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REVERSE TIME DIFFERENTIATION AND SMOOTHING
FORMULAE FOR A FINITE STATE MARKOV PROCESS

BY RoBERT J. ELLIOTT
University of Hull

The paper investigates the reverse time differentiation of a stochastic
exponential that occurs in smoothing, when the signal is a finite state Markov
process and the observation process is a diffusion.

1. Introduction. In this paper we discuss the reverse time differentiation of
a stochastic exponential expression that arises in the theories of filtering and
smoothing when the signal process is a finite state Markov chain and the
observation process is a diffusion. Section 2 contains a description of the filtering
and smoothing problems in this situation and indicates why the reverse differen-
tial is of interest. The methods of this paper are inspired by those of Kunita [2]
and [3]. In [2] Kunita discusses backward and forward stochastic differential
equations, and in [3] uses these results to construct solutions of stochastic partial
differential equations by the Feynman-Kac method. Anderson and Rhodes in [1]
discuss smoothing formulae for various kinds of signal and observation processes
and derive similar stochastic partial differential equations for the smoothed
estimate. The methods of [1] require the reverse time differentiation of certain
stochastic expressions, that is the differentiation with respect to the initial time
and state; however, [1] does not include any discussion of backward stochastic
integrals.

Pardoux obtains similar results for filtering, smoothing, and prediction for-
mulae in [4]-[7] using existence results from partial differential equations, when
the signal and observation process are diffusions. However, as Pardoux observes,
Kunita’s theory can be used to write down such solutions. By deriving the reverse
time differential formula this paper enables similar solutions to be written down
when the signal is a finite state Markov process and the observation is a diffusion.

2. Filtering and smoothing. We first define the Markov process, describe
related filtering and smoothing equations, and indicate why reverse time differ-
entiation of a related exponential is of interest. The author is greatly indebted to
the referee for help in clarifying the definition of the Markov process.

Write e, = (0,0,...,1,...0) for the ith unit column vector in RN. We shall
define a Markov process on a probability space (R, #, P), with a state space
S = {e,,..., ey} and infinitesimal generator given by the matrix A, = (a,/(?)),
1 <i, j < N. Write U for the totality of maps u: S = S and let p = p(¢) be a
Poisson point process on U defined on (2, &#, P) such that the intensity measure
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n,(dt, du) of its counting measure N,(dt, du) is given by
np(dt, {u: u(e;) = e»}) =a,;(t)dt, i#].

J

Let D, be the domain of the point process p = p(¢). Because the intensity
measure is finite it is almost surely a discrete subset of (0, c0). For each s > 0
label the points of D, N (s,0) as {g,(s),n =1,2,...} such that s < oy(s) <
0y(s) < --- and define a U valued process X , in the following way:

X, , = theidentitymap ifs <¢<a(s)
=P(°1(3)) if 0,(s) <t < ay(s)
=p(0x(s)) e p(04_1(8)) ... o p(0,(s)) if ,(s) <t < 041 (s).

Here o denotes the composition of the mappings. Suppose ®(¢, s) is the transi-
tion matrix associated with A, so

do
E(t’s)zAt(b(tyS)y ®(s,s) =1,

and

dod

—(t,s) = —0(¢,s)A,, o(¢,t) =1,

ds
where [ is the N X N identity matrix. For each x € S, X, ,(x) is an S-valued
Markov process, and it follows from the above definition that E[X, (x)] =
®(¢, s)x, so in particular P(X; /(e;) = e;) = ej®(¢, s)e;. Furthermore, for any
s<t<u, X, (X, (x)) =X, [(x)as., and for any times ¢, < ¢, < --- <, the
X, .., are independent; these two properties correspond to similar properties
possessed by the stochastic flows generated by stochastic differential equations.

Write
9, =0o{X, (x):s<u<t},

G, =G, G*=V G and G=G°.
t>s
We suppose the finite state Markov process X cannot be observed directly.
Instead there is a noisy observation process {y,}, t > 0, where

(2.1) dy, = h(X, [(x),t)dt + a(t) dw, ¥ = 0.

Here, for simplicity, we suppose y is one dimensional 4 is a bounded function
with a bounded derivative in ¢, and w is a Brownian motion independent of X on
the probability space (2, %, P). We suppose « is a measurable function of ¢ with
a bounded inverse. For 0 < s < ¢ write:

Fi=0{y,— Y s<u<v<t}, F=%°

Fr=V &% and F=F°.

t>s
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Consider the exponential
A o(®) = exp{ [B(X, (x), w)a () dy, = b [B(X, (%), u)'a"(u) du).

Write A (x) = A (x), and define a new probability measure f’s,x on (2, ¥) by
putting
dP, .

dP

Write &, = [fa™'(u) dy,. Then under Ps » X, (x) remains a finite state Markov
process w1th the same law and i@, — @0, is a Browman motion independent of X.
E will denote expectation with respect to P and Es . expectation with respect to

. Suppose F: {e;} » R is any bounded function. The filtering problem
dlscusses [writing X, (x) = X,],

E[F(X,)|#].
Using Bayes’ rule this can be written:

Ey . [A(2)F(X,)|F]
E [F X )l ] = E 73 ’
O,x[At(x)l‘/t]
so the investigation of E’O,x[A,(x)F( X,)|#,] plays a central role in filtering.
The smoothing problem discusses

E[F(X,)| %] fors<t,

that is, we have observations through to some later time ¢ than the time s at
which we wish to estimate the state X. Again transforming to a measure P, , we
have

= A, (%)

@ \//s

E, [F(X,)A(x) 7]
EO,x[At(x)l‘g;t]
Similarly to Lemma 3.9 of [5] one can show:
E, x[F X,)A, (x)|~/t] = E,, x[F XA (%) A X, )l‘/t]
= Eo [F(X,)A(2)A(X)F v F2 v {X)F]
= B [ F(X)A(D)E, x [N X,)17°]17)].

Consequently in smoothing the investigation of Es x [AYX,)| %] plays a central
role. That is, for a fixed ¢ and for X, = x € {e;} we must investigate

B, [050)1%7] = B, oo [B(0X, ), w) dty = £ [B(X, (), 00" )|

where @ is a P . Brownian motion and X (x) is a finite state Markov process
1ndependent of w In the following section we determine how such an expression
varies with s. In particular we discuss the differentiation in s of an exponential
expression of this form and show it satisfies a backward stochastic differential
equation.

E[F(X,)|#] =
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3. Reverse time differentiation of an exponential. Consider, as above, a
finite state Markov process defined on a probability space (2, #, P) and with

state space e, ..., ey. Suppose the process is in state x at time s > 0, and again
write X ,(x) for its state at time ¢ > s. Recall 9/(x) = o{ X, (x): s <u < t}.
Suppose w,=(w),...,w™), t=0, is an m-dimensional Brownian motion,

defined on (2, #, P), whlch is independent of the Markov process X. erte for
s <t
F=0{w,—w,;s<u<v<t}

For 0 < j < m (as in the observation process of Section 2) suppose that A’ is a
bounded real valued function on {e;} X [0, c0). Then h’ is represented as a row
vector of functions h/(u) = (h’(e,, u), h’(ey, u),..., h/(ey, u)), and we further
suppose that the derivative dh/(t)/dt exists and is a bounded function of the
same form. Then A’ evaluated a state x and time u € [0, 0] can be represented
as (h/(u), x) = hf(x, u). In filtering and smoothmg problems A%(x, u) is often of
the form — JX7 A/ (x, u)>.

Write ! = t Then the theory of ﬁltermg and smoothing, when the signal
process is the above Markov process and the observation process is a diffusion,
leads one to consider an exponential expression of the form

As,tx = exp{ Z /thj(Xs,u(x)’ U) dw,{}
J=0°8

Because x and w are independent it is immaterial whether the integrals are
interpreted as Itd or Stratonovich integrals. Write

A, (x) = Ep[A, (x)1F7].

We have seen in Section 2 that the theory of smoothing requires one to
investigate the derivative in s of f&sy (). Following the method of Kunita [2],
this is the problem studied in the present section. We first state as lemmas two
simple inequalities.

LEmMA 3.1. Forn=1,2,...
E[A m(x)] < eCnt=)

for constants C,.

PrROOF. With o denoting the Stratonovich integral

Andx) =1+ % ['A, (WX, u(x) ) o dw}

Jj=0"%

“14+ Y [A, (R(X, (), u) du]

j=0"8

+1 i fA (x)h( X, (%), u)’ du.
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Also, writing A/(u) for A/(X, (x), u),

Als,t(x)=1+2Y, ftAi,u(x)hf(u) dw! + Y, ftAzsyu(x)hj(u)2 du.
j=0"s j=1%

Because the A/ are uniformly bounded

E[Azs‘t(x)] <1+ leltE[Azs’u(x)] du

and the result follows by Gronwall’s inequality. Inequalities for higher powers are
established the same way. O

LeEMMA 3.2. For any power M
E[]Xs’,(x) - x]M] < Const.|t — s|.

ProoFr. Recall that the matrix A, is assumed to be uniformly bounded and,
if ¢,,(¢, s) denotes the (i, j) entry of the transition matrix,
8¢i j( t’ S )

t=s

Therefore,

E[|X, (x) - x["] < 2M/2Prob(X, (x) * x)

sConst.( Y ¢>,-,-(t,3))

i), i, j=1
< Const.[t —s|. O
REMARK 3.3. Recall that if f(u), 0 <u <t is an %#* predictable process

such that [!E[f(u)?]du < o then the backward It integral (see [2]), is
defined, if f(u) is continuous in probability, as

t A . n-l . .
JH(w) dwf = tim ¥ f(t0) (), - w)).
s 18120 k9
Here A = {s =t,<t < --- <t,=t}and |A| = max,|t,,, — &l
It is a backward martingale, i.e., if s’ < s
B| [(1w) duf)72| = [($(w) du.
The backward Stratonovich integral is defined as
¢ . . n—1 : ) ]
[1(w)e dwf = fim X 1(1(t) + f(8))(wh, - w)).
8 Y k=0
The two integrals are related by the formula

[’f(u)o&wg=£‘f<u)&wz+ L(Fowy, = (fow?y,).
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NoTAaTION 3.4. For 1 <i < N we shall write

J

Hi(s, 1) = exp{ > [RX, (e u) dw,{} - A,de),
=0"s

and H for the row vector (H', H2,..., H"). Then A, (x) = (H(s, t), x) and,
with .
As,t(x) = EP[As,t(x)lgz;S]
and
gs,t = EP[H(S’ t)l"azts]
we have

As,t(x) = <f{(s, t)yx>'

THEOREM 3.5. f\s’ [(x) satisfies the following reverse time stochastic differen-
tial equation:

Rodx)=1= R, (Ax)du+ Y[R, (x)h(x, u)e duw].
s j=0°s

ProOF. The method is an adaptation of that in Kunita’s paper [2]. Consider

a partition A = {s=1¢,<¢ < --- <t,=1t} and write |A| = max,|t, | — ¢,
Then
n—1
As,t(x) -1= Z (Azk,z(x) - Az“,,t(x))-
k=0
Now

Ay dx)=A, . (%), A, (X, ., (2)
So the kth term in the above sum is
Ay dx) = Ay d(2) = Ay (0D Xy o (1) = Ay, o))
+ A,k“,,(x)(A,k,tkH(x) - 1) =dJ,+ K,, say.

Write J, = Ep[J,| %], etc. Then we shall show that
n—1 . n
Ji= [R, (Ax)du as)A| -0,
k=0 s
and

ftf\u,,(x)hj(x, u)edw! as|Al— 0.

S
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Now
Jy = (Atk,tm(x) - 1)(Attk+1’ t(th,tkH(x)) - A,M’,(x))
+ (A Xy () = Ay, ) = IO + I, say.
We can write

i = <H(tk+1t)’ Xy (%) = x>.

So
Jéz) = <H(tk+1y t)y(q)(tk’ tk+1) - I)x>
= <H(tk+1: t), ft"“Au(I)(u, ty) dux> .
b

Therefore,
n-1 t, a
X JP "’|A|—>0f (A(u,t), A,x)du.
k=0 8

Consider

m b . 1
J]il) = Z ( 17 ' lAtk,u(x)hj(th,u(x)y u)o dwd)<H(tk+l’ t)’ th,tkﬂ(x) N x>’
j=0\"t

Then, using Schwarz’s inequality and Lemma 3.1, for an a > 0
E|J| < Const.|t,,, — t,|**".
« Therefore,

n—1
< Y E|J®| < Const.|A|*(¢ — s)

n—1 -
L g
k=0

k=0

E <E

n—1
L J
k=0

and so L7Z1J®P - 0 as |A| - 0.

K, = At,,+1,t(x)(exl)( i ftk“hj(th,u(x)a u) dwz{) - 1)

j=0"%

and by the mean value theorem this can be written:

K, = A,M,,(x)( > ft’mhj(u) dw;

J=0"%

+5At,,,.,(x)'i’jf=o( ft:"”hf(u) dw,{)( ft:'”'h"(u) dw;;)).

Here ¢, < 0 < t,,, and, as above, h/(u) = R{(X, [(x), u).
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Then
8
Kk = E K]gp)’
pr=1
where
Kél) = Atk+|,t(x) E hj(x, tk+1)(wt‘2+1 - wt‘i)’

j=0
- tpr1qy ; X 7 i
KP = Atk“,t(x) )y (f h’(th’u(x), u) - hi(x, u)) dwy,
j=0\"%
K = Aypd) B ([ (W) = 1, ) ],
Jj=0 73
tpi1 2
K@ = Atk+,,t(x)Atk,o(x) %(/ h°(u) du)
t
+(/‘tk+1(u) du)( Z ftkﬂhj(u) dw,{),
t, h°

j=1"%

KpP = 30 (M) = 1) B ([0 ) [ 0) ),

i =1\t
o rteers s ; ; theiy g i
Kl(e6)=%Atk+‘,t(x)( y fk (h'(u) dw'{)(f" h(u)dwu)
i j=1"% K
_ E ft"“hj(u)zdu),
j=1"t

~
I
—

n—1 m
A ta . .
Y RO om0 X [Ay (2)h(x, u) dw]
j=0"s
and
n—1 5 & m ta . 2
T RO ounos X [ Ay (x)hI(x, u) du.
k=0 j=1"s

In discussing LK (P for 2 < p < 7 two principles are used. Firstly that a sum
of the form YConst.|¢,,, — t;|*"! is less than Const.(f — s)|A|% and so tends to 0
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as |A| = 0. For example, for p = 4,5,7, E[|K{”’[] < Const.|t,,, — ¢;|**". There-
fore,

n—1

T Kf

k=0

2 (p)
K;?

<E

n-1
< E Y |K{P| < Const.(t — s)|A|%
k=0

and so ZZ‘},K‘ ~aj—0 0 for p = 4,5,7. Secondly, for p =2,3,6, M{P =
YR_L KiP) is a reverse time %= V ¢ martingale. Therefore, given ¥, its incre-
ments are orthogonal and

E[(M») 1] = E[ K9]
So

< E[(mgY] = :gE[(K,gmf].

E

n—1 2
k=0
Consider for example p = 2. Then

1/2

E(K®)” < Const. ( i ft"”(h’(u) hi(x, u)) dw,{)

However, using Lemma 3.2
. ) ) M
E|h/(u) — h'(x, u)|M = E(<h’, X, J[x) - x>) < Const.(u — t,)
and we see
E(K?)” < Const.(ty,, — t;,)""",
where the constant is independent of k. Therefore, by the first principle above,
n—1 2
E ( > K,gm)
(ZK(®)? (using the uniform bound for the u-derivatives of the A’) and (LK ®)?

are treated similarly. Consequently, L7-1K (» —aj—0 0 for p =2,3,6 and we
have shown that

-0 0

:go K |A|—»OZ fAu (21 (x, u) do]

=0

+g [Au, ()R (x, u)? du.

uMs 5
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The stochastic integral here is a backward It6 integral; using the backward
Stratonovich integral the above expression is just

m
Y[R 2R, u)o duf
j=0%s
and the theorem is proved. O

REMARKS 3.6. Recall that a function on the state space {e;} of the Markov
process is just represented by a vector f € RV, so f(x) = (f,x). Write, for
1<i<N,

Fs»{t=f(Xs,t(ei))As,t(ei)’ ﬁsi,t= EP[Fsi,d-%s]

and F for the vector (F',..., FN). With F(x)= (F',x) similar techniques
establish the following result:

THEOREM 3.7. 13'3 {x) satisfies the following reverse time stochastic differen-
tial equation:

A ta
B (x) = f(x) + ['F, (Ax)du
m ta . n .
+ Y fFu’t(x)h’(x, u)odw,].
j=0"s
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