order of magnitude
behaviour of the tail of sup Wy, are considerably weaker than their two-dimen-
sional counterparts, since the style of their proofs is such that it is impossible to
closely monitor inequalities so as to estimate the constants of the bounds.
Consequently, the statistical value of Theorems 4.1 and 4.2 is somewhat limited.
Nevertheless, they have interesting probabilistic consequences, as we shall see in
Section 5, as well as being of intrinsic interest for the reasons mentioned in the
introduction.

We shall prove Theorem 4.1 first, by a method totally different from that used
for the two-dimensional upper bound. There, recall, the argument was based on
finding a “worst possible F.” In dimensions three and above there seems to be no
analogous unique worst F, and the proof is forced to take a different route. We
start with some necessary lemmas, for which we define the following event for
X, %, € I¥ x, < x,,and A > 0

(4.5) A = A(x,, x5, A) = {sup(Wp(x): x; < x < x,) > A},
Also, write
(4.6) o%(x) = var(Wp(x)) = F(x)[1 - F(x)].
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LEMMA 4.1. Take! <a <1, x,x,€I* x, <x,, and A\ > 1. If

(4.7) a<F(x))<F(x,)<1-a
and

(48) Flxy) - F(x,) < 3?22,
then

(4.9) P{A} < O(A 'exp(—A2/20%(x,)),

where, for any function f: R — R,
f(a) < O(a) < limsup( f(a)/a) < K < .

a— oo

PROOF. Since it is generally difficult to work with the maxima of the pinned
sheet W, the main idea of the proof is to relate Wy to its unpinned version Zg,
where Zj, is the zero mean Gaussian field on I* satisfying

E{Zy(x)-Zx(y)} = F(x A y).

Then Zp(x) — F(x)Zp(1) is a version of Wy, so that using this version in all that
follows, we can write

(4.10) We(x) = V(x) = [F(x) — F(2))]2(1),  x € [x), 2],
where
(4.11) V(x) = Wp(x)) +[Zp(x) = Zp(x))],  x € [x,2,].

The idea of the proof is that for A large (4.8) implies the second term in (4.10) will
be small, while V(x) will be close to Wg(x,).

Note firstly, by direct calculation of covariances, that Wy(x) and Zy(1) are
independent, so that with A at (4.5)

(4.12) P{A) = 2P{A and Z,(1) = 0}.
Thus, by (4.10)
(4.13) P{A)} < 2P{ZF(1) > 0and sup V(x)> )\}

[x, x2]
< 2P{ sup V(x) > }\}.
[xlvx2]
To bound the last probability, write V(x) = Wg(x,) + U(x), where
U(x) = Zp(x) — Zp(x,)

is independent of Wy(x,). Suppose we can show the existence of a finite ¢ > 0
such that for all n > 0

(4.14) P{ sup U(x) > n} < (1 +n\/a) te TN/,

[x, x2]

Then, allowing ¢ to vary from line to line and setting 6% = 0%(x,) for notational
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convenience, we have

P{A} < 2P(W(x,) = A} + /jwp{supU(x) >\ — w} dP{W(x,) < w)

< cA"lexp(—A%/202)

A . (A - w)2 w?
+C/_°°(1 +A - w) exp{——T - W dw,

on using standard inequalities for the first probability and (4.14) for the in-
tegrand, after noting A > 1 and a < }. Consider the integral, which we bound by

% Ny? (A=)’
f exp{ — —— — dy.
0 a

202
Set B = (A’/a®) + (1/202) and rewrite the exponent here as
2 2
R - 2y (A/202) N (A/202)
202 By 202 B B
—2\2 }\ 2
< —'202 + k(a, 0'2) _B[y - 202B] ’

where k(a, 02) = sup,[(A/26%)2/B] < oo depends on « and o2 but not on A.
Consequently, the above integral is bounded by

e N/20% | ok, /ooe—ﬁ[y—)\/2azﬂ] dy < c-e X/207-1/2
0

< eA"le V207,
Combining this with the above, we find

P{A} < cA"le X2,

which thus establishes the lemma, subject to (4.14). It remains to establish (4.14).
A straightforward application of the multivariate “reflection principle” yields

P{ sup U(x) > )\} < 2*P(U(x,) > A).
[xl ’ x2]
By (4.8) var U(x,) < 1a®A "2, so that (4.14) now follows by standard inequalities.
Without much extra work we can also prove a stronger version of the
preceding lemma. Under the conditions of the lemma, we have, for x; < x < x,
that

0%(x) > 0% — a2/(40?).

Consequently,
A2 A2 A2 A2
20%(x)  20° - 2[0’ — a?/4N2] 202
a’/4
/ =0(1).

- 202[02 — a®/4N]
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Thus Lemma 4.1 immediately yields

LEMMA 4.2. Under the conditions and notation of Lemma 4.1
(4.15) P{A} < O(A\ 'exp(—A2/28?)),
where
6% =inf{o?(x): x, < x < x,}.

To state the next lemma define the event
B = {sup[Wp(x): F(x) < aor F(x) > (1 — a) > A]}.

LEMMA 43. Let a € (0,1) and B € (1,(4a(l — a)) ). Then
(4.16) P{B} < O(exp(—28)%)).

ProoF. This is a straightforward application of (1.4), on noting that F(x) < «
and F(x) > 1 — a both imply (20%(x)) ™! < 2[4a(1 — )]~ '. We now turn to the

PrOOF OF THEOREM 4.1. The idea of the proof is as follows. Divide I* into a
large number of small cubes and separate these cubes into two groups. In the first
group put those cubes over which Wy has small variance and use Lemma 4.3 to
show that the maximum of W over this group is asymptotically unimportant.
For the second group use Lemma 4.2 to bound the (distribution of the) maximum
of Wy over each cube, then sum these bounds, and thus obtain a final bound.

We now spell out the proof in detail and note that the only real difficulty lies
in finding a convenient labelling system for the various cubes. We commence with
cubes over which W, has large variance (i.e., close to 3). Fix the dimension %,
choose a € (4,1), A>1, and set y = a®/(2kA?). Let 1 =(1,...,1), and let
x € I* be such that also x + y1 € I*. Then the uniformity of the marginals of F
implies
(4.17) F(x + y1) < F(x) + vk = F(x) + a%2/(2)%).

Now consider the lattice of points of the form y(n,,...,n,), where n; =
0,1,...,[y ']. Then each of these points has a unique expression as p + jyl,
where p € 7 and = is the set of y(n,,...,n,) withmin{n; 1 < i<k} = 0. For
each p € 7 define, inductively,

ji = l(p) = max{ji: F(p +j11) < ),
J;=J(p) =max{j: F(p +jy1) = F(p +ji_1) < &*/(2X°)}.
Furthermore, define
J =dJ(p)=min{i: F(p +jiyl) > 1 — a}.
Note that (4.17) implies j; —j;,_; = 1 for all i and p. Also, for 1 < j; < J,
0<a—-a/2N¥)<F(p+jyl)<1—a+a?/(2\) <1.
Now set j*(p) =jJ(m — 1, and define

J¥(p)
S(p)= U{xip+(ji+k)1 <x<p+(j,+k+1)11},
k=0
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16 =1 + \\
, I N F(x)=1-a
g = T+
s o 2
ig=6
j2=5 =
=3 +
1 F(x)=Q
+ +
1 1 1 - L 1 A 1 1
P A 2 3y, 1

F16. 2. An example of the sets S(p) and S'(p) with vy =12, p = ( ,—'é,o). The set w is given by the
marked points on the axes. S(p) = shaded squares, S’(p) = all squares, J(p) = 6.

and
J(p)—1
S*(p)= U {(xip+jml<x<p+j, ).

i=1

(An example for £ = 2 is depicted in Figure 2.)
From the definitions of S and S* it is clear that

{(zia<F(x)<1-a}c US(p)c U S*p).

pen pen
Thus, with A as at (4.5)
P{sup(Wp(x): a < F(x) <1 —a)> A}
< P{sup(Wy(x): x € S*(p) for some p € 7) > A}

J(p)-1
Y X P{A(p+jyLp+j.n1 )}

peT i=1

(4.18)

IA

J(p)—1
Y 0| X Aexp[-)\/20%(p +jv1)]],

pPET =1

IA

the last inequality following from Lemma 4.2. Now note that for all i, p,

F(p +Jiiov1) = F(p +jy1) > o /2N,
and set I = min{i: § — ia®/2\*'< a} = min{i: } + ia®/2\* > 1 — a}. Then it
follows that the sequence

(4.19) {e*(p+Jjm1):i=1,...,J(p)}



SUPREMA OF EMPIRICAL PROCESSES 19

is dominated by the sequence

(4.20) {@y, @gs @y, Qgs Qyy.vvy @y Qyy By, Qyyev, G, Qp, QgL Qg

in which @, = 1 — (ia®/2A%)%, where by “domination” we mean that the ele-

ments of (4.20) may be rearranged so that, termwise, they dominate correspond-

ing elements of (4.19). Furthermore, there may also be more terms in (4.20) than

in (4.19). As a consequence of this we have that )
J(p)—1 I .

Y Atexp[-22/20%(p +jy1)] < 4 ¥ A lexp| -N/2(1 — (ia?/2X)’)]

i=1 i=1

l

<4 XI: )\_lexp[—2}\2(1 +(ia2/)\2)2)]

i=1

I
= 4e 2% Y A exp|[ —2ati%/N]

i=1
_ e—zvo( °°e—2a4yd )
fo ly

=0(e ).

Note that = has at most (2 + 2kN2/a2)t~! = O(A2*"") points. Combining this
fact, the above, (4.18), and Lemma 4.3 yields

P{sukp We(x) > )\} < P{sup(Wp(x): a < F(x) <1 - a) > A}

+P{sup(Wp(x): F(x) <aor F(x) > 1~ a)> A}
— O()\z(k—l)e—zv) + O(e—zm\z)
= O(Nh~ D=2V,
This completes the proof of Theorem 4.1.

PRrOOF OF THEOREM 4.2. Our aim here will be to attempt to mimick the
proof of the two-dimensional case (Theorem 3.2), by comparing Wy to Wy.
However, for k£ > 2 dimensions, the mapping on which the comparison is based is
definable as a linear mapping only in an arbitrarily small neighbourhood of the
point x* of the theorem, and we shall not be able to say anything concrete about
the size of the neighbourhood, and thus, a fortiori, anything nonasymptotic
about the lower bound that we shall obtain.

The first part of the proof carefully sets up some geometrical structures and is
totally nonprobabilistic. Probability will enter only when the groundwork is
ready.

Let G be the uniform distribution on I* and y* the point (})'/*1. Then
G(y*) = § and ’

(4.21) yi=—(»% = 5

G 1\(k-D/k
ay; ( ) )
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Note that y is independent of i. In order to compare F and G, it is convenient to
consider new coordinate systems for F and G, obtained by rotation and transla-
tion. To this end, let ¢ = ({,...,¥,) and write y interchangeably for the
constant (4.21) and the constant vector yl. Define unit vectors, with || - || now
denoting the usual Euclidean norm,

Vi=y/I¥ll, - Wi=v/1lvlls

and extend to two orthonormal bases V := {V,,...,V,} and W := (W,,..., W,}
for R%. Choose the origins of the new spaces to be x* and y*, respectively. Then
if v(x) and w(y) are, respectively, the representations of x and y in the new
coordinate systems, we have

v(x*) =0, o(x) = (x — x*)/|IVl,
w(y*) =0, w(y)=1(y—y)/Vk=v(y-y)/Il

The d.f.s F and G can be transferred in a natural fashion to V and W space,
respectively. Let F and G be the corresponding functions defined by

F(o(x)) = F(x),  G(w(y)) = G(y).

(Note that F and G are not necessarily d.f.s on V and W space.) Now define
maps 7° and 7% from V and W space, respectively, to the original domains of F
and G by

m°(o(x)) =x —x*,  7(w(y)) =y-y*"
Thus #° and 7% transform from the coordinate systems of the V and W spaces
to systems centered at x* and y* but oriented like the original Cartesian system.

We shall need to impose on the V and W spaces concepts of ordering inherited
from the original spaces. To this end, write

oV < v? & 7(v?V) < 72(v?), i=1,...,k,
w < w® e g (wh) < 7P (w?), i=1,...,k,

and define v® A v® and w® A w® accordingly.
This completes the necessary geometrical groundwork. We now build the
mapping upon which the comparison between F and G will be based. Let

vl Vky kmax{y;:i=1,..., &k}
p=—=—, a=——7 - ,  B=p+2a
Il Il min{y;: i=1,..., k}
Define the mapping m = (m,,..., m,) from a neighbourhood of zero in W space

to a neighbourhood of zero in V space, via its coordinate mappings, by first
setting

(4.22) m;(w) = Bw;,, i=2,...,k
and then choosing m (w) such that
(4.23) F(m(w)) = G(w).

We need to ch~eck that m, is, in fact, well defined. For w; =0, i =2,..., k,
and general w,, G(w) is clearly strictly increasing as a function of w,. Further-
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more, since the unit vector V; of the V space has, as a vector in the original space,
strictly positive coordinates, it follows that F(v,,0,...,0) is strictly increasing as
a function of v,. Since F(0) = G(0) = 3, it follows that m is well defined for w of
the form (w,,0,...,0). The implicit function theorem now defines m uniquely for
sufficiently small neighbourhoods.

Having defined our mapping, let us consider some of its properties. Note that
for small neighbourhoods of the origin '

G(w) =} +|lvllw, + o(J|wl),
F(v) = 4 +|lyllo, + o(l|v])).

Combining these facts with (4.22), (4.23), and the definition of 8 we obtain that
for small w

(4.24) my(w) = pw, + o(|w]).

Consequently, for small w*

(4.25) [[my(w') = my(w?)] = [pw] — pw?]| < w' - w?|.
Now let g be the linear map approximating m, i.e., set

(4.26) q,(w) = pw,, q:(w) = Bw,, i=2,...,k.
Then by (4.25) for small w*

@27)  [[m(w) - m(w?)] - (') - g(w?)] | < ! - w?.
Finally, note that as a consequence of (4.27) we also have

(428)  m¥(m(w!) - m(w?) - (q(w') - g(w?))) < ' - w.

This completes our listing of properties of m and its linear approximation. We
can now turn to the final part of the proof, the comparison of W, and W, which
we commence by comparing F and G.

Firstly, let N be a small enough neighbourhood of zero in W space so that
(4.24)—(4.28) are true for w' € N. Take w!,w? € N with w! A w? € N. Suppose

(4.29) w' A w?=wP forp=1lor2.
Then
F(m(w') & m(w?)) = F(m(w")) A F(m(w?))
= G(w") A G(w?)
= G(wP)
= G(w' A w?).
Now consider the case w® = w! A w? # w? for either p = 1 or 2. We shall obtain

(4.30) also for this case, but with inequality replacing the equality. For each
coordinate j = 1,..., k, w3 = w' A w? implies that

m(w') =7 (w?) =0 or #*(w?)-7(w’)=0.

(4.30)
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Fix j and let p := p(j) = 1 or 2 be such that
(4.31) 7(wP) — 7(w?) = 0.
Thus w? = (wPD,...,wp® ). Rewrite q as

q(w) = Bw +(p — Blw,V;,

and apply this to (4.31) with w = w? — w? to obtain, via the linearity of all the
operators,

(4.32) 7f(q(w? — w?)) = —2a(wp — wi)7 (V).

Now note, from the definition of w, and since w? > w3,
k
wp —w = ¥ n(wh - w)/Vk = |w? - wi/Vk.
i=1

Furthermore, it follows from the definition of V| and « that
72(V)) = (VEa)™".
Substituting the above two inequalities into (4.32) yields
m(g(w? - w?)) < —2Jjw” — w?.
Combining this with (4.28) thus yields
(4.33) 7 (m(w?) — m(w?)) < —|jw? — w3|| < 0.

However, what we have just shown is that for every j=1,..., k there is a
p = p(j) satisfying (4.33). Consequently, for every w',w? € N with w! A w? €
N, it follows that
m(w' A w?) > (m(w') A m(w?)),
from which it follows that
F(m(w) A m(w?)) < F(m(w' A w?
(e54) (m(w) A m(w?) < F(m(w' & w*))
= G(w' A w?).
Combining this with (4.30), we find that the above inequality holds for all
w',w? € N’, where N’ C N is a neighbourhood of zero such that w!,w? € N’
implies w! A w? € N and, consequently, that (4.34) holds.
To obtain the final comparison between F and G, we need to return to the
original coordinate system. However, this is now easy. Since the “minimum”
relationship in (4.34) is really that of the original coordinate system, it trivially

follows that via m we have constructed a map, say m*, from some neighbourhood
N* of y* to a neighbourhood m*(N*) of x* satisfying

F(m*(y)) = G(y), ye&€N*,
F(m*(y') Am*(y?)) < G(»' Ay?),  »', y*e€ N~
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Slepian’s inequality now yields

P{ szlkp We(x) > A} > P{ sup Wp(x) > A}

m(N¥)

(4.35) > P{ S]lv,lP Ws(y) > A}
> P{snga(y) > k},

where § is chosen small enough so that Bg:=[(1)'/* - §,(3)"/* + 8]* c N*.
(Note that 6 depends on N* and so on F.) Thus, to complete the proof, we need
only find a lower bound for the last probability.

To do this, we shall once again compare the process of interest to Wy, on the
small square A, (c.f. Section 2). Choosing § small enough so that

(4.36) 5 <[] A[(5)* ()],
set ¢ = 8/9 and define a mapping m from A, into I* by
(4.37) m(x) = 3(x (1) + (1)1 + p(2)1,

where p(x) is the unique value for which G(m(x)) = F(x).

As was the case for our previous mappings, m maps lines of slope one into lines
of slope one, and it is not hard to check that (4.36) ensures that m(x) € B; if
x € A,. Furthermore, one can check that for any x, y € A,

(4.38) F(x Ay) 2 G(m(x) A m(y)).
(We leave the details of the proof to the reader, who by now should either be
adept enough at these special case arguments to prove (4.38) by himself, or bored

enough that he would not read the proof anyway.) Consequently, Slepian’s
inequality can, once again, be applied and we find

P{sup Wg(x) > }\} > P{supWFF(x) > }\}.
By A,

But this last probability is known and is bounded from below in Theorem 2.2 by
eA2k~De=2¥ Thig completes the proof of the theorem.

5. An upper-lower class theorem. We now return to the one-sided KS
statistic T®) of the introduction and study the way it grows with n. In a
fundamental paper treating the one-dimensional case, Chung (1949) proved the
following result for a sequence A(n)1? co:

(5.1) P{T" > \(n) infinitely often} = 0 (or = 1)
if

: N(n) _,
(5.2) Y %e‘”‘(") < oo (or = o).

n

Kiefer (1961) obtained a weaker version of Chung’s result for the multivariate
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case and proved the following LIL for every % and continuous F:

pl T,fk)
1= imsup —————— =1
{ e (Lloglogn)"” }
(5.3) .
= P{ liminf —————— = —1).
{ n~w (tloglogn)"”* }
Kiefer’s proof of (5.3) was based on inequality (1.3), which is not fine enough to
pick up the higher iterated logarithm terms that (5.2) yields. Having improved on
Kiefer’s inequality in the previous sections (at least insofar as the limit process
Wy is concerned), we can now complete the task Kiefer began and obtain a
multidimensional analogue of (5.1).

Unlike Chung and Kiefer’s basic inequalities for P{T, > A}, we have only
inequalities for P{sup,Wg(x) > A}, and so we shall need to proceed via an
embedding into the Kiefer process. To define this process write B = C[0,1]* for
the Banach space of continuous functions on [0,1]%. Let B* be its topological
dual, & its Borel o algebra, and p the measure induced on % by the process Wy.
It is well known that B* can be embedded in % B, %#,u) by a one-one
continuous and weakly continuous mapping. Let H denote the closure of the
range of this mapping. Then H is a Hilbert space with inner product (-, - ).

The Kiefer process is then defined as the B-valued, real parameter Gaussian
process K,, t > 0, with covariance kernel

E(f, K8 K)) =(snt)-(f,8)u [.g<B*
As a consequence of this definition, we have the following properties:
(5.4) P{K, €A} = P{(Wy€ A},
(55) P{(K,-K,)€A}=P(K, ,cA)
= P{/i——sKl EA} fort > s,
(5.6) (K,— K,) and K, areindependent forall ¢ > s > u.

Here A is any Borel subset of C[0,1]* with topology generated by the sup norm
||k|| = sup{|k(¢)|: ¢t < I*}. Then Theorem 7.1 of Dudley and Philipp (1983)
implies the following embedding theorem, which is a strengthening of an earlier
result of Kiefer (1972).

THEOREM 5.1 (Dudley-Phillip). Let X, X,,... be an infinite sequence of
i.i.d. r.v.s, with common d.f. F. Let F, be the empirical d.f. based on
X,,..., X,,. Then, enlarging the probability space if necessary, for every § > 0
there exists a Kiefer process K,, t > 0, such that ’

(5.7) sup [n[F,(x) — F(x)] - K,(x)| < o(nl/z(log n)_o)
w;'th probability one. Consequently, we also have with probability one
‘Tn - n‘l/zsupKn(x)‘ < o((log n)_o).
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As an immediate consequence of this result, along with a LIL for sums of
Banach space random variables, it is now easy to obtain Kiefer’s LIL (5.3) [c.f.
Kuelbs and Philipp (1980) and Goodman, Kuelbs, and Zinn (1981), especially
Theorem 6.1]. Indeed, the Banach space results yield much more than (5.3), for
they also identify the cluster points of F, in C[0,1]* in terms of the unit ball of a
certain Hilbert space. It is not possible, however, to follow this path to obtain a
multivariate version of Chung’s upper—lower class theorem, the problem being
that no appropriate upper-lower class theorem is known for K,. [Note that
whereas Kuelbs (1975) does have a result of this type for K, it is not applicable
here, since it gives results not for the growth of || K,|| but the growth of || K ]|,
where || - ||« is another unspecified norm (albeit equivalent to the supnorm).]
Consequently, we shall have, in essence, to prove such a result in order to obtain
a generalization of Chung’s theorem.

To state our result, we shall say a nonnegative, nondecreasing, continuous
function y(¢) defined for large values of ¢ is a lower function for {K,, t > 0} if

(5.8) P{||K, || > Vn(n) for an unbounded set of n}=1,
and an upper function for (K, t > 0} if
(5.9) P{||K | > £*/%)(t) for only a bounded set of ¢} = 1.

Since the definition of K, is dependent on F, whether or not any given ¢ is a
lower or upper function depends on F as well as ¢. Thus we write ¢ € L(F') and
Y € U(F), respectively, to denote this dependency. Note that (5.8) implies the
weaker condition,

P{||K,|| > £"/%)(¢) for an unbounded set of ¢} = 1,

which is usually taken as the definition of a lower function. However, the
stronger result (5.8) is what is needed to apply Theorem (5.1), and since our proof
will be strong enough to prove (5.8), we use it to define the notion of lower class.
We can now state

THEOREM 5.2. Let F be continuous on I* with uniform marginals. For ¢ as
above, set

(5.10) L) = [

If I(y) < oo, then € U(F). Furthermore, if F satisfies the conditions of
Theorem 4.2, and I,(Y) = oo, then ¢ € L(F).

2k
* ‘P_t(t)e—w(n dt.

A simple argument, dating back at least to Erdos (1942) and spelled out in
detail in Sirao (1959), shows that there is no loss of generality in Theorem 5.2 in
assuming that for large ¢

(5.11) ((4)loglog 2)1/2 < ¥(¢t) < (loglog t)"*.
Furthermore, a straightforward application of the Abel-Dini theorem easily
yields the following corollary.
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COROLLARY 5.1. Let p > 3 be integral and define
Vi, s(2) == 272 [log,t +(k + 1)logyt + log,t + -+ +(1 + 8)log,,(¢)]/*.

Then & > 0 implies I;({y, 5) < © and 8 <0 implies I(Y} 5) = ©, so that
Vs EUF)if §>0and ¢, ;€ L(F)if § <0 and F satisfies the conditions of
Theorem 4.2.

As a further consequence of (5.11) and Theorem 5.1 we can also derive the
following corollary of Theorem 5.2, which generalises Chung’s univariate test:

COROLLARY 5.2. For all F

* : ¢2k( ) -2
P{T® > y(n)i.0.} =0 fz Vo < oo
For F satisfying the conditions of Theorem 4.2
k . ¢2k( ) _9y?
P{T® > y(n)io.}=1 fz Vin) = o

This result, of course, implies Kiefer’s LIL (5.3). All that now remains is the

PROOF OF THEOREM 5.2. Clearly, in view of Theorem 5.1 and (5.11), it is
sufficient to obtain an upper-lower class result for || K,||. The result for T* then
follows easily. We consider the convergent case first, i.e., I,(¢) < oo. Define a
sequence ¢, satisfying

(5.12) tuar = t(1 +¥7%(t,)),

where ¢, > 3 is sufficiently large so that (5.11) holds for ¢ > ¢,, and so lim ¢, = oo.
Set I, =[t,,t,,,] and

A = {sup —”K—t” > 1}
" e, 073(2) '
Then, applying the Banach space version of Lévy’s inequality, we have

P(4,) < P(swplK > 8/%(t,)
tel,

<2P{|K, |>t/%(t,)}

= 2P{t, 21K, || > (ta/tne))'"¥(t,)}

Now apply the scaling law (5.5) and Theorem 4.1, letting C be a constant that
may vary from line to line, to obtain

P{A,} < C(t,/t, )" [¥(t)]** Vexp[ —292(t,)t,/t 0 1]
< Cly(e,)]** Vexp[ —242(2,)],
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since t, < t,,, and (t,/t,.) =@ +y %) > 1~ Y~X(t,) > 1 for large
enough n.
To complete the proof, it is clearly sufficient to show Y®P{A,} converges. But

ad t
Y P(A,) < CY [ [w(t,)]** Ve 2¥ttm —"
n=1 { } %'/;n—l[tp( n)] ¢ s(tn - tn—l) ds

- 2 tn 2 tn_
- CZ/;% [¢(tn)]2</z D,-2¢ (t”)%ds
n —

n—1

2k
< wai_ﬂe-w(s)ds
0 S

= CIk("I/)r

the last inequality from the definition of ¢, and the ultimate monotonicity of
Y2k(s)e 2¥"*), By assumption I(y) < co and so the proof of the convergence
part of the theorem is complete.

Now assume I(¢) = . Let a, = (log n)?,

B,=Ile; and ¢t,=[B,], n=2.
i=2

Also set
(1 + tn/tn+1)

e, = —1+ >0, n> 2.
A= to/tys)”

Following Chung’s (1949) argument, set
H, = (1K, )| < 6/4(t,)},
Hy oo = (1K, — K> (U4 €)(t0iy = £) 7 9(810) -
Then, if both H, and H, , ., occur, we have
1K 1= (U F e) by = £) 7 9(tns0) = 874(8)
820 (6 ) (1= 0/t000) (U + &) = 87208/ [ 6020 (2 )]

t}t/-i—zllp(tn+ 1)'
That is, H,- H, ,,, = H_ .. Thus, noting from (5.6) that H, ,., and H,, are
independent for m < n, it follows that

P{ l_I Hm} 'P{Hn,n+1} =< P{ 1_[ Hm'ﬁn+1}'
m=2 m=2

tn+l

v

That is
p{mnﬂm} <7 T1 Hy} (1= P{H, 1))

< P{Hz} . n:!iIZ(l - P{Hm,m+l})'
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Clearly, then, if we can show X7_,P{H, ,.,} = o, we will have proven the
theorem. Applying Theorem 4.2 and (5.5) we have

(5.13)
P(H, ...} 2 C+ )" [4(t, )] Vexp{ —29%(£,.1)(1 + &,)°} .

Consider the exponent and note that

1 1 t, 1 1 0L/8 )
- < < — < + i)
0y Bn+1 tn+1 Qpi1 — Bn ! Api1 o
Consequently,

(1+e ) =1+3/a,,, +O( n+1)
so that by (5.11)

Yt )1+ 2,)" < ¥2(2,41) +(loglogB,,1) - 4/a,.,
n+1

log Y log?m
=y2(t,) + —2——
¥i(tasn) 4log?(n + 1)
< Y(t,.0) +1
for large enough n. Substituting into (5.13) and setting vy, = (@, ,)' "}/" yields

ZP{Hn,n+1} >C i [ll,(tn)]mk—l)e_wz(t")

> Tn 2Ak=1) -2y,
CL [ Tv(e)] H s ds
wn [9(sM)] o2V a,
=L : TR =) ®

since Y2k(t)e 2D is eventually decreasing in ¢. A change of variables leads to

n+1 t)]2ke—2'®
ZP{I-In,n+1} = Czan (ap 1) [‘l/( )] :
" n (a")n

dt,

where

a
(5.14) a,= B

n\bz( Bn)(Yn - an) '
If we can now show that a, is bounded away from zero for large enough n, we

shall have YP{H, ,,,} = CI)() = c and the proof will be complete. Firstly,
note that by (5.11)

vi(B,) < loglog( ﬁ logzm) = log( i log(logzm))
m=2

m=2

(5.15)
< log((n — 2)2loglog n) < 2log n.
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Furthermore,

-1

(logn + 1)

an/(Yn - an) > an/(an+1 - ‘xn) = (Iogn)2

(5.16)
1 [logn +1 1}—1

=9 logn

Substituting (5.15) and (5.16) into (5.14) yields

a,> Y[n(og(n +1) —logn)] ™!

= inlog(1 +1/n)] "

1
>87

which completes the proof of the theorem.
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