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ON THE PREVALENCE OF STOCHASTIC DIFFERENTIAL
EQUATIONS WITH UNIQUE STRONG SOLUTIONS

By ANDREW J. HEUNIS
University of Waterloo

It is shown that in the sense of Baire category, almost all stochastic
differential equations with uniformly bounded measurable coefficients and
uniformly nondegenerate diffusions have unique strong solutions.

1. Introduction. The basic existence and uniqueness theorem of It6 for
stochastic differential equations of the Markov type:

(1.1) dé(t) = o(£(t), t) dW(t) + b(£(¢), t) dt,

where £(¢) is in RY, states that when o(x, ¢) and b(x, t) are Borel measurable in
(x, t) and locally Lipschitz continuous with respect to x for each ¢, then (1.1) has
a unique strong solution [4]. In the case where continuity of o(x, ¢) and b(x, t)
with respect to x is discarded and replaced with the requirement that o(x, t) is
the unit operator, results about the existence of strong solutions have been
obtained by Zvonkin [13] and Veretennikov [12] who have studied the uni- and
multidimensional cases, respectively. By using methods drawn from the theory of
partial differential equations, Zvonkin obtains a result of pleasing generality, to
the effect that the one-dimensional version of (1.1) with o(x, ¢) set to unity, has a
pathwise unique strong solution for each bounded and Borel measurable b(x, t).
For the multidimensional case of (1.1) with o(x, ) set to a unit matrix of
appropriate dimension, Veretennikov obtains conditions on b(x, ¢) that ensure
the existence of a pathwise unique solution of (1.1); the method used in this case
" is essentially probabilistic, relying as it does on the verification of pathwise
uniqueness, after which a theorem of Yamada and Watanabe (see e.g., [4],
Theorem 1.1, Chapter IV) along with the Girsanov theorem furnishes the ex-
istence of a unique strong solution.

This note examines the prevalence of stochastic differential equations with
measurable coefficients and nondegenerate diffusions, which enjoy the property of
having a unique strong solution. Prevalence questions of this general nature were
first studied by Orlicz [8] in the case of ordinary differential equations, and
subsequently by Alexiewicz and Orlicz [1] for partial differential equations and
by Lasota and Yorke [7] for ordinary differential equations assuming values in an
infinite dimensional Banach space.

In this note it will be shown that the set of Markov stochastic differential
equations of the form (1.1) whose coeflicients are Borel measurable in (x, ¢) and
uniformly bounded, and whose diffusions are uniformly nondegenerate, may be
regarded as a Baire space (by defining a natural complete metric on it), which
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contains a dense residual subset of the second category of Baire, such that the
equation corresponding to each point in this subset has the following property:
given an initial data point (x, s) in R? X [0, c0) and an arbitrary triple (E, C, 1)
carrying a Wiener process W(t), there is exactly one process £(¢) defined on
[s, 0) X Q, satisfying £(s) = x, and (1.1) for ¢ > s, such that £(¢) is measurable
with respect to the completion [in (E, C, n)] of the o-algebra o(W(u), u < t) for
each ¢ > s. Since a set of the second category in a Baire space contains ‘“almost
all” of the points in the space (it may be thought of as the topological analogue of
the measure theoretical concept of a set whose complement is of measure zero),
this result is saying that in a certain sense almost all stochastic differential
equations of Markov type, whose diffusions are uniformly nondegenerate, have a
unique strong solution.

2. Genericity of equations allowing unique strong solutions. Stochastic
differential equations of the form (1.1) will be considered subject to the require-
ment that the diffusion coefficients are nondegenerate in some uniform sense to
be made precise in the next paragraph. The results to be obtained depend on the
use of inequalities due to Krylov [5] and [6], which give estimates on the
distribution of a stochastic integral, and the final genericity claim is established
by adapting to the present situation an oscillation function used by Lasota and
Yorke [7].

For a given natural number d, and real M and m > 0, let Y, be the set of all
Lebesgue measurable functions o(x, t) defined on R? X [0, c0), assuming values
in the set of real d by d matrices, such that (z, o(x, t)z) > m||z||?> a.e. on
R? x [0, o0) for each z in R? and also satisfying esssup,, ,llo(x, ¢)|| < M.

Likewise let Y, be the set of all Lebesgue measurable and R%valued functions
b(x, t) defined on R? X [0, ), and satisfying esssup,, ,[|b(x, t)|| < M.

Define a metric p, on Y, as follows:

o sdes 1/2d+2
p,(0,,0,) 2 Y 2'Nmin{1, [/ loy(x, u) = op(x, u)| dxdu} },
N=1 Sy

where Sy £ {x|||x|| < N} X [0, N], and on Y, define metric p, in likewise manner
with b replacing o. In these definitions, || * || denotes, depending on the context,
either the operator norm on the set of real d by d matrices or the euclidean (L,)
norm on the set of real d-vectors. Finally, let Y be the cartesian product of Y,
and Y; and let p, be the product metric on Y. Clearly (Y, p,) is a complete metric
space.

Now define the set Y/ to be the subset of Y, consisting of all functions o(x, t)
which are locally Lipschitz continuous on R? X [0, 00). Define Y;} in likewise
manner,with b replacing o and Y, replacing Y,, and let Y be the cartesian
product of Y and Y.

PROPOSITION 1. Y’ is a dense subset of (Y, p,).

PRrROOF. Let 6(x, t) be a nonnegative infinitely differentiable function defined
on R?*! with an integral of unity (on R?*'), and assuming the value zero outside
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the unit ball of R}, and define ¢ *(x, t) £ e @*V(x /¢, t/e)* o(x, t), € > 0,
where * denotes convolution on R?*! with respect to (x, t). o(x, t) is a fixed
element of Y, which is taken to be zero for all x in R and ¢ < 0 in the above
convolution. Clearly o(® belongs to Y* and for each natural number N,
lim,_, 0'(x, t) = o(x,¢) ae. on Sy. The claim follows from the dominated
convergence theorem. O

Henceforth let (E, C, ) be a fixed complete probability space with a fixed
Wiener process {W(¢), ¢ > 0}, defined on it. For ¢ > 0, let

FW £ 6{W(s),0 <s <t} V {pnull setsof C}.
Then (W(¢), F,%, t > 0) is a Wiener martingale. Define:
= £ (£:[0,00) X E - RY&(¢) is F,"-measurable, £(+) is continuous

on [0,0) for each point in E, and for each T >0,
E*[sup, . 7l1(8)]1*] < c0}.

Define a metric { on E as follows:
o 1/2
(e &) & % 27minf1, B+ [sup (o) - )] .
N=1 t<N

PROPOSITION 2. (Z,¢{) is a complete metric space.

Proor. The fact that { is a metric is easy to verify. The completeness of { is
a direct consequence of the Borel-Cantelli theorem and the fact that the p-null
sets of C are contained in F,%, for each ¢ > 0. O

Henceforth, a strong solution of the stochastic differential equation corre-
sponding to the pair (o, ) in Y and an initial data point (x, s) in R% X [0, o)
will be regarded as an element of the set =, which satisfies the following two
requirements:

(i) é(t)=xforall0<t<s, and
(ii) for each ¢ > s,

t t
Et)=x+ fo(é:(u), u) dW(u) +/b($(u), u)du as.[p].
The next proposition is a continuous dependence result:

ProposITION 3. Let {(o,, b,)} and {(x,,s,)} be sequences in (Y, p,) and
R? X [0, ) converging to the limits ({, b)}, in Y, and (x, s), respectively. For
each n assume that the stochastic differential equation with coefficients o, and
b,,. from the initial data point ¢(x,, s,) has a (not necessarily unique) strong

solution £, in =, and let £ be the unique solution in E to the stochastic
differential equation with coefficients ¢ and b, from the initial point (x, s). Then

lim,, _, o{(£,, £) = 0.
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ProoF. Fix T > 0. For each natural number N define
(2.1) 7NV 2 inf{¢ > 0[|4(¢)]| = Nor [£,(¢)] = N}.
Clearly, for each N and n,

B [suple(0) - €] < 3E”[sup leu(t) = &t A 2!
t<T t<T

(2.2) +3E”[sup l6.(t A7) - £( A T,,~)||2]
t<T

+3E"[sup le(e A o) - §(t)||2].
t<T

Now in view of the uniform bound M on the coefficients o, and b,, and the
boundedness of the sequence {(x,, s,)}, it follows that lim  _, . u[sup, _ 7/|§,.(2)]]
> N] = 0 uniformly with respect to n, whence,

(2.3) lim p[7¥>T] =1
N— o0
uniformly with respect to n.
Now fix an & > 0, and let N(¢) be a natural number such that N(¢) > T and
u[TnN(” > T] > (1—¢)
for all n.
To lighten the notation, let 7, denote 7,¥—no confusion will result as ¢ is

henceforth held fixed. Considering the first term on the right of (2.2) with
N = N(¢):
2}

E* sup||§,,(t)-—£,,(t/\7n)||2]_<_2Eﬂ[sup [° bulga(w), u) du

(24) t<T t<TlIYEAT,
2
+2E#[sup [ o(£), u) dW(u) ]
t<TIl tAT,
for all n.

Now in view of the definition of N(¢), the first term on the right of (2.4) can be
bounded as follows:

=

E*|sup ft

| t<T tAT,

for all n, while for the second term Doob’s inequality gives

E”[sup '/;:Ton(sn(u), u) dW(u) }

t<T
=E#[sup [t (e, ) W) |

t<T

2
}s TM?%e

bn(gn(u)’ u) du

< 48" [ ) Trace{00(6,(), ) ]

< 4TM?%¢
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for all n, whence the first term on the right of (2.2) can be bounded from above as
follows:

(2.5) E“[sup 16.(2) = £.(¢ A T,,)n?] < 10TM?
t<T

for all n. An identical assertion holds for the third term on the right of (2.2).
Considering the second term on the right of (2.2) [again with N = N(e)] and
taking v < T, gives:

E“[supH&n(t AT,) = §(EA Tn)||2]

t<v

2]

< 5|lx, — x||®> + 5E"[sup

t<v

ftm,,bn(ﬁ,,(u), u) — b(¢(u), u)du

s

(2.6) +5E* f:bn(én(u), u) du ]

-
+5E*| sup

| t<v

I

L'tArnon(gn(u), u) —o(&(uw), u) dW(u)

fmfngn(in(u), u) —o(&(u), u) dW(u)

s

|

+5E*

8,

0,(£,(u), 1) dW(x)

In view of [3] (Chapter 4, Theorem 4.7),
2

sup

t<v
2
(2.7) < 2sup

t<v

/:Afnan(én(u), u) —o(¢(un ), u)dWu)

2

+2sup

t<v

Now an application of Doob’s inequality followed by use of the Krylov

inequality ([6], Chapter 2, Theorem 2.4) and the fact that N(¢) > T shows that

the expectation of the first term on the right of (2.7) may be bounded from above
by:

fsta(ﬁn(u At,),u) —o(&(unr,),u)dW(u)

Tan - 1/d+1
8E"[£) A (¢,(u),u) du] < 8K [f A (x,t) dxdt] ,

'N(e)
where
‘ A,(x,t) 2 Trace(o, — 0)(o, — 0)"(x,¢)

and the constant K depends only on d, N(¢), and m (it does not depend on n).
Taking expectations of the two sides of (2.7) and also applying Doob’s inequality



658 A. J. HEUNIS

to the second term on the right, therefore gives:

E“[ﬁgp f:“"on(in(u),u)—0(£(u),u)dW(u) ]
) 1/d+1
(2.8) 581([/q An(x,t)dﬂdxdt}

+8(L")2fs°Eﬂ[sup I€.(w A 7,) — &(w A Tn)||2} du,

w=<u

where L° is the Lipschitz constant for o.

Calculating an upper bound for the second term on the right-hand side of (2.6)
in a similar manner, and using this and (2.8) to bound the right-hand side of (2.6)
gives, after some simplification:

B sup [6,(¢ A7) = £(¢ A )]

t<v

(2.9) <, + [40(L°)” + 10(L?)]

< B[ sup [ A7) = 80 7 7]

Here L? is the Lipschitz constant for b(+), and 7, is the sum of the first, third,
and fifth terms on the right of (2.6), the first term on the right of (2.8), and a
corresponding term in the upper bound of the second term on the right of (2.6).
In view of the convergence of x, to x and (o,, b,) to (g, b), it follows that
lim, , n, = 0, and therefore an application of the Gronwall inequality to (2.9)
shows that

lim E"[sup .6 T,)— (N Tn)“2] =0.
n—oo t<T
In view of (2.2) [with N = N(¢)], (2.5), and the above, it follows that
limsupE“[sup [€.(2) — &(¢) ||2] < 60TM 2.
n— oo t<T

Since ¢ and T are arbitrary, the proposition follows. O

Henceforth let £(o, b; x, s)() denote the (unique) strong solution in = of the
stochastic differential equation corresponding to the pair (o, b) in Y from the
initial data-point (x, s). Define the oscillation function D;: Y X R? X [0, ) —
[0, o0) as follows:

Do, b;x,s) 2 ;if}) [sup{{(&(ol, by; x,8), £(0,, by; x, 8))]
(0, b,) € Y, and p((a, b), (0, b)) <8 fori=1,2}].

The next claim is a direct consequence of the Ito existence and uniqueness
theorem and Proposition 3.
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PROPOSITION 4. For each (o, b) in YL and (x, s) in R® X [0, w0), it follows
that D(o, b; x, s) =

PROPOSITION 5. D,(*) is upper semicontinuous at each point of YX x R x
[0, 00).

Proor. Fix sequences {(o,, b,)} and {(x,,s,)} in Y and R? X [0, c0), con-
verging to limits (a, b), in Y% and (x, s), respectively. It must be shown that
lim, _, Do, b,; x,,s,) = 0. Assuming the contrary, there exists some & > 0,
and a subsequence {n k} such that, for each % there exist (o,,, ‘k) inYLl i=1,2
which satisfy:

(2.10) o((0n,r B,). (01, 83,)) < 1/m,
and
(2.11) &0k, 85 %0, 80, )5 £( 02, 25 %, 85, )) > /2.

Thus Proposition 3 and (2.10) imply that
lim g(g( o), B X, 8, ), E(02, B2 5 %, 8,,)) = 0.

Since this contradicts (2.11), the claim follows. O

ProrosiTION 6. If D|(0,b; x,8) = 0 for a pair (¢, b) in Y and an initial
data-point (x, s), then the stochastic differential equation with coefficients o and
b has at least one stromg solution in = from the initial point (x, s).

ProoF. For each natural number n there exists a real ¢, > 0 such that {¢,}
decreases monotonically to zero and

(2.12) sup{{(¢(a1, by; 2, 5), £(05, by; x, 5)))|

(o, b;) € Y-, and p((0, b),(0;, b)) <&, fori=1,2} <1/n.
Now for each n there exists a (g, b,) in Y such that
py((o, 5),(0,, b,)) <&,
ie.,
(0, 8), (01 m> Bpim)) < &nim < &r,
whence, from (2.12), it follows that
§(£(0n, by; %, 8), £(0y sy Byis %, 8)) <1/

for all natural n and m.

. Thus by Proposmon 2 there exists an £ in = which i is the {-limit of the Cauchy
sequence {£(o,, b,; x, s)}. It will now be shown that £ solves the equation from
(x, s) with coefﬁc1ents o and b. Let §: R? - [0, ) be a fixed infinitely differen-
tiable function whose integral on R? is unity, and assuming a value of zero
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outside the unit ball of R¢ and for 8 > 0 define ¢'®(x, t) £ § %0(x/8)* o(x, t),
where * denotes convolution on R with respect to x. Now since

(2.13) hm p|sup||£(o,, b,; x, s)(u)||> N| =0

u<t
uniformly with respect to n, it follows from the continuity of 6®)(x, ¢) in x, that
62(&((o,, b,; x, $))(t), t) converges in probability to o ®O(&(t), t) for each ¢t > s,
whence [10] (page 31, no. 5) gives that [/o‘®(£((o,, b,; x, §))(u), u) dW(u) con-
verges in probability to [fo‘®(£(u), u) dW(u) for each § > 0 and ¢ > s, as
n - .

Moreover, an application of the Krylov inequality ([6], Chapter 2, Theorem
3.4) and (2.13) shows that as § — O so [lo®(&((o,, b,; x, $))(u), u) dW(u) con-
verges in probability to [/o(¢((0,, b,; x, s))(u), u) dW(u) uniformly with respect
to n, while Fatou’s theorem, ’I‘heorem 3.4 of [6] (Chapter 2) and the convergence
of {&(o,, b,; x,s)} to § imply (cf. [6], page 90) that some L > 0 exists for which

1/d+1

B[ [l wlad <2 [, il dsa

RdX[O,oo)

for all real Borel measurable f( ) defined on R¢ X [0, 00), whence clearly
[lo®(&(u), u) dW(u) converges in probability to [/o(&(u), u) dW(u) as & — 0.
Thus it follows that [fo(£((o,, b,; X, s)) (&), u) dW(u) converges in probability to
/. ‘o(é(u), u) dW(u) as n — . Flnally it is easily seen from another appli-
cation of the Krylov inequality, along with the p, convergence of ¢, to o and
(2.13), that I+ 0,(&((0,, by x, $))(u), u) dW(u) converges in probablhty to
[lo(&((a,, b,; x, s))(u), u)dW(u) as n —» . A similar claim holds for the in-
tegrals involving the drift terms, whence the proposition follows. O

PROPOSITION 7. There exists a residual subset Y of the Baire space (Y, £y
of the second category of Baire, such that for each (o, b) in Y, the stochastzc
differential equation with coefficients ¢ and b has a unique solution in = from
each initial data point (x, s) in R X [0, c0).

PROOF. Define
Y(m,n) 2 {(o,b) € Y|D,(0, b;x,8) < 1/nforall x| <m,0 <s < m)}

for each natural number n and m.

Now by Proposition 4, Y~ c ¥(m, n), and so (Propositions 5 and 1), Y(m, n)
contains a dense open subset of (Y, p,).

Define

(o2}
¥2 N Y(m,n).
m,n=1

Clearly, if (o, b) is in ¥, then by Proposition 6, the corresponding stochastic

differential equation has at least one strong solution in = for each initial
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data-point (x, s). To obtain uniqueness define

D,: ¥ X R [0,00) = [0, 00)

as
Dy(o, b; x, s) & sup{{(£,, £,)1¢; € =, and §; is a strong solution to
the stochastic differential equation from (x, s) w1th
coefficients o and b, for i = 1,2};
and

Y(m,n) 2 {(o,b) € Y|Dy(o, b; x,5) < 1/nforall |x|| < mand 0 < s < m},

for each natural m and n, and let

0
Y& N Y(m,n).
m,n=1
Since (o, b) in Y’ implies that Dy(a, b; x, s) = 0 on R? x [0, ), it is clear from
Proposition 3 that each ¥(m, n) contains the intersection of ¥ and a dense and
open subset of (Y, p,), and thus Y is a residual subset of (Y, p,). Finally, if (o, b)
is in ¥ then the corresponding stochastic differential equation has an unique
solution in = for each initial data point (x, s). O

3. Remarks.

1. The oscillation function D,(+) defined immediately before Proposition 4
depends only on the joint distribution of £(o,, b,; x,s) and £(o,, by; x, s) for
(0;, b;) in YL, i=1,2. Thus it is invariant with respect to the underlying
probability triple (E,C, p) and Wiener process W(t). Therefore, the residual
subset ¥ in Proposition 7 is invariant with respect to the basic probability
structure which drives the stochastic differential equation. It follows that the
stochastic differential equation corresponding to a (o, b) in ¥ and an (x, s) in
R? X [0, c0) admits a pathwise unique solution on any probability space carrying
a Wiener process, the solution being a measurable functional of the Wiener
process.

2. Y is a residual subset in the product of two Baire spaces namely (Y, py)
and (Y,, p,). The Kuratowski-Ulam category analogue of Fubini’s theorem ([9],
Theorem 15.1) gives the existence of a residual subset YL of (Y, p;) with the
property that for each o in Y, there is a residual subset Y,(o) of (Y,, p,) such
that if b is in Y,(0) then the stochastic differential equation with coefficients
(0, b) has a unique strong solution from each initial data-point in R? X [0, o).

3. In Barlow [2] a class of continuous functions o: R — R is constructed such
that 0 < 8§ < o(x) < K for all x, and the stochastic differential equation dé(¢) =
a(£(t)) dW(t) has no strong solution. This collection of stochastic differential
equations is therefore a subset of the complement of ¥ occurring in Proposition 7.

4. The equations corresponding to points in Y have Borel measurable coeffi-
cients and nondegenerate diffusions. The nondegeneracy of the diffusion ensures
that the stochastic differential equation has at least one weak solution. The set Y
may be redefined by discarding the nondegeneracy condition and replacing it
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with the requirement that the coefficients o(x, t) and b(x, ¢) in Y, and Y, be
continuous with respect to x for each ¢ This is also adequate to ensure the
existence of at least one weak solution from each initial point (see [11], 6.1.7 and
8.1.1). If the metric p, on Y, is now defined as follows:

A i N 9 1/2
p.(0,,0,) 2 Y 2‘Nmin{1,[ max |o,(x, u) — oy(x, u) || du] }
N=1 0 lxllsN ’

and a similar metric is defined on Y, (with b replacing o), then the resulting
product metric p, on Y turns it into a complete metric space. It is easily verified
that with (Y, p,) thus redefined, all of the preceding propositions as well as
remarks (1) and (2) remain valid.
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