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THE MALLIAVIN CALCULUS FOR PURE JUMP PROCESSES
AND APPLICATIONS TO LOCAL TIME

By R. F. Bass! AND M. CRANSTON

University of Washington and University of Rochester

A Malliavin calculus is developed whose scope includes point processes,
pure jump Markov processes, and purely discontinuous martingales. An
integration by parts formula for functionals of Poisson point processes is
proved. This is used to develop a criterion for pure jump Markov processes to
have a density in L”. The integration by parts formula is then used to give
conditions for a purely discontinuous martingale to have a jointly continuous
local time L} that is an occupation time density with respect to Lebesgue
measure.

1. Introduction. The Malliavin calculus is a powerful tool in determining
when the distribution of a stochastic process X, has a smooth density, a question
that comes up in studying hypoelliptic operators (cf. Bismut (1981)) and local
times (cf. Bass (1983)). In this paper we establish a Malliavin calculus whose
scope includes point processes, pure jump Markov processes, and purely discon-
tinuous martingales. Our methods also permit some simplification in the diffusion
case as well.

We obtain three main results: an integration by parts formula, conditions for a
pure jump Markov process to have a density in L?, and conditions for a purely
discontinuous martingale to have a local time.

After some preliminaries on point processes and stochastic calculus in Section
2, in Section 3 we develop an integration by parts formula for functionals of
Poisson point processes. The technique used is that of the calculus of variations
together with a use of the Girsanov formula, an approach first introduced by
Bismut (1981) for diffusions. See Williams (1981) for a good heuristic explanation
of Bismut’s work. We also derive an integration by parts formula for functionals
of a family of independent Poisson point processes and Brownian motions.

In Section 4 we show by means of the chain rule that the integration by parts
formulas of Section 3 are all that are needed to study densities of diffusions and
pure jump Markov processes. The comment is often heard that the Malliavin
calculus is too technical to be a truly useful tool. Although our approach does not
eliminate the technicalities altogether, it does reduce them to relatively routine
calculations and estimates.

Our second result, in Sections 4, 5, 6, and 7, concerns the existence of densities
for pure jump Markov processes and conditions for these densities to be in L?”
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and C° The first such theorems were by Bismut who studied densities of
processes that are essentially Lévy processes with nondeterministic drift in
Bismut (1983) and of processes that arise as the restriction to a boundary of a
diffusion in Bismut (1984).

Bichteler and Jacod (1983) considered processes that are the solution of the
stochastic differential equation

W) Xe=xot [ fo(X,,2)(n— v)(ds, d2) + [B(X,) ds,

where p is a Poisson point process with compensator y. We extend and improve
their results by giving conditions for the existence of a density for X, satisfying
(1.1) where o is only Lipschitz in x and z and giving conditions for the density to
be in L? and C* Our theorems about densities for X, can be used to obtain
results in partial differential equations that are new. Suppose L is an integral
operator that is the infinitesimal generator of a Markov process X,. The existence
of a density for X, is then equivalent to the existence of a fundamental solution
for the operator d/dt — L.

We then turn to the third and principal result of this paper: conditions for a
purely discontinuous martingale X, to have a local time. This problem was first
posed by Meyer (1976). By a local time L}, we mean an occupation time density
with respect to Lebesgue measure: For all B Borel, ¢ > 0,

(1.2) /};Lfdx =f0‘1B(Xs)ds.

Until recently, the only conditions known were for Markov processes, and even
there the conditions were intractable except in the case of Lévy processes (Kesten
(1969)). In Bass (1984), it was shown that if the local characteristics of X, satisfy
a rather stringent condition, then X, will have a local time, and that this
stringent condition, a condition on the size of the jump component of the local
characteristics, is essentially best possible.

In Sections 8-12, we show that if the local characteristics of X, are smooth
enough, only a minimal condition on the number of jumps of X, is needed for X,
to have a local time. We consider X,’s that arise as solutions to stochastic
differential equations of the form

X, =x,+ fo‘fo(s, 2)(p(dz, ds) — dzds),

where o is predictable and a functional of the past of X, and p is a random
measure generated by a Poisson point process whose characteristic measure is
Lebesgue measure. The class of such X, is quite large. It includes, for example,
Markov processes whose weak infinitesimal generator is of the form

Af(x) = [[f(x+y) = f(x) = f(x)y]n(x, dy),  feC

N(See the example of Section 8.) Roughly, our results say that if ¢ is three times
differentiable as a functional of X for each z and if o(s, z) does not tend to 0 too
quickly as z — oo, then X, will have a local time.
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In Section 8 we state our theorem and also give an example to illustrate the
hypotheses. In Sections 9, 10, and 11 we prove the theorem in a special case.
Section 9 applies the Malliavin calculus for point processes to show that if

S,(A4) = E/ooe‘“lA(Xt) dt,
0

then S,(dx) has a density with respect to Lebesgue measure that is bounded and
Holder continuous. Some of the needed estimates are proved in Section 10.
Section 11 shows how the estimates we obtain lead to the existence and joint
continuity of local time. In Section 12 we show that the proof of the special case
considered leads to the proof of our main theorem; we also discuss some
extensions and generalizations of our theorem.

We will use the following notation. For any process Y}, let Y,* = sup, _,|Y,|. Let
|| || denote supnorm, || ||, the L? norm with respect to Lebesgue measure, and
|A| the Lebesgue measure of A. We will use both ¢, and d,0 to denote the partial
derivative of o, as convenient. We will use ¢ to denote constants whose values
may change from place to place.

2. Preliminaries. In this section we recall briefly some facts about point
processes and semimartingales. For details, see Jacod (1979), Meyer (1976), and
Dellacherie and Meyer (1980).

Let %, be a filtration satisfying the usual conditions. Let 2 be a measurable
space. A point process with state space Z is a countable collection of adapted
rv.’s (Z;, T.) € ZX R™*. Given a point process, one usually works with the
associated random measure p defined by

(2.1) w(Ax[0,e])(e) = 3 14(Z(w)).

T(w)<t

A random measure p has a random measure y as compensator if y is
predictable and p(A X [0, t]) — y(A X [0, ¢]) is a local martingale in ¢ for all
Borel sets A such that Ey(A X [0, t]) < oo for all ¢.

A point process is a Poisson point process with characteristic measure » if for
each Borel set A with »(A) < o« and for each ¢, the r.v. (A X [0, £]) is Poisson
with parameter »(A)t¢. It is then a consequence that p has independent incre-
ments and that p(A X [0, s]) is independent of u(B X [0, t)if AN B = &.

An important result (see Jacod (1979), page 92) is that if the compensator
v(dz, ds) of the random measure p associated to a point process is of the form

(2.2) v(dz, ds) = v(dz) ds

for some o-finite measure v on &, then the point process is a Poisson point
process with characteristic measure », and hence the law of the point process is
unlquely determined.
‘If h(s, z,w) is predlctable and a simple integrand, ie., hA(s, z, w) =
Li;, 41(8)1a(2)H(w), where H is bounded and adapted to #, and Ey(A X
[0, t ]) < 00, define the stochastic integral of A with respect ‘to p — v by the
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Stieltjes integral
(2.3) fotfh(s, z,0)(p— v)(dz,ds) = H(w)(p — v)(A X (8, A t, 8, A t]).

One then extends the definition by linearity and L? limits to & in #% = {h: h
predictable, E[[h*(s, z,w)y(dz, ds) < oo}. .

A purely discontinuous martingale is one where EM? = EX_ _,AM?, where
AM,= M, — M,_. In this case, let [M, M],=X,_,AM?. One can show M, =
[{fhd(p — v) is a purely discontinuous (local) martingale with [M, M], =
J{[h? dp for h € #? Dy first considering simple A’s. In particular,

(2.4) E[[Otfhd(u—y)]2=Ef0‘jh2du=Efo‘fh2dy.

The last equality follows by monotone convergence and the fact that
J&f(R® A n)d(p — v) is a mean zero martingale for each n.
Define

(2.5) &(K), = exp(K,) [T[(1 + AK,)e 2]
s<t
If K, is a semimartingale whose martingale part is purely discontinuous and H,

is a process of bounded variation, then it follows by Itd’s lemma and integration
by parts (Meyer (1976), pages 301-303) that

(2.6) Z,- 8(K),[¢(K), (1 +AK,) " dH,

solves the stochastic differential equation

(2.7) dZ,=Z,_ dK,+ H,.

In particular (take H,_ = 0, H,=1 for ¢t > 0),
dé(K),=¢(K),dK,.

We will need Burkholder’s inequality: For p > 0 there is a ¢(p) > 0 such that
for M, a martingale,

E(M#)? < c(p)E[ M, M]F”.
Define

M2 = {h: h is predictable, there exists a bounded deterministic function
H(z) with [H*(z)»(dz) < o such that |A(s, z,w)|< H(z) for all
s, 2, a.8.}.

We also need

" LEMMA 2.1. Suppose h € /2 and

L= ['[r(s, 2)(n = v)(dz, d),
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where v is given by (2.2). Then for all \,
(i) Eexp(A[L,L],) <c(\, t,H,v) <0 and
(ii) Eexp(AL¥) < ¢(\, t,H,v) < 0.
PrROOF. Fix A > 0 and choose A so that »(A) < 0. Let M, = [{[,hd(p — v)

and N, = [g/schd(p —v).
If S and T are stopping times bounded by ¢, we have

E[[N,N]; - [N,N]s_|%] = AN + E[[N,N]+- [N, N]sl %]
<ANZ + E[fsTLch2(s, 2)u(d, ds)|3'€s]
@8) < ANZ + E[/:fACH%z)u(dz) ds|5{9]

< sup H*(z) + tL(H2(z)V(dz).

z€AS

Then, provided A is chosen appropriately so that the right side of (2.8) is
< 1/8A, we have

Eexp(2A[N,N],) < ¢, < o

by Dellacherie and Meyer (1980, page 193).
We also have

o 95[|NT — Ny [1%] < |ANg| + (E[(N, - No)1%5]) "
’ < sup |H(2)| + (E[[N, N1z - [N, N1s|%])"*,

z€AS
and by Dellacherie and Meyer again,
Eexp(2AN*) < ¢, < o0,

provided A is chosen appropriately.
Now,

M, < [ [ |n(u, 2)p(dz, du) < sup|H(2)|R,
0vYA 2
where ‘
t
R = dz, ds
[ [ p(dz, ds)
is a Poisson r.v. with parameter ¢v(A), and hence ‘
Eexp(2AM*) < Eexp(2>\sup|H(z)|R) < ¢y < o0.

We also have

t

[M,M],= /()Lh?(s,z)u(dz,ds)s supH%(z)R,
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and so
Eexp(2A\[M,M],) < ¢, < 0.
To conclude the proof, choose A so that sup, . 4.|H(z)| and [,.H?(z)r(dz) are

sufficiently small (depending on A) but »(A) < oo. Since L} < M* + N,* and
[L,L]),=[M,M],+ [N, N],, (i) and (ii) follow by Cauchy-Schwarz. O

Finally, we need the Girsanov theorem for martingales (Meyer (1976), page
377):

THEOREM 2.2. If X, is a martingale with respect to P, M, a positive
uniformly integrable P-martingale with M, = 1, @ a probability measure defined
by dQ/dP|sz = M,, then X,— B, is a martingale with respect to Q, where
B, = [(M; ' d[ X, M],.

3. Integration by parts formula. In this section we derive the integration
by parts formula Theorem 3.4 which is basic to our work.

We will suppose throughout the remainder of this paper that 2= R and » is
Lebesgue measure. Suppose g is the random measure associated to a Poisson
point process with characteristic measure »; the compensator of p is then
y(dz, ds) = v(dz) ds. Suppose | € #2 with |(s, z)| < 1, as., and let

2
o(s,2) = [Us, ) dy.
0
Let 7, a random measure associated to a point process, be defined by
#(B x [0, t]) = /‘/13(2 + o(s, 2))u(dz, ds).
0
Suppose »(A) < . Define the P-martingales

(1) K= [[[(+Us, 2)a(z + os, 2))(k — v)(dz, ds),

(32) L= [ [is,2)(n = v)(dz, ds),

and
(3.3) M,=&(L),=exp(L,) [T[(1 + AL,)exp(-AL,)].
s<t
Since |AL,| < §, M is positive. Define a probability measure @ by
d!
QI
dP |g

- THEOREM 3.1. Under @
Y,=7(A % [0,¢]) — tr(A)

is a local martingale.
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Proor. Since

AM, 1 M,_ 1 L4 ALY
= — = — +
M, M, ( )
we have
AX AM
[Mrdlx, M), - L =
0 M

s<t

= Yax,(1-@+aL)™)

- fotfu + (s, 2)) (2 + o(s, 2))

><(1 - (1 + s, z))_l)u(dz, ds).

The last equality follows since both sides are pure jump processes with the same
size jumps. Since

J1az + 05, 2)) (1 + Us, 2)) de = [1a(3)dy = (4),
then
Y't = Xt - '/(;tMs_l d[X, M]s’

and our result follows by the Girsanov theorem, Theorem 2.2. O
COROLLARY 3.2. The P-law of p is equal to the Q-law of .

Proor. Under P, p is a random measure with compensator v(dz) ds which is
associated to a point process; hence p is the random measure associated to a
Poisson point process with characteristic measure ». By Theorem 3.1, under @, =
is a random measure with compensator »(dz) ds which is associated to a point
process, and hence 7 is also a random measure associated to a Poisson point
process with characteristic measure ». 0

Now define an exponential martingale M/, a perturbed random measure p*,
and probabilities @¢ by

(3.4) M;=¢&(eL), = exp(sL,)!:[t[(l +eAL)exp(—¢eAL,)],
(3.5) W(Bx[0,6]) = ['f15(z + eols, )uldz, ds),
and ’

d £
(3.6) d‘; -
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For a functional G of p, we have by Corollary 3.2 that the P-law of p equals
the @*-law of p, and so

(3.7) EG(p) = EoG(w) = E[G(p)M;].

Differentiating both sides of (3.7) with respect to ¢ and setting e = 0 w111 give
our integration by parts formula. First, a definition is needed.

DEFINITION 3.3. A functional G of p will be called L”(P) smooth with
derivative D,G(n) € LP(P) if for every l € M2,

- . P
Ele ' [G(w) -~ G(p) — eDG(W] [~ 0.
Of course, the notion of L?( P) smooth is related to that of Frechet derivative.

THEOREM 3.4. Suppose G is a bounded L'(P) smooth functional of
{1: s < t}, suppose l € M2, and suppose L, is defined by (3.2). Then

(3.8) E[G(p)L] = ~E[DG(n)]-

ProoF. First of all, since [ € #2, ¢l < ; for ¢ sufficiently small.
By (3.7), E[G(p*)M;] is constant in ¢, and since M,? = 1,

o) EleCW) — GO + BlG(k)e (M 1~ eL)]
+EG(p)L, = 0.
The first term converges to E D,G(p) as ¢ — 0 since G is L'(P) smooth. The

third term converges to EG(r)L, by dominated convergence and the fact that G

is bounded. Since G is bounded, the use of Lemma 3.5 below completes the proof.
O

LEMMA 35. Ele {(M;—1—¢L,)|” — 0 forallp > 2, as e — 0.
Proor. If ¢ is sufficiently small, so that |el(s, z)| < ; for all s and z, then

M;=6(eL), < exp(£|L,|)exp( Y [In(1 + eAL,) - sALs])

s<t
<exp(eL} + 2¢2[L,L],).

Then by Lemma 2.1 and Hélder, for any g, E(M;")? is uniformly bounded,
provided e is sufficiently small.
. Since M; = &(eL),,

(3.10) Mi=1+ [ ‘Me_edL,,
0
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which by Burkholder’s and Holder’s inequalities and Lemma 2.1 gives us

E(M; = 1) < o(p)eE( [((:)*dl L, L],)

< o(p)e”E(M;")"[L, L]}

1/2
(

< o(p)er(E(MS)") (ELL, LT?) >0

as ¢ = 0.
Finally, by (3.10),

e (Mf—1—eL,) = f’(Mf_ ~1)dL,,
0
and by Burkholder and Hélder and Lemma 2.1 again
p/2
Ele (g -1 - eL)[" < e(p)B( [(M: ~1*alL, L],)
0
<c(p)E(M; - 1)*[L, L]

< e(p)(E(M; - 1)*)) 7

E[L,L]")*>0.0

REMARK. In the above, if |I(s, 2)| is also in L'(») as well as .#2, we could
have let v(s, z) = (% _I(s, ) dy, modified the definition of u* and D,G(p), and
obtained a modification of Theorem 3.4.

We can state an analog of Theorem 3.4 for functionals of Brownian motion (cf.
Williams (1981)). Let us say that a functional G of a Brownian motion W, is
L?(P) smooth with derivative D,G(W) if G(W) € LP(P) and if for every
bounded and predictable &,

D

E s-l[G(W+ sfo'ksds) - G(W) - sDkG(W)] - 0.

It is often useful to require only L ?( P) smoothness of G rather than the stronger
Frechet differentiability.

THEOREM 3.6. Suppose G is a bounded L'(P) smooth functional of {W,,
s < t}, suppose k, is bounded and predictable, and K, = [{k,dW,. Then

(3.11) E[G(W)K,] = E[D,G(W)].
Proor. Let

M= exp(—sK, - $s2ftkfds),
0
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and define a probability measure Q¢ by

dQ*

— &
= M.

It is a well-known consequence of Theorem 2.2 that under Q¢, W = W, + ¢[jk, ds
is a Brownian motion, and hence the Q%law of W* is the same as the P-law of
W. Then

EG(W) = Eo.G(W*) = E[G(W*)M;].

Differentiating with respect to ¢ and setting ¢ = 0 gives the result. The technical
details of taking the derivative, which are very similar to the proof of Theorem
3.4, are left to the reader. O

We now look at a multivariate version of Theorems 3.4 and 3.6. Suppose
By, - .-, b, are random measures associated to independent Poisson point processes
each with characteristic measure v». Suppose W,,...,W,  are independent
Brownian motions that are independent of the p;’s. Suppose G is a bounded
functional of {py,..., g, Wi,..., W,; s < t} that is L'(P) smooth in each vari-
able. Suppose /; EJlZ for each i, L(‘) = [¢l(s, 2)Xp(dz, ds) — v(dz) ds), k, is
bounded and predlctable for each j, and K = [{k;(s) dW(s). Let D,G denote
the L'(P) derivative of G with respect to p; in the dlrectlon L, and let DG
denote the L'( P) derivative of G with respect to W, in the dlrectlon k;.

THEOREM 3.7.

(i) E[DG] = -E[GL{];
(i) E[DG] = E[GK{];

(ii) E| X «;,DG+ ¥ B, DG
i=1

Jj=1

m n
-E G(— Y oL+ ¥ B,-K}””;
i=1 Jj=1

andif 1 <i, <iy< -+ <ig<mandl<j, < -+ <j, <n, then
A A a . b .
(iv) E[Di, e DD Dbe] = (—1)“E[G]_[L(t‘ﬂ)]_[K}J/"].
a=1 B=1

Proor. Statements (iii) and (iv) follow from (i) and (ii) by taking linear
combinations and iterating, respectively.

Suppose we define Q¢ by dQ‘/dP| # = M{ = &(eL{"). Since the martingales
{ni(A; X [0, t]) — »(A),, Wi(¢),2 <i<m,1<j<n} are all orthogonal to the
martingale M, it is not hard to see that the @=law of (p5, po,..., tp Wi,..., W)
is the same as the P-law of (pq, g, --+y tp, W1, ..., W,). With this observation,
the proof of (i) and (ii) of Theorem 3.7 is similar to the proofs of Theorem 3.4 and
3.6 and is left to the reader. O
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4. Densities. Once we have Theorem 3.4, we can develop a criterion for a
functional of p to have a density and for this density to be in L”. Suppose ¢ is
fixed, and Y = Y(p) is a functional of {u, s < ¢}.

THEOREM 4.1. Suppose Y is L'( P) smooth. If D,Y(p) is strictly positive, a.s.
for some 1 € M2, then the measure P[Y € dy] is absolutely continuous with
respect to Lebesgue measure, i.e., the distribution of Y has a density.

Proor. Let h € C? with compact support, G(p) = A(Y). Since e~ (Y(p*) —
Y(p)) = D,Y(p) in LY(P), e~ '(Y(p°) — Y(n)) is uniformly integrable, and so
Ee '|R(Y(p)) — H(Y) — R(Y)(Y(p5) — V)|
< 2R |E[e !Y(w) = Y5 |¥(p) - Y] 2 1]
HIAIE [e7 ¥ (p) = Y[[¥(p) = Y5 | V() - Y] <1]
-0 ase— 0.
Since

|(Y(s)) = B(Y) = eh(Y) DY | <|A(Y(p)) — h(Y) — R(Y)(Y(#) = V)|
+ WY () = Y — e DY,

we conclude A(Y) is L'( P) smooth with derivative A’(Y) D,Y.
By Theorem 3.4,

(4.1) E[n(Y)DY] = —E[h(Y)L,].
By (24),

E|L, < (EL?)"” < c(1)£'?,
and so if R = D,Y/ED)Y,

(4.2) |E[(Y)R]| < |hlle(1)¢*/E DyY.
If we define a probability measure @ by d@/dP| s = R, (4.2) becomes
(4.3) Eoh(Y) < c(l, t)|h|/ED)Y.

By a limit argument, (4.3) holds for A/(x) = 1,(x), h(—o0) = 0, A a bounded
Borel set. Then ||A|| equals |A|, and we can conclude Y has a density g, relative
to @, and moreover ||g,|| < c(L, t)/E D,Y. Since R > 0, a.s., P is equivalent to @,
and hence Y has a density with respect to P also. O

REMARK. Easy examples show that in general, R # 0, a.s. does not suffice for
Q to be equivalent to P. Hence a bit more work is needed to make the argument
of Bichteler and Jacod complete.

"To get the density gp to be in L?, we have:

THEOREM 4.2. Suppose Y is L'(P) smooth. Suppose D,Y(p) is strictly posi-
tive, a.s., for some l€ M% and k= |(DY) Y| » 1p < o for some p > 1.



MALLIAVIN CALCULUS 501

Then gp(y) = PLY € dyl/dy is in L?(dy) with

lgell, < (ke(l, )7,
where c(l, t) is the constant of (4.3).

PrOOF. By Theorem 4.1, Y has a density g, relative to @ with igoll <
c(l,t)/ED)Y. Thenif p~' + q‘1 =1,

Ja(3)gn(y) dy = E[1(Y)] = Eg[h(Y)R "]

< (EolhU(Y)])*(Eg[R])""

4 1/q
. < (fh"(y)gQ(y)dy) ' (E[R"1])"

1/q
< (he(t, )| [n(n ay) ",
and the result follows by the duality of L? and L9. O

Note that the bound on |gp||, depends on Y only through % and c(l, t).
Consequently, we have:

COROLLARY 4.3. Suppose Y,(n) are L'(P) smooth functionals of p with
Y, > Y in law. If for some l € #2%, each DY, (p) is strictly positive, and
supk < oo, where k,= (DY) Y1r-1p), then Y has a density g, and

lgpll, < (sup k,,)e(l, t))l_‘/"-
Proor. By (4.4), if A is continuous with compact support,
(4.5) En(Y) = lim ER(Y,) < ((supk,)e(L, ¢))' """ |iA],.
n—oo

A monotone class argument shows that (4.5) holds with 2 =1,, A Borel, from
which we conclude Y has a density g, which satisfies (4.4). The result is
immediate. O

The point of the corollary is that even if D,Y does not exist, one may still be
able to conclude that Y has a density in L.
Now suppose X, is the solution to

(48)  X= ['fo(Xys, 2)n = v)(dze,ds) + [B(X, ,5)ds,

where 6: R X R" XR —» R and b: R X R* — R. Then X, is a functional of g,
and we will obtain a criterion for X, to have a density. We want to emphasize
that we do rot need to perform a perturbatlon argument on X; it suffices to use a
slight extension of Theorems 4.1 and 4.2. This is quite unlike some of the other
approaches to the Malliavin calculus. We still have some technicalities to deal
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with: computing D,X and estimating (D,X )~ '. But in our approach, the techni-
calities are kept completely separate from the perturbation argument.

THEOREM 4.4. Suppose X, solves (4.6), where

(i) sup, ,|b(x, s)| and sup, |b(x,s)| are bounded;
(ii) sup, J|o(x, s, 2)| is in L¥(d2);
(iii) sup, ,lo(x, s, z)| is bounded and in L*(dz);
(iv) sup, ,lo,(x, s, 2)| is bounded and in LY(»), and o(x,s,z) <0 forall x, s,
and z; and
(v) for some z, > 0 and p, > 0,
(a) Squ,ssup|z|>zolox(x’ S, z)|<§and Supx, ssup|z|sz0‘0x(x’ S, z)/oz(x, S, 2)‘
is bounded with the convention that 0/0 = 0, and
(b) fOT' Z 22, infx, s(loz(x: S, Z)I + |Uz(x’ S, —Z)I) 2 eXp(_z/po)-

Then for p < p,+ 1, X, has a density in L?(dx) and the L? norm of the
density depends on X only through the constants of (i), (ii), (iii), (iv), and (v).

REMARK 1. Under the hypotheses of Theorem 4.4, the existence and unique-
ness of X follows by Skorokhod (1965, Chapter 3).

REMARK 2. As will be apparent from the proof (given in Section 6), we do not
need o, and b, to exist but only that o and b be uniformly Lipschitz in x.

REMARK 3. The hypotheses of Theorem 4.4 are reasonably weak. Conditions
such as (i), (ii), and (iii) are necessary just to guarantee uniqueness of the solution
to (4.6). In view of (iii), (v)(a) is a very minor restriction. Condition (v)(b) says
that at least one of o,(x, s, 2), 0,(x, s, —2) cannot be too small for z large.

REMARK 4. Of course, under (iv), ¢ is bounded, or X, has bounded jumps.
We could obtain a theorem to handle the unbounded jumps case by replacing the
first part of (iv) by

|z|sup |o,(x, s, 2)| isin L*(»)
x,s

and replacing the second part of (v)(b) by

o(x,s,2) | .
sup sup is bounded.

x,8 |z2|<zg

zo,(x,s, z)

5. Derivatives of processes. In this section let X, be the solution to (4.6),
and let X; be the solution to (4.6) with p replaced by u°. Let (D,X), be the
solution to

G [ [ Xoos 5, 2)(DX) - (1 = v)(d2, d5)
5.1
+ Ltbx(Xs_, s)(D,X),_ds+ fot/v(s, 2)o,(X,_, s, z)u(dz, ds).
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THEOREM 5.1. Suppose
(i) for all x,s, z,
2
(1 +|2))0,.(x, 8, 2)I, (1 + |2]) |o..(x, s, 2))],
(1 +|2])lo,.(x,5,2), and |o.(x,s,2)|

are all < M(z), where M(z) is a bounded deterministic function in L*(v).
(ii) sup, ,|b(x, s)|, sup, |b(x, s)|, sup, |b,.(x, s)| are bounded; and
(i) e A2

Then sup, _,e '| Xt — X, — & D,X),| = 0 in LP(P) for allp, ¢.
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REMARK 1. Under the assumptions of Theorem 5.1, the solution to (5.1) can
be shown to exist and be unique by the methods of Skorokhod (1965, Chapter 3)

or Jacod (1979, Chapter 14).

REMARK 2. Our equation for D,X, is equivalent to that of Bichteler and

Jacod if one adds and subtracts [;fo,0dy and then integrates by parts.

We first prove the following lemma.

LEMMA 5.2. Suppose h(s, z) is predictable and |h(s, z)| < K H(z), where
H is a deterministic bounded function that is in L*(v). Suppose Z,=

J&/h(s, 2)(p — Y)(dz, ds). Then, if p = 2", n > 1,
E(Z¥)" < c(p,t, H)/tE|Ks|P ds.
0

Proor. Forr>1,let
t
20 = [ [1(s,2)(n = 7)(de, ds).

By Burkholder’s inequality and (2.4),
E(z") < cEf’fhzr(s, 2)u(dz, ds) < cE/’fofﬂzf(z)u(dz) ds
(5.2) 0 . 0

< c(H)Ef K2" ds.

0

By Burkholder’s and Holder’s inequalities, if ¢ > 2,

B(#)" < (B [ [1s, (e, o))

(5.3) < c(q)E(Z&")"* + c(q)E(jO‘jhzr@, 2)v(dz) ds)q/2

< c(q)E(Z,(Z”*)Q/2 + ¢(q, H, t)Efth’qu.
0

Using (5.2) and (5.3), the result now follows by induction. O
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An immediate consequence is that if in addition to the hypotheses of Lemma
2.1, H € LY(»), then

e s g e

Esup

s<t

(5.4) +c(p)E(f0‘/|h(r, 2)|v(d2) dr)p‘

<c(p, H, t)Ef’K;’ dr.
0
We also note that by Holder,
S
f g(r)dr
0

We need the following real variable lemma.

(5.5) Esup

s<t

< o(p, OB [a()F ar

LeMMA 5.3. (i) If f* is bounded and in L*(v) and f(0) = 0, then f(2)/(1 + |z|)
is also bounded and in L*(v).

(i) If (1 + |z))*f(z) is bounded and in L*(v), then so are (1 + |z|)f"(z) and
f(2).

Proor. The proof of boundedness is clear. Suppose for the moment that f’
has compact support. Writing f %(z) = 2/¢f(y)f(y) dy, we have

'/(‘)°° f?(2) dz = 2/0°°fzf(y)f'(y) dydz

(1+z2)° o (1+2)°
e e H) ()
_2[) '/;; 1+ 2) dedy
o f(¥)f()
=2f0 (1+) ¢

= f3y) .\
<2||f’ d .
If nz(/0 T
Then ([¢°f %(2)/(Q + |2))2d2)/% < 2||f'|l, if f’ has compact support; a similar
argument for z < 0 and then a limit argument proves (i). The proof of (ii) is
similar, starting with (f/(2))? = 2/®f(y)f"(y)dy for z > 0. O

We are now ready to prove Theorem 5.1.

" PROOF OF THEOREM 5.1. First, we must show X,, X{, and (D,X), are all in
L?(P) for all p. We will do (D,X),, the others being similar. Note that
o(s, 2)o,(x, s,2) = (v(s, 2)/(1 + |z))1 + |z])e,(x, s, 2)) is bounded by Lemma
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5.3. Let Ty = inf{s: (D,X), = N}. For s < Ty, (D,X),_ < N, and hence inspec-
tion of (5.1) shows that the jump of (D,X), at time T, is bounded. Hence
(D,X)%, is bounded, a.s. By Lemma 5.2 applied to the first term on the right of
(5.1), (5. 5) applied to the second term, and (5.4) applied to the third, we have

tAT,
E(D,X)onr, <c(p,t) + c(p,t)Ef "M(p,x),_ [ ds

<e(p, 1) + e(p, 0) [E(DX) s, ds
An application of Gronwall’s lemma gives
E(D,X):%r, < c(p,t),

independent of N; letting N — oo shows (D, X)} € L?(P) by Fatou.
Next, if W = X7 — X,, we will show that if p is a power of 2, then

(5.6)

(5.7) (W)™ = 0().
We have

fo/[o(xs ,8,2) —o(X, ,s,2)] d(p-7)
(58) +'/(;/[0(Xsf_, s, z)] d(‘u,s _ “)

+[‘[b(X;_,s) - b(X,_,s)] ds.
0
Since |b(X?_, s) — b(X,_, s)| < c(]|b,|)W,_, then by (5.5),
t £* 2p
(5.9) (/ [b(X:,s) - b(X,_,s)] ds) < chE(Ws )?P ds.

. Since |6(X{_,s,2) — o(X,_, s, 2)| < M(2)W;_, then by Lemma 5.2,
*2p

(5.10) E(/‘/[o(xg_, s,2) —o(X, ,s,2)] d(u— 7)) < cj’E(w;*)”ds.
0 0
Note that if |el(s, z)| < 5 and z > 0,
¢ Yo(x,s,z+ev(s, z)) —o(x,s, 2)]

<|v(s, z)| sup |o(x,s, )]
(5.11) y>2/2

< 2]0(3, z2)(1+ z)_1| 1+ z/2)/22|ozz(x, s, y)Idyl,

with a similar inequality for z < 0. Then by Lemma 5.3, the left-hand side of
(5.11) is bounded and in L?(v) with bounds independent of &. By the definition of

[T

'/(‘)tf[U(X:_, s,2)] d(p* — )

= fotf[o(X;_, s,z +ev(s, 2)) —o(X,_,s,z)| du,



506 R. F. BASS AND M. CRANSTON

and so by (5.4),

. *2p
(5.12) E(f f[o(Xs‘_, s,2)] d(ps - ,u)) < ce?P.
0
Adding (5.9), (5.10), and (5.12) gives
(5.13) E(WS)™ < e + ¢ ['B(W)™ ds,
0

and Gronwall applied to (5.13) yields (5.7).
Finally, let
Y = X; - X, - «(D,X),,
and we will show that if p is a power of 2,
(5.14) E(Y?")? = O(&?P).
From the definition of Y},

Y, = Ltf[O(X:_’ s,z)—o(X, ,s,2) —eo(X,_,s,2)D,X,_| d(p—7)

(5.15) + f()tf[o(Xs‘_, s,z +ev(s, 2)) —o(Xt,s, 2)
—e0(X,_,s,2)o(s, 2)] du
+f0‘[b(X;_, s) — b(X, ,s) — eb(X, ,s)D,X,_] ds.
By Taylor’s theorem,
lo(X:,s,2) —o(X,_,s,2) — ea(X,_,s,2) DX, |
< M(2)IY | + M(2) (W)
and
6(X:,s) = b(X,_,s) — eb(X,_,s) DX, | < cl¥e |+ e(Wr)"

Then as in (5.9) and (5.10),

E(/Otf[o(X;_,s, z)—o(X,_,s,2)

*D
—on(Xs_, S, Z) Dle—] d(”’ - Y))

(5.16)
< e [[B) + E(W )] s
< ce?? + chtE(Y;*)"ds
and
E([[b(X:,s) - b(X,_,s) - eb(X, ,s) DX, ]|
o) ([1o(xss) ) - ebi( )

< ce?? + cftE(Y;*)p ds.
0
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Since
lo(X:,s,z+ev(s,2)) —o(X:,s,2) —eo(X,_,s,2)v(s,2)|

< elo(s, 2)||o(Xs,s,2) — 0(X,_,s,2)| + e%*(s, z)sup|a,,(x, s, 2) |

X, s
elv(s, z)|
< — 1+ , S, We
Tz (L leDsuplo(x 5, 2) W)
CO82) e suplon(x s 2)|
+ —— (1 +|z|) sup|o,.(x,s, 2)]|,
1+ |2)* P

by (5.7) and Lemma 5.3, we have

E([)tf[o(X;_,s, z+ev(s,z)) —o(X:,s,2)

*P
(5.18) —e0,(X,_,s,2)v(s, 2)] dp.)
2 t p
< ce*P + cepr(VV;) ds
0
< ce®P.

Adding (5.16), (5.17), and (5.18) yields
E(YS) < e + ¢ [ E[Y"]" ds,
0

which with Gronwall gives (5.14). O

REMARK. If |{(s, z)| is bounded above by a bounded deterministic function
in LY(v), we could let v(s, z) = % _I(s, ¥) dy as in the remark following Lemma
3.5. The estimates are easier in this case.

6. Estimates of derivatives. In this section we obtain estimates of (D, X )},
and then prove Theorem 4.4. First we need a lemma.
Suppose

(6.1) a=[ “h(2)u(dz, ds),

where h(z) is a bounded nonnegative deterministic function in LY(»). A, is a
subordinator (nonincreasing Lévy process), and recall that if n(dx) is its Lévy
measure,

(6.2) Eexp(—KA,) = exp(t[)w(e_Kx - l)n(dx))

;LEMMA 6.1. Suppose A, is given by (6.1) and h(z) = exp(—z/p,) for z = z,.
Then for p < p,,

”AI_IML”(P) <c(p, h, po, 25) < 0.
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PROOF. Let us first estimate the Lévy measure n(dx) of A,. If f € C? with
compact support,

Ef(A,) - f(0) = EX [f(A,) - f(A, )]

s<t

= B[ ["1#(A,- + h(=)) ~ (A, )] (dz, ds).
=E['["1#(A,-+ h(2)) - 1(4,.)] dzds.

Dividing by ¢ and letting ¢ — 0 gives
(63)  Lf(0) = ["11(x) = (0)]n(dz) = [“[{(A(2)) - f(O)] d&,

where L is the infinitesimal generator of A,. By a limit argument, (6.3) holds for
f(x) =1, (%), and so given & > 0 and u, sufficiently small, then

64 nlu,00) = [“1,u(A(2)) de = [ 11y, (h(2)) de = ~polnu - 2,
> —po(l—¢e)lnu, u<u,.

Next we estimate P(A; ! > \). Using (6.2) and integration by parts,
P(A['> M) = P(e K4 > ¢ KT
< eKN ' Eo- KA
< exp(K)C1 + fuo(e‘K" - l)n(dx))
0

(6.5) < exp(K)\_1 + nlu,, ) — Kfuon[x, oo)e‘dex)
0

< c(uy, h)exp(K)\“ + Kpo(1 - e)fuoe"“ln xdx)
0

< c(uy, h)exp(K)C1 — po(1 = ¢)’In K),

provided K sufficiently large If we now take & small so that p,(1 — €)% > p, if we
let K = A, and if we multiply (6.5) by A?~! and then integrate from 0 to oo, we
get our result. O

We now proceed to the proof of Theorem 4.4.

Proor or THEOREM 4.4. Let us suppose for the time being that o and b
satisfy the hypotheses of Theorem 5.1 as well as those of Theorem 4.4.
.Define a function 6 by ’

(6.6) 6(x,s,2) = (—ox(x, 8,2) = 31 o 1 (0%, 5, 2)).

Note ¢ + o, > — 3, |6]| < |o,|, and sup, ,|6(x, s, 2)/0,(%, 5, 2)| is bounded, by N,
say, with support [ -z, z,] by condition (v)(a). Let m(z) be a bounded negative
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C! function such that |m/(z)| < (1 + 2%)"! and m(— ) = 0. Let u(z) be a
C' function such that u(—o) =0, |u’(2)|<1 for all 2z, u’ is supported on
[-2N - z,, —2,], and

(6.7) —-2N<u(z) < -N1_, ,4(2)

for all z.
Let Z, be the (unique) solution to the stochastic differential equation

2= [ ol X, 5,2)2, (k= v)(dz, ds) + [(b(X,,5)Z, ds
(6.8) +j:foz(Xs_,s,z)u(z)Zs_pL(dz,ds)

+ [ ol X5, 2)m(2)m(dz, ds).

By arguments analogous to those of the first part of the proof of Theorem 5.1,
Z} € L?(P) and

(6.9) EZx? < ¢(p,o,b),

where c¢( p, o, b) depends on the bounds on ¢ and b imposed by the hypotheses
of Theorem 4.4 but not on those imposed by Theorem 5.1. Let

(6.10) I(s,z) =u(2)Z,_ + m'(z2).
If we define L, by
t
(6.11) L= [ [uls, 2)(n = v)(dz, ds),
0
we have
t
(6.12) EL} = E['[1%(s, 2) dzds < 2tNEZ* + t[m?(2) dz.
0

Let Z{™ = sgn(Z,)(|Z,| A n), and note that E(Z, — Z{”)*? > 0 as n — co.
Let
L(s,2z) =u(2)Z"+ m'(z2),
let

(6.13) L = [*[1(s, 2)(k = v)(dz, ds),

and note that E(L, — L{™)*?> > 0 as n - oo.
By (5.1), (6.10), and the remark following the proof of Theorem 5.1,

= [ fed X5, 2)(DX), (k= v)(dz, ds)

+/bx(Xs_,s)(Dln ),. ds

(6.14)
+ff (X,_, s, 2)u(2)Z{"pu(dz, ds)

+ [ fm(2)o X, 5, 2)u(de, do).
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Subtracting (6.14) from (6.8) and using Burkholder’s and Holder’s inequalities
and Gronwall’s lemma as in Section 5,
E(z,- (D, X)) < cE(Z,- z\™)",

which tends to 0 as n — 0.

Let G(p) = h(X,), where h is C? with compact support. As in the proof of
Theorem 4.1, h(X,) is L'(P) smooth since X, is. Applying Theorem 3.4 and the
remark following Lemma 3.5 with [,, we get

E[r(X,)L"] = -E[r(X,)(D,X) ],
and letting n — oo gives
(6.15) E[h(Xz)Lt] =k [h/(Xt)Zt] :
We next estimate Z; . Since Z, solves
Zt = /tZs~ sz + }Is’
0
where

H = ['[o(X, s 2)m(2)u(dz, ds)

and

K= ['fod X, s, 2)(n = v)(dz,ds) + ['(X,s)ds

+ [ ol X,y 5, 2)ul2)n(dz, ds),
then by (2.6),
(6.16) Z,= @@(K),f‘(l +AK,) '¢(K). dH,.
0

Since uo, + 0, >6 +0,> — 5, then1 + AK_ > | for all s, and so &(K),> 0
for all s, a.s. This implies, since 0,(X,_, s, 2)m(z) > 0 and hence all the jumps of
H, are positive, that Z, > 0.

Now let us examine &(K),. Since the jumps of K, are bounded above
and bounded below by — i, since In(l + x) <x for x > J, and since
In(1 + x) — x| < x2/2 for |x| < 1, we see that both &(K), and &(K);' are
bounded by exp( K *)exp(c[ K, K],) for all ¢. An application of Cauchy-Schwarz
and Lemma 2.1 then shows that &(K ) and (&(K ), ')* are both in L9 P) for all
qg.

It is now easy to show Z; ! € L?(P) for p < p,, and in particular, Z, > 0, a.s.
Since (1 + AK,) '¢(K).;!= &(K); ", we have

Z,zé’(K),( infé’(K)s'l)H,
s<t

or

(6.17) Z7'<&(K), '€(K)}IH, "
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If p <p, and ¢ is sufficiently small, o,(x, s, 2)m(2z) + o (x, s, —z)m(—z) >
exp(—z/py 1 — ¢)) for z > 2z, and so H, > A,, where A, is defined by (6.1). By
Lemma 6.1, ||H; Y1spy <147 lopy < 0. It follows by (6.17) that for all
D <Py, Z;' € LP(P). Moreover, tracing through the estimates shows that the
LP?(P) norm depends on o and b only through the hypotheses of Theorem 4.4,
not those of Theorem 5.1. )

That X, has a density in L?*(dx) for p < p, now follows by the proofs of
Theorems 4.1 and 4.2, the L? bound on Z; ', (6.15), (6.12), and (6.9).

Finally, if 0 and b do not satisfy the hypotheses of Theorem 5.1, let o, and b,
be smooth approximations that do. If X{¥ is the solution to (4.6) with ¢ and b
replaced by o; and b;, then arguments using the methods of Section 5 show that
E(X® - X,)*? > 0, and in particular, XV > X, in law. Then just as in the
proof of Corollary 4.3, we can conclude X, has a density in L?*'(dx) for p < p,.

O

REMARK. The proof for the case when X, has unbounded jumps (see Remark
4 following the statement of Theorem 4.4) is essentially the same, except that one
chooses u’ so that u(z) < —N|z|on [ -z, z,], u(0) = 0.

7. Higher derivatives. If Y is a functional of {u,s < ¢}, then further
smoothness of Y will imply that Y has a density that is bounded and even
Hélder continuous.

Ifle #%,let DY = D(D,Y), and let
(7.1) S, =L(DY)™" + (DIY)(DY)™?
where L, is defined by (3.2).

THEOREM 7.1. Suppose Y and D,Y are L'(P) smooth for all l € #%. Sup-

- pose there exists | € M2 such that D,Y > 0, a.s. Then if S, € L(P), Y has a

bounded density. If S, € LP(P), p > 1, Y has a density in C'~VP(R) (Hélder
continuous of order 1 — 1/p).

PROOF. Let A be in C? with compact support, and let ¥,(x) be smooth
approximations to |x|~! with ¢ ,, ¢/, tending monotonically to x ~!, —x ~2, respec-
tively, for x > 0.

If G, (p) = (Y)Y, (D)Y), then

DG,(n) = K(Y)(DY)¥(DY) + h(Y)¥,(DY)(D}Y).
If we now apply Theorem 3.4 to G,(n) and let n — co, then monotone conver-
gence gives )
(7.2) Er(Y) = E[h(Y)S,].
If S, € L'(P), we then get
|ER(Y)| < ISl oyl 2l

and proceeding as in the proof of Theorem 4.1, we see Y has a density g that is
bounded by ||S,|| . p)-
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If S, e LP(P)forp>1land 1/p + 1/q = 1, then

/W) 0| =1 EWE)| < UMD el

75) = Wil [P 0)8 () )

= ISyl Lrcpy &I I 2ol -

This implies that g has a weak derivative in LP(dy). If g were actually
differentiable, then by Holder,

<11g'llply — x1'/9.

&(5) — 8(x)| =| [(g/(x) du

But an easy argument involving approximation of g by differentiable functions
then shows that in any case g is Holder of index 1/q. O

To get the existence of g’, still higher derivatives are needed. For example,

replacing h by A’ in (7.2),
En"(Y) = E[n(Y)S,]
(7.4) -1 -1
= E[D(n(Y)S(DY)™")| - E[n(Y)D,(S,(DY) )]

Using Theorem 3.4 again with (a suitable approximation to) G(p) =
h(Y)S(D,Y)™,
Er"(Y) = E[n(Y)S(DY) 'L,] - E[n(Y)D,(S,(D,Y) ")

where S, = S(D,Y) 'L, — D(S(D,Y)™ 1.

If S, € L(P), (7.5) yields |[ER"(Y)| < ||S,|| p(p)ll2ll, from which it is not hard
to show that g’ exists and is bounded. We can repeat the procedure: replace 2 by
A’ in (7.5), etc., to get bounds on g”, g’”, etc.

When the functional Y being considered is X;, where X, solves (4.6) (for
simplicity we take b = 0), one can show as in Section 5 that D?X satisfies

(DEX), ff[ X, ,s,2)(DX),_+ o(X,_,s,2)(DiX),_]
X(p = v)(dz, ds)
+fotf[2ozx(Xs_,s,z)(D,X)s_v(s,z) |

+0,(X,_,s,2)0%(s, z) + o,(s, 2)Do(s, 2)| p(dz, ds)

under appropriate hypotheses on o, and one can obtain similar equations
for D}X, D}X, etc. Note that (D,L), = [,[/Di(s, z)(p — yXdz, ds) +
J¢fol (s, z)u(dz, ds). If (D,X);* € LP(P) for all p and if we have suitable
bounds on D?X, D}X, an examination of S, shows that S, is in L'(P), and hence

(7.5)

(7.6)
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X, has a differentiable density. Repeating the argument shows that if o is C*
with suitable bounds on the derivatives and (D,X); ' € L?(P) for all p, then X,
has a C* density.

8. Local times. For the remainder of the paper we consider the existence of
local times for purely discontinuous martingales. We consider X, satisfying

(8.1) X, =x,+ fo‘/o(s,z)(u(dz,ds) — dzds),

where p is the random measure associated to a Poisson point process whose
characteristic measure is Lebesgue measure. Here o is predictable and o(s, 2) €
Z,_. Occasionally we will write o(X, s, 2) to emphasize that ¢ is a functional of
the past of X. We will often write D, X * for (D,X)}, D,X,, , for (D,X),, ,where
p is a stopping time, d,D,a(s, z) for (d,(D,0))(s, 2), D,0,(s, 2) for (Dy(s,))s, 2),
and D} for D(D,).

We will assume the following about o:

(8.2)(a) (Monotonicity) zo,,(s, z) > 0 for all s, z;

(8.2)(b) (Smoothness) for each [ € #2
@) o, (1 + |z|)0,, D,0, and D?s are L'( P) smooth,

(ii) there is a bounded deterministic function M(z) € L?(dz) such that
for each z, o, (1 + |2|)0,, Do, Do, (1 + |2))3,D,0, and (1 + |z|)D,o,
are Lipschitz as functionals of X with Lipschitz constant M(z),
uniformly in s,

(ili) o,, D,o, D,o,, and Djo are twice continuously differentiable in z,
uniformly in s and X;

(8.2)(c) (Boundedness) there is a bounded deterministic function H(z) € L?(dz)
such that for all [, m € #2
(1) (@ + |2)?|e,(s, 2)| < H(2) for all s, 2,
(ii) [Dyo(s, 2)| + (1 + 2113, D,o(s, 2)] + |Dyo (s, 2)) < H(2)D, X for
all s, 2,
(iii) |Dfo(s, z)| < H(z)[D}X* +(D,X*)?] for all s, z,
(iv) |Dyo(s, 2) — D,o(s, 2)| < H(z)(D,X — D, X)*_for all s, 2.

REMARK. The conditions (b)(i) and (b)(iii) are the critical ones. As the
example below shows, the other conditions are natural ones.

Let us say that o is e-stable of index between a_ and a™ if there exist z,, a,,
a;, and a_ < ay < a; < ag + € < a* such that

(8.3) eylz| Va2 S|ozz(s’ Z)l < cylz| V02

for |z| > z,.

The reason for the name is that if X, is a symmetric stable process of index a,
then (s, z) = c(sgn z)|z|”/* (cf. (10.8)). Let us say that ¢ is locally e-stable of
index between a_ and a* if there exist an increasing sequence of stopping times
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T. - oo, T, = 0 such that o(s, z) is e-stable of index between a_ and a* for

13

T, <s<T,, i=0,1,2,.... Our main result is:

THEOREM 8.1. Suppose for some 1 < a_ < at <2, o is locally e-stable of
index between a_ and a* and satisfies (8.2). Then X, has a local time that is
Jjointly continuous in t and x and that is an occupation time density.

REMARK. The hypotheses of Theorem 8.1 are stronger than necessary. For
example, the near symmetry that (8.3) imposes on ¢ can be avoided. Additionally,
one does not need D?s to be L'(P) smooth. See the results of Section 12.

ExaMPLE. Consider a Markov process with weak infinitesimal generator
Af(x) = a(o) [ 1 +9) = ()]0 a.
i<

Then X, can be thought of as a process that behaves like a symmetric stable
process of index a(x) whenever X, is at x, except that we have removed all jumps
larger than 1 in absolute value. (If one wanted a different constant in front in
place of a(x), one could achieve this by a time change and the results of Bass
(1984, Section 6).)

It has been known for a long time that when a(x) = a is constant, X, will
have a local time if and only if 2 > a > 1. If a(x) is not constant and we do
not require continuity of a(x), then X, need not have a local time, even
when inf a(x) > 1 (see Bass (1984, Section 8)). Theorem 8.1 says that if
2 > sup,a(x) > inf a(x) > 1 and o(x) is C? in x (actually C? will do by Section
12), then X, will have a local time. To see this, first check (cf. the calculation of
(10.8)) that X, satisfies (8.1) with o(s, z) = w(X,_, z), where

w(x, z) = (sgn 2)|2z|”/*®, 2| 2 1,
’ 0, |z] < 1.

Of course, w is not smooth in z for |z| = 1, but the techniques of Bass (1984,
Section 6) allow one to show that X, will have a local time if and only if X does,
where X satisfies (8.1) with o(s z) = ( Xs , 2), W a smooth approximation to w
(see also Sectlon 12). If a(x) is C?,
D ow X DX
IO(S,Z) - 3.7(5( s—’z) 1“2s—>
1w ow
Djo(s,z) = —— (X,., 2)(D,X, )" + ——(X,_, 2)(D}X,_),
dx ox
and it is now easy to check that (8.2) is satisfied. If we fix ¢ and let T, = 0,
; Ti+1=inf{t> Ti:|a(X,)—a(XTI)|>s},

then T; = oo and o is locally e-stable. Hence Theorem 8.1 applies.
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9. Densities of potentials. We will suppose throughout this section and
Sections 10 and 11 that X, is given by (8.1), o satisfies (8.2), and moreover, there
exist a,, o, d,, d, such that

(9.1)  dy(Jz2I7V* "2 A1) <o,,(s,2)| < dy(|2|7V* 2 A1) forall z
and
(9.2) (af'+ 1)(2a7 ' —agt + 1) > (2a5" + 1)ag ™.

Since 1 < a, < a;, (9.2) will hold provided «, is sufficiently close to a,.
A consequence of (9.1) is that

622(8’ z) —14a; ' —a!
. + 1 )
(9:3) o) | S (1 +|2)
Let I(s, z) = —sgn(z)(; A |2|”"?[In|2||7"), let o(s, 2) = [§U(s, ¥) dy, and let
t
(9.4) L= j fz(s, 2)(u(dz, ds) — dzds).
0
Note that if 1 < p’ < 2,
(9-5) Lol Lrepy < N Lell 2Py < ct'/?

since by (2.4),
EL? = E [ [1%s, 2) dzds < ct.
= E[ [1Gs,2)
Note also that o(s, z) < 0 for all s and z.
By virtue of (8.2) and the fact that v is deterministic, one can show exactly as

in Section 5, that D, X and D?X satisfy

D)X, = /O’/Dlo(s,z)(,‘(dz,ds) — dzds)

(9.6)
+ fotfoz(s, z)o(s, z)u(dz, ds)
and
DiX, = [ [Dfa(s, 2)((dz, ds) - dzds)
(9.7) + fotf[(aleo(s, z) + Dyo,(s, z))o(s, 2)

+a,,(s, 2)02‘(3, z)]p(dz, ds).

Moreover, D, X* and D}X* are in LP(P) for all p.

Let ©,, ©, be iid random variables which are independent of o(X,;0 < ¢ < o)
and which have a C! density whose support is [1,2]. Let F' be the distribution
function of ©,, ®,. We will need the following lemma.
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LEMmMA 9.1. If R and H are independent of ©; and R is integrable, then
E[RI(HZQ)] — E[RF(H)].
PrOOF. Since 0, has a continuous distribution and hence F is continuous, it

suffices by dominated convergence to consider H discrete taking on the values
h,, hg,..., h, Then

[ n
E[Rl(Hzel)] =E|E|RY Ln-nylin,=o0,)H, R}

J=1

-E REI(H=hj)E[1(h12@l,|H, R]]
L J

=E {RZ Lig—n) F( hj)] (by independence)
J

= EtRF(H)]. O

Choose 1 < B, < B, < By < B, < 2 so that
Bu<sz+arl, By>;+agh
and
(9.8) Bi(2B,— B, + 3) > B(2B,— 1).

This is possible by (9.2). In what follows, the various constants that appear can
be seen to depend on the process X, only through the constants 8;, 8;, 8., By,
d,, and d,, and the function H(z).

Let
. Dle
= ;rlfz{ shu }’
(9.9) h
DX, \* DX,
K, = = sup .
t ( th ) s<t{ sh }

Since J, and K, are not L'(P) smooth, we need to approximate them by
quantities J™ ", K{™" which are L( P) smooth.

Let 1,(s, 2) = (s, 2)1{, 4(5), and define D, X,, Der, by the equations (9.6)
and (9.7) with [ replaced by [,. Again, for each r and for all p, D, X}*, Dert* IS
L?(P). Define v, by v,(s, 2) = 0v(s, 2)1, . ($)-

Fix r > 0 and let

(r) DX\
K‘ = th )
For each m,let A, ,(x,...,%,)beasmooth approximation to max(xy,..., x,,)

such that
A (%5000, x,) = max(x,,...,x,)
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as k — o0, and for each &,

’

|Am,k(x1:""xm) - Am,k(yl7"’7 ym)l =< 2L.=Ilnaxm|xi - yil'

Now let

K= A Dl,Xt/m DI,XZt/m Dl,Xt
t T mky B’ ) B2ttt B )7
(t/m)™ " (2t/m)

where k,, is chosen tending to co fast enough so that K{™" — K" as. as
m — .

Similarly, let =, , be a smooth approximation to min(x,,..., x,), let
(nr) _ = DX, D, X,
‘Jt = ='n, k B, B )
"\ (¢/n)™ £

but this time choose &, — oo fast enough so that J(™? — J, a.s. as n = co.
Note that each of J{™" and K{™" is L'(P) smooth since D,X, and D, X,

are.
The principal technical estimates and results we need are given by the

following three propositions.

PROPOSITION 9.2. There exist positive constants { < 1, 8, t,, and c indepen-
dent of r such that if t < ¢,

E[|DEX,"*% KD < 2] < et
PROPOSITION 9.3. There exist positive constants t,, 1, ¢, and c(a), indepen-
dent of r such that if t < t,,
P[dJ,<2] <ct"
and
P[K{ > a] < c(a)t™.

PROPOSITION 94. As r— 0, E(D,X,— D, X)** >0 and K{" > K, in
probability.

We defer the proofs of these three propositions until Section 10 in order not to

interrupt the main argument.
The use of the Malliavin calculus comes in the proof of the next proposition.

PROPOSITION 9.5. If h € C? has compact support, then
Y .

‘E[h,(Xt)l(Jtze,, K,<®2)] < et ¥ h(X,) | Locp)

for positive constants p > 2, £ < 1, independent of h.
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PROOF. Let g,(x)bea C? function on R such that g,(x) = |x|~! if |x| > ¢ A,
llg.ll < 2¢~P«, and ||g}|| < ct~?P«. Define the functional G, ,, ,(n) by

(910) G, (1) = A(X,)8(D,X,)F(JD)(1 - F(K{mn)).

Ap) is L'(P) smooth since D, X,, J™ ", and K™ " are L'(P) smooth. We
apply (3.8) to G, ,, (1), and let m — oo, then r— 0 and finally n — c0. Then
writing L{" = Il (s, z)(p(dz, ds) — dzds) and using (3.8) we have

Il(n’ m, r) = E[Gn m, r(p‘)L(r)]

= —E[h(X)Dl tgt( ) (Jt(n’r))(l—F(Kt('"")))]
—E[h(X,)g/(D,X,) DX, F(J")(1 - F(K{™))]
(9.11)
~E[r(X,)8(D,X) (I ") DI (1 - F(K{™ )]

+E[R(X)g (DX, )F(J" ") f(K (™) DK™ "]
=IL(n,m,r) + L(n,m,r) + I(n,m,r) + I;(n,m, r).
Using the bounds on g, and F,
[I(n, m, r)| < et PE[|h(X,) | L{]
R X) ool Ll ey (P71 40771 =1)
R(X,)||Lopy (by analogfor L{” of (9.5)).

Recalling that J ™9 — J,, first let m — oo, then r — 0, then n - o to
obtain

I(n,m,r) - —E|W(X,)D,X,g(D,X,)F(J,)(1 — F(K,))] (Proposition9.4)
= -k [h'( X,) Dltht(DlXt)l(J,zO,,K,<62)] (Lemma 9.1)

< ct™hu

< Ctl/z_ ﬁu

Il

-E [h’( X150, k< 92)] (definition of J, and g,).
Recalling that 1 — F(K(") = 0if K" > 2,
| I(n, m, r)| = |E[n(X,)g:(D,X,) DX, F(J"")(1 - F(K("))]|
< | A(X) ot~ B[(D2x )" KO < 2]) "
(p~t+pt=1)
< | A(X,) || Lopyt* (Proposition 9.2)

as m — oo, provided p is sufficiently large.
By: the definitions of D, X, and D}X,, D{X,=0 if ¢t <r. By the Lipschitz
bound on A, ,, we get

(9.12) ID, K™ < 2(DEX,/tP)* < 2r P DEX ¥,
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which is in LP(P) for all p. Also,
E[(Dpx,/e%)*) K < 2

=] p
[( sup |D12rXs|/sBu) ; KD < 2]

t2- (D cs<t2n

IA
1 ™
o]

(9.13) -
<c ¥ 42 brE|(DiXg0)" Kpn < 2]

< ct@=PB.~%  (Proposition 9.2),
since (2 — p’)B, — ¢ > 0, provided p’ is sufficiently close to 1. We also get
D, J(™ 7| < 2(DEX,/t%)* < o DEX,/tPe)",

which is in LP(P) for all p, the same way.
Then, provided p is sufficiently large, as m — oo,

|L(n, m, r)| > |E[R(X,)gD,X,)f (I ") D™ "(1 - F(K{))]
, U
< el (B[ (D209 K2 27
< c|A(X) ot~ (by (9.13)).
Finally,
I5(n’ m, r)
019) = E[(X)8(DX)F(Im ) F(Km) ~ 1(K()) DK )]
+E[(X)ed DX)F(I ") f(K() DK "],

" By (9.12) and dominated convergence, the first term on the right of (9.14) tends
to 0 as m tends to co. Since f/(K{”) = 0 if K{” > 2, we then get

limsup |I,(n, m, )| < c|h(X,) ||L,,(,,)t-ﬂu(E[((D,fx,/tﬁu)*)"'; K" < 2])

m-— o0
<c| h(Xt)"LP(P)t_s (by (9.13))
Proposition 9.5 follows by substituting into (9.11). O

1/p

We are now ready to prove the main result of this section.
Let S, be the measure defined on Borel subsets of R by

8\(A)=E[ “e 1 ,(X,) dt.
A :

THEOREM 9.6. The measure S, is absolutely continuous with respect to
Lebesgue measure. The density s, satisfies

(@) lIsill < e\, and
(D) |s\(y) — sx(x)| < c|y — x|* for some constant k > 0.
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ProoF. The proof follows closely that of the analogous proposition in Bass
(1983). Let

T, =inf{¢: J,<O,0r K, > 0,} A 1.
By Proposition 9.3 with @ = 1 and r = 0, it is easy to see that for some y < 1,
(9.15) Eexp(—AT)) <,

provided A is sufficiently large.
If we integrate the result of Proposition 9.5, we get

T‘ —Atp 1 —Atp—¢
(9.16) E["e (X)) dt| < cf'e M R(X) o,

< AT Ay

Now let ©{”, 0" be iid random variables with the same distribution as
©,, ®,, and independent of X,. Given T;, define X" = X, ,, define Ji(i), K (i)
analogously to J,, K,, and then define

T.,, = inf{t > T: J(i) < OP or K,(i) > @é”} A(T; +1).

If Q) is a regular conditional probability distribution (r.c.p.d.) for
E[-|Zr,0,,0,], it is not hard to see that ( X", Q') satisfies the same hypothe-
ses as (X,, P), with the same constants (cf. Bass (1984)). Propositions 9.3 and 9.5
then give us the analogs of (9.15) and (9.16) with T, replaced by T,, E replaced
by @'V, and X, replaced by X{". We then have

Ee ™\ = E[eME[e N TV 7., 0,,6,]]
- E[e‘”lQ‘o})[e*NTfTﬂ]]
< yEe

< v2.

(9.17)

Defining @'” by induction, we get, as in (9.17), that Ee *"» < y” — 0. Hence
T, — oo. Moreover,

lEsze*“h’( X,) dti < iEfT'e‘“h’( X,) dt[
0 0

e T

+E

Qg)fn"TleAxth,(Xt(l)) dt”

0
< N R+ AT Ay,
By induction,

lEfT"e—“h'(Xt)dti AR+ y+ o HyrY) < e N A/ - ),
0
and by dominated convergence,

(9.18)

E[“e MR(X,) dt| < A A)
0
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Using a limiting argument, (9.18) holds with A’(x) = 14(x), A(—c0) = 0, and
||A]| is the Lebesgue measure of A, where A is a Borel set with compact support.
The proof of (a) is now immediate.

Note by (9.16) that, provided ¢’ is small enough so that ¢’¢ <1 and ¢! +
g’ ' =1, then

l/p

‘Ef ! ‘”h(X)dt‘<cf e Elh(X,)[") " d

/D
< c(Efle‘”t‘ﬂh(Xt) I” dt)
0
(Holder’s inequality with the measure e ¢ dt)
1/pq’ 1/pq
< c(flt—fq’ dt) (E/we—“|h(X,)|”" dt)
0 0

< c(/|h(x)|pqs)\(x) dx)l/pq

< oAl pg-

(9.19)

In exactly the same manner as (9.17) was derived from (9.16), from (9.19) we
derive

(9.20) ‘E /0 “eMp/(X,) dt} < ¢l pq-
If s} existed and was continuous, we would get

f s{(x)h(x) dx

and hence that ||s{||,. < ¢, where r’~! + (pg)~' = 1. This would imply

(9:21) [si(3) = si(x)| = [lsi(2)]dz < ely = 2/

- fs)\(x)h’(x)dx‘ < cllAllpg

Now s, need not be differentiable, but an easy argument approximating s, by C'
functions shows that (9.21) still holds, and (b) follows. O

10. Estimates. In this section we prove Propositions 9.2, 9.3, and 9.4. The
assumptions and definitions of Section 9 remain in force.

PROOF OF PROPOSITION 9.2. Fix r > 0 and set T' = [K{" < 2]. Choose y so
that B8,/B,>v > (2B, —1)/(2B,— B, + 3); this is poss1b1e by (9.8). Recall
0,8, 2) = (8, 2)1[, \(8)- Let M. = t77 and let m(s, 2) = (s, 2)1[ 4 ,(|2]). Let
LU(S 2) .[Om(s7 y)dy

Our first goal is to show that for w € T, D, X, = D;x, and D2 X, = D/X,.
Suppose then that w € T and ¢ < ¢, for ¢, suﬁ‘imently small dependmg only on
Bl? :Bu’ d]y Y and H
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Since D, X* < 2t#, sup, _,|AD, X,| < 4t#.. By (9.6),

ADX, = [[Dyo(s,2) + o.(s, 210,05, 2)] (e, (5})|

and by (8.2)(c)(ii),
|D,o(s, z)| < H(z)D,X} < 2| H||t%;

s— =

so we have

[o(s, 2)uls, 2)u(dz, (s)) < (4 + 21 H|)e"
for s < t. On the other hand, for |z| < M, and for r < s < ¢,
0.(s,2)v(s, 2) = dy(l2] P« A 1) > dytgfe > (4 + 2| H|))ef!
by the choice of y and (9.1). Hence, on T, u((—M, M] X [r, t,]) =0, and so
D, X,=D,X, and Dert =D, X, for t < ¢,.
Now let
p = inf{t: |D, X, > 2tF}.
On T, p > t,. Note that

|AD, X, ., < sup |D,o(t A p,z) +o(tAp,z)v(tAp,z)
lz|I=M

(10.1) < sup |H(2)||D, XX, |+ cM P
|z2|=cM

< cthr,
We can write D2 X, as

D2X,,,= ["*[  Dio(s,2)(n(dz, ds) - dzds)
0

lz|l=M
+ [ [1.D,0(5,2) + Dyo(s,2)]
(10.2) Xw(s, z)(p(dz, ds) — dzds)
+‘/(')t/\pf[aszo(s, z) + D,o,(s, z)] w(s, z) dzds

+fMpf 0,.(s, 2)vi(s, z)u(dz, ds).
0 Yzi=M
By (9.3), the last term of (10.2) is bounded in absolute value by
CM—1/2+B.,—ﬂszpf o(s, z)v(s, z)u(dz, ds)
0 Yz=M

< CM—1/2+Bu_BI|Dth/\ pl

['[ Duols,2)(n(dz, ds) ~ dzdis).

|z2|=M

+ceM V2B B
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Then by (2.4) and Holder, we have

2 tAp 9 2
E(D2x2,) ScEj; [ZIZM(Dma(s,z)) d ds
+CEftApf[32Dma(s’ 2) + DMOZ(S, Z)]2w2(s, z) dZdS
0

(10.3) +0EftApf[32Dm0(s, z) + D,o.(s, 2)|"w*(s, z) dzds
+cM 2B BE(D, X, )

M1+ 2B~ Bz)Eff (D,o(s, 2))2 dzds
|z|>M

=L+L+L+1,+1I.
By (8.2)(c)(iii), if s < p,
|D2s(s, 2)| < (CD2X3*/\p + ctzﬂ’)H(z),
and so

t/\p

I, < cEf (D2xx,,) ds + ct.

By (8.2)(c)(ii),
1+ |2|)(|82Dma(s, z)| +|D,0,(s, 2)|) < cH(z)s*

if s < p, so

I, < cM™ ff H¥(2)s2Pidzds < ct?Pr+1+Y,

|z|=M

The term I, is identical to I,.
We have |D, X, , | <|D,X,.,-| +|AD,X,, |, and so by (10.1)

I, < M—1+2(B.,—Bz)(ct2ﬁz + ct2l3nr) < ct2Birty+2B=BuLyY,
Finally, by (8.2)(c)(ii) again,
I < cM—l+2<Bu—ﬂ,>f‘fH2(z)szﬁ, deds = cM~1+2Bu=Bg2B+1
0

= 2Bt 1ty +2B—Bu)Y,

Substituting the bounds for I,,..., I; in (10.3), and recalling 8,> 1 > vy, we
have

(104)  B(DAXS,)" s o[[B(DIX,) do 4 ettt
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By Gronwall, we have
2
(10.5) E(D”%Xt*/\p) < ctBoy 2Bty
andsoif 0 <8 <1,
E(D2X* )Hs < ct@Bi+1/2-B)Y(1+8)
m“*tAp = .

The proposition now follows by the definition of y if we choose 8 sufficiently
small and ¢ sufficiently close to 1. O

PrOOF OF PROPOSITION 9.3. Let s,=2"""! Choose y so that 1>y >
B, — 3,and let T = inf{s > 0; A,/s" > 1} A sy, where

t
A = ol(s, z)v(s, z)u(dz, ds),
o= [ Jouls, 2)os, 2)n(dz, ds)
and N > 0. Note that A, is nondecreasing. Then by (2.4),
E(DXpn— Arn ) < cE[ " [(Do(s, 2)) deds
0
<cE[ (DX, - A,)*ds + cE [ ‘A2 ds
0 0
(by (8.2)(c)(ii))
= CELt(DIXSAT - 143/\T)*2 ds + Ct2Y+1)
and so by Gronwall,
(10.6) E(D Xy, — Apn)* < et
If D,X,/sP« < 2, either |D,X, — A,|/sP« > 1 or A,/sP« < 3. Then

P[ inf (D,X,/s5) < 2]

s<sy

< P[ sup (|D,X, — A,l/sP) =1, T = sN]

s<sy

(10.7)
+P[T <sy] + P[ inf (A,/sP«) <3,T = sN]
s<sy

=L +L+1,
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Then

8

I < Y [ sup |D,X,—A,|/sP«>1,T= SN}

Sp+1 =858,

b4

3

0

< Z P[(DIXS,,/\T_AS,,/\T>* = sfil]
n=N
o0

< Z CE(DIXS,,AT_AsnAT)*zs;mgu
n=N
00

< X et (by (10.6)),
n=N

which is summable by the choice of y. Since
EA, = Eftfoz(s, z)o(s,z) dzds < ct/(|z|‘ﬂl A1) dz,
0

then
I,= P[(A,/s%)" > 1

(e o]
< Y P[ sup (A,/sY) > 1}
n=N S$,+1S8<s,
[o o]
< X P[A% >s),]
n=N "
(e o]
< ) cEA, /s! (A,isincreasing)
n=N
. o
< Y sl
n=N

which is summable by the choice of y. Finally, we consider I,. Let
t
B, = 2| Puu(dz, ds),
o= [ 2 ez, d)

and note that A, > cB,, B, is a subordinator (nondecreasing Lévy process), and if
fec?

t"'E[{(B,) - f(B,)] = t'E L [{(B,) - f(B,_)]

-8 ‘ /MZI[ f(B,_ + |217#) — f(B,_)] n(dz, ds)
(10.8) = t"EfOthZ,ZI[ f(B,- +|2/"#) - f(B,_)] dzds

- "!'zlzl[ f([z|‘l9u) - f(O)] dz (ast— 0)

=ef_, ) = 1]y ey,
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Hence the Lévy measure of B, is of the form cy~!"/Avdy, 0 < y < 1, and so if
t<1,

P[A, < b] < Plexp(—kB,) > e~ *?]
< e°*®E exp(—kB,)

— eckbexp( f(l _ e—kx)x—l l/Bde)
1009 ’
( ) < ekbec ’exp(—c’tf (1- e"”‘)x‘l‘l/’;‘/dx)

< ¢ ckbexp( /tkf —1/Bu dx )

= c"exp(ckb — c’'tk'/Pv),
If we now choose b = ctP« and k = t P+, then for t < 1 we get

(10.10) P[At < ctBu] < c’exp(—c”tl‘ﬁu/ﬁv),
Then,
0
L< ¥ P int_ A, <3sf)
n=N Sp41S8S<S,

(e o]
<Y P(As"+1 < 335112’9"),
n=N
which is summable by (10.10) and the fact that 8, > B8;,.
Substituting in (10.7), we have

P[J$N<2]5c§s;g

n=N
for some 5 > 0, and the first part of Proposition 9.3 now follows easily.
To prove the second part of Proposition 9.3 is considerably easier. Fix r, and

let A = f f 0,(s, 2)v,(s, 2)u(dz, ds) and S = inf{t: AP > aths). As in (10.6),

(10.11) E(D,Xg,,— AGL,)*" < ct?r1,
Note A" < cC,, where

C = ‘/:‘/;Oz_ﬁbu(dz, ds).

The process C, is a stable subordinator of index 1/, (cf. (10.8)). Since 1/8, > 2>
1. EC}”? < o and by scaling,
(10.12) EA{Y? < ¢cECY? < cthe/?.

From this, (10.11), and 8,/2 + 1/4 > B, /2,

E(DerS/\ t)*1/2 = E'(DI,XSA t AS/\ t)*1/2 + EAIS//% t
1/4
(10.13) = (E(DI,XSA t As/\t)*z)

< cthr/?,

+ cthr/?
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To estimate P[ K" > a], we proceed with

wory PURE el SIS <n) (B8 b

=0, +1,.
We have

IA
I 8
g

n

P[ sup (A‘S”/sﬁ’)>a]

Sp+1SS=Sy

o0
)y P[A(s:) > aslll;{i—l]

<
n=N
©
1/2 2
< Y cEADV?/sh/
n=N
©
< Z s'(lﬁl,_ﬁl)/z,
n=N

which is summable, and

o0
I, < ZP[ sup (DerSAS/sB1)>a]

n=N S 1S8<s,

0

IA

P[D, X3, > asi]
N

n=

cE( D, X\, ) *1/2/ sh/?

A
™Ms

n=N
)
< Z csleL_ﬂl)/z.
n=N

As before, substituting in (10.14) gives
o0
P[KD>al<c ¥ sp
n=N
for some 1 > 0, and the remainder of the proposition follows. O

ProoFr oF PROPOSITION 9.5. We may write

DX,- DX, = fotf(Dlo(s, z) - DI,U(S,'Z))(,u(dz,ds) ~ dzds)
* forf"z(s’ z)u(s, z)(n(dz, ds) — dzds)

+/(;r/oz(s,z)v(s,z)dzds,
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and then by (2.4) and (8.2)(c)(iv),
E(D,X, - D,rX,)*2 < cE/t/(D,o(s, z) — D,o(s, z))2 dzds
0

+cEfrfaz2(s, 2)v%(s, z) dzds + cr?
0

< cftE(DlXs - D,rXS)*2ds + cr + cr?
0

By Gronwall, since both D, X;* and D,X/* are in L?(P) for all p, if r < 1,
(10.15) E(D,X,- D,X,)*" < cr.

Letting r — 0 gives the first part of the proposition.
Forany ¢ > 0,if t < 1,

P[|K,—- K| > ¢] < P[(|D,X, - D, X)/t")" > 8]

IA

o0
> P[ sup |D,XS—D,,XS|/sB'>e]
S

n+1 SS=S8y

(10.16)

n=0

IA

[o o]
’E.OP[(Dsz,, - DX, )" > 83541]-

Each term of the series goes to 0 as r = 0 by (10.15). Our result follows by

dominated convergence since

P[(DX, - DX, )* > esbi,| < P[DX2 > esfi /2| + P[D, X} > esP /2]
<P[K, >c] +P[K{>c],

which is summable by Proposition 9.3. O

11. Construction of local time. Throughout this section, the assumptions
of Section 9 still hold.

THEOREM 11.1. Under the assumptions of Section 9, X, has a jointly
continuous local time that is an occupation time density.

PrROOF. Once we have Theorem 9.6, the proof that a local time L} exists that
is continuous in ¢ and that is an occupation time density follows by Sections 4
and 5 of Bass (1984). To briefly summarize the construction, we let @, be a
r.c.p.d. for E[-|#, ]. Then (X, ,, Q, ) satisfies the hypotheses of Theorem 9.6,
and so there exists V, (A, x)(w) such that

(11.1) V(A x)| < eAs=,
(11.2) [Vi(As %) = VoA, 9) | < ely = =%,
and for all Borels B,

(11°3) '/‘;V%(A, x) dx = Qto[-/(.) e_ASIB(XS*"o) ds|.
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We then let U, (A, x) be a regularized version of V,(A, x), and show

(11.4) |[U(X, x)| < eA!
and
(11.5) U, x) = U\, y)| < cly — x|~

Then if L)(x) is the increasing predictable part of the bounded supermartingale
e MU(A, x), we set LY = [le*® dLN(x). In the above reference it is shown that
L7 is an occupation time density for X,, and in view of (11.4), that LY can be
taken so as to be continuous in ¢. It remains to show that L} can be chosen to be
jointly continuous in x and ¢, and to do this, it suffices to consider L}(x), since

L¥ = eMLNx) — ft)\e"sLi?(x) ds.
0

Fix x and y so that neither is in the null set of Lebesgue measure O that arises
in the construction of L}(-). Suppose S and T are bounded stopping times. For
ease of notation, let R, = L}(y) — L)(x) and

W, =e MU(X, x) — e MU(A, y).
By the definition of L)(x), R, is predictable, and W, — R, is a martingale. Then
t t t t

E|(Ry - Ro)'15%] = E|2['ELR, - R\%)dR,1%)|
S

= B|2["E[W, - Wi%) dR,15%]
S

< ey~ 2l'E [ "d(LN(y) + LX(x)) (by(11.5))

< cly = x"(EL}(y) + EL}(x))
<cly — x|".
The last inequality follows since the potential of L}(y) is e *U,(A, y), which is
bounded by (11.4). Then,
E[|R; - Rol|%] < (E[(Rr - Re)1%|) " < cly — x1*72,
and since R, is continuous,
(11.6) Eexp((L)Ny) — LNx))*/8cly — x|*/?) < 2

by Dellacherie and Meyer (1980, page 193).

Since L(x) can be taken to be continuous in ¢ for each x, a.s., we can argue
exactly as in Getoor and Kesten (1972, pages 285-286) that (11.6) implies L}(x)
can be taken to be jointly continuous in ¢ and x. O

12. Localization and extensions. In this section we give the localization
procedure that completes the proof of Theorem 8.1. Following the proof, we make
some remarks on how Theorem 8.1 could be extended.
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PROPOSITION 12.1. Suppose o satisfies (8.2) and that for some positive
constants d,, d,, 24, and 1 < a, < a; < 2 satisfying (9.2),

di(l2]7% 2 A 1) <|o,,(s, 2)| < da(l2]7 /%72 A 1)

for |z| larger than z,. Then X, has a local time that is jointly continuous in t and
that is an occupation time density.

ReEMARK. This is a weakening of the hypotheses of Sections 9, 10, and 11,
since now we only require (9.1) to hold for |z| larger than some z,. Our first goal
is to show that under these weaker hypotheses, X, still has a jointly continuous
local time that is an occupation time density.

Proor. Let S, =0, and
Syv1 = inf{t > S ([ 20, 20] X [0, £]) > w([ 20, 20] % [0,5.])}.

Thus the S;’s are the times at which u([—2,, 2,] X {s}) = 1. Let é(s, z) bea C3
function such that 6,,(s, 2) = 0,,(s, 2) if |z| > z,. Let X, be the solution of (8.1)
with o replaced by 6. Now 6 satisfies the conditions of Sections 9, 10, and 11, so
X, has a jointly continuous local time. Since X .= X, for t < 8§, then X,, ¢t < S,
has a local time, and hence X, ¢ < S, does also.

Let @, be a r.c.p.d. for E[-|%g ], and consider (X,, 5 — Xg, @,,). This process
satisfies the same hypotheses as (X,, P) does, and so arguing as in the preceding
paragraph, X,,s — X5, t < S, — S|, has a jointly continuous occupation time
density a.s. () for almost every w(P). An easy argument using Fubini shows
that X,, g — Xg, t < S, — S, has a jointly continuous occupation time density
a.s. (P). We then look at X, s — Xg, etc. By Bass (1984), Section 6, we conclude
that X, has a jointly continuous occupation time density. O

ProoF OoF THEOREM 8.1. Since 1 < a_ < a* < 2, we can take ¢ sufficiently
small so that whenevera_ < aj; < a; < ay+ ¢ < a™,(9.2) holds. Let T, T, Ts, .. .
be a sequence of stopping times so that (s, z) is e-stable of index between a _
and atif T; <s < T}, ,, foreach i = 0,1,2,... . Then there exists d,, d,, a,, ay,
and z, so that

di(lz]7 72 A1) <lo,,(s, 2)| < dy(l2]7/* 2 A 1)
if 0 <s < T, |z| = 2, Foreach z, let y(z, r) be an odd C* function satisfying
(12.1)(i) Y(z,r)=r if|z2]| <z
(12.1)(ii) v(z,r)=r if|z|>2, and
di(lz]" V072 A1) <|r| < dy(|z2|"* 2 A 1); and
(12.1)(iii) 3d,(J2]7* 72 A1) <|Y(2, )] < 2dy(|2| /%2 A 1) if |2] 2 2.
Let Y, be the solution to

Y, =x, + /O’fa(y, s, 2)(p(dz, ds) — dzds),
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where § is chosen so that 6,,(s, 2) = ¥(z, 0,.(s, 2)), 6,(+ 00) = 0,and 6§(+ ) = 0.
Then & satisfies the conditions of Proposition 12.1, and so Y, has a jointly
continuous occupation time density. Since changing ¢(Y, 0, z) does not affect the
value of Y}, it follows that Y, is equal to X, if ¢ < T,. Therefore, X,, t < T},
hence X,, t < T}, has a jointly continuous local time.

Just as in the proof of Proposition 12.1, we argue that X, , — X;, t <
T.,, — T, has a local time, and we then use Bass (1984), Section 6 again to
conclude that X, has a local time that is jointly continuous in ¢ and x that is an
occupation time density. O

REMARK 1. We can dispense with the near symmetry condition on o. Sup-
pose that (locally) thereexist 1 <a_<ay<a, <ay,+e<at<2and0 < a, <
a; < (ay + &) A a for ¢ sufficiently small so that

el A1) 20, 2)| 2 el VAL i 2 2
and
cs(12]77272 A 1) 2|0,,(s, 2)| 2 eulz] 7V 2 A1) ifz< —2,.
If o also satisfies (8.2), then the conclusions of Theorem 8.1 still hold. To show
this, let

NO = (['f ot 2D s, 2tz o) e |
0vYz<0

where we choose B, to be less than but close to 1 + a;'. By considering
w([0, M] X [0, t]) and u([—M,0] X [0, t]) separately, we can show, as in Proposi-
tion 9.2, that u([—M, M] X [0, t]) = 0 on the set [K{" < 2, N/ < 2]. Once we
have that, we can modify the remainder of the proof of Proposition 9.2 to get

E[(Dlert*)1+s; Kt(r) <2, ]\]t(r) < 2] < ct?Pu8,

The proof of Proposition 9.3 needs no change. We need to show P[N(” > a] = 0
uniformly in r as t - 0 and N/ — N/? in probability as r — 0; the proofs are
analogous to those of Propositions 9.3 and 9.4. Finally, if N/*" are smooth
approximations to N, we define

Gy, m, 1, (1) = B(X,)g(D,X)F(I7)(1 = F(K(™7))(1 = F(N*"))
in place of (9.10) and conclude as in Proposition 9.5 that
\E[hl( Xt)l(J,>@,,K,<®2,Nt<93)] \ < Ct_gnh(xt) ”L"(P)’

where 0, is identically distributed to ®, and ©, and independent of them and
0(X;0 < s < o). With the obvious modification to the definition of T; in
Theorem 9.6, the proofs then proceed virtually identically.

. REMARK 2. The only place we used the existence of Djs was to get the
existence of D?X. If we take approximations ¢, to o, use (9.19) to get

‘E/we’“h’( X{™) dt| < el g
0
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and then let n — oo, we see that we only need Djo to exist and satisfy
(8.2)(c)(iii). Thus, in the example of Section 8, a(x) € C? suffices. We conjecture
that for this particular example, a(x) € C'*? for some § > 0 suffices.

REMARK 3. If one wants to consider semimartingales X, that may have a
drift or unbounded jumps, one can proceed as in Bass (1984) Section 6 to extend
Theorem 8.1 to a theorem covering these cases.

REMARK 4. Note that in the proof of Theorem 8.1 we do not actually need o

to be locally e-stable for all ¢, but only for & > ¢,, where ¢, depends on a_ and

at,
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