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l.et F and G be two continuous distribution functions that cross at a
finite number of points —oc <t < --- <t, < oc. We study the limiting
behavior of the number of times the empirical distribution function G,
crosses F and the number of times G, crosses F,. It is shown that these
variables can be represented, as n — oc, as the sum of % independent
geometric random variables whose distributions depend on F and G only
through F’(t,)/G'(t,), i = 1,..., k. The technique involves approximating
F,(t) and G,(t) locally by Poisson processes and using renewal-theoretic
arguments. The implication of the results to an algorithm for determining
stochastic dominance in finance is discussed.

1. Introduction. Consider two given continuous distribution functions F
and G, and let F, and G, be the corresponding empirical distribution functions
(edf’s) based on n independent and identically distributed (i.i.d.) random vari-
ables (rv’s). Throughout F, and G, are assumed to be independent. Let K(n) =
number of times G,(t) equals F(¢), and let L(n) = number of intervals for which
the graph of G, equals the graph of F,. The distributions of K(r) and L(n)
have been studied when F = G, and it is known [see Dwass (1961)] that

lim P{K(n) < (2nt)'"*} = lim P{L(n) < (4nt)"*}

n—xc
=1—-e "
We consider the situation where F # G but F crosses G at a finite number of
points —o0 < ¢; < --- t, < co. We were led to this problem while investigating

certain types of stochastic dominance procedures that arise in finance.

We study the limiting behavior of K(n), L(n), and L*(n) = the number of
times G (t) strictly crosses F,(t) (see Section 2 for definition of strict crossing). It
is shown that these variables can be represented, as n — oo, as the sum of &
independent rv’s each of which is the number of crossings in a local neighborhood
around ¢, ¢ = 1,..., k. The distributions of these £ rv’s are related to geometric
rv’s whose distributions depend on F and G only through F'(t,)/G'(t)), i =
1,..., k. Furthermore, only a finite number of order statistics around ¢, play a
role in determining these crossings. The results are obtained under the assump-
tion that F and G are continuously differentiable in a neighborhood of ¢, with
Fi(t)+ Gt), i=1,..., k. ‘

The paper is organized as follows. The main results on the limiting distribu-
tions and an outline of the proofs are given in Section 2. Details of the proofs are
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deferred to Section 4 where we also derive a number of interesting lemmas
concerning the local behavior and boundary crossing probabilities of empirical
distributions. In Section 3 we discuss the implications of our results to an
algorithm for determining stochastic dominance in finance. Our results suggest
the need for using smoothed edf’s in the algorithm.

Throughout the paper, we assume that both F and G are defined on [0, 1] and
that F(t) = t. This presents no loss of generality since K(n), L(n), and L*(n)
are invariant under monotone transformations of the underlying rv’s that de-
termine F,(t) and G,(¢). To simplify matters we assume in addition that
0 < G(t) <lfor0 <t <1and that GO)=1—- G(1) = 0.

2. Limiting distributions. Let {U;}~, denote a sequence of i.i.d. uniform
(0,1) rv’s, ie, U~ F(t)=t, 0 <t <1 Similarly let (V.2 be i.id. rv’s with
V.~ G(ty, 0 <t<1. G(t) equals t at k points 0 =¢ <t, < --- <¢, =1
Given 8 > 0, consider the 8-neighborhood of ¢, defined by B(t; 8) = (¢, — 9,
t, + 6) N [0,1]. We assume throughout that G(t) is continuously differentiable in
B(t,; 8) for some § > 0 with G'(t,) # 1,i=1,..., k.

F, and G, denote the edf’s based respectively on {U;}7_, and {V;}7_,. We
assume that F, and G, are independent. K(n) is the number of times G, (t)
equals t. The points £ = 0 and ¢ = 1 are included in the computation of K(n).
L(n) is the number of intervals for which the graph of G, equals the graph of F,.
L*(n) is the number of times G,(¢) strictly crosses F,(t). To define a strict
crossing, let Z, < --- < Z,, be the 2n ordered values of (U;}7_, and {V;}7_;. A
strict crossing occurs at Z, if either (i) F(Z,_,) < G,(Z;_,) and F(Z;) > G(Z))
or (ii) G(Z;_,) < F(Z;,_,) and G,(Z;) > F,(Z,). Again for the sake of con-
sistency, we include the points ¢ = 0 and ¢ = 1 in the computation of L*(n).

It follows from the Glivenko-Cantelli theorem that, with probability — 1 as
n — o, G,(t) does not cross t or F,(t) outside of U*_, B(¢; §) for every suffi-
ciently small § > 0. Now let § > 0 be small enough so that B(¢; 8),i=1,..., &,
are nonoverlapping. Let K, (n), L,(n), and L¥*(n) be the corresponding values of
K(n), L(n), and L*(n) restricted to the interval B(t;§). M (u) denotes a
Poisson process with rate @, — ,, denotes convergence in probability, and — ,
denotes convergence in distribution. Let «, = G'(¢,) and if «, > 1, let O(a,) <1
be the solution of

(2.1) 0(al)8_0(a‘) = aie_a'.
THEOREM 1. As n— o, K(n)— K, i=1,..., k, where the K;'s are
independent and
P{K, =]}
(1 - a)al™, ’ J=12,... ifa, <1,
[1-6(a,)]0/ Y (a,), j=1,2,... ifa,>1,t,=0o0rl,
[a, + 0(a,) = 2] /(a, - 1), j=0 ifa,>1,0<t <1,

[1_a(az)]20j_](az)/(az—1), j=1,2,"' ifaz>1,0<tt<1'
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REMARK. We in fact show that K,(n) - , K, in the case @, < 1 and in the
case a,> 1, t, =0 or 1. When «,> 1 and 0 < ¢, <1, we can show only that
conditionally {K (n)|K(n) > 1} - ,{K,|K, > 1}.

Let p(a,) = min(a;,1/a;) and let

(2.2) m(e;) =1—[1-p(a)]/[1+ 0(e)].
THEOREM 2. Asn — oo, L(n) = p L, i=1,..., &k, where L’s are indepen-
dent and

P{L,=j+1}=[1-n(a)]7a,), J=0,1,....

THEOREM 3. As n — oo, L¥n) — pL¥,i=1,...,k, where the L*’s are
independent and

P(Ly=j+1} = [1-p(a)]p(e,), Jj=0,1,....

As the proof is rather lengthy, we defer the details to Section 4 and give only
an outline of the proof here. The following two sequences {e,} and {§,} will be
used extensively in the proofs in Section 4:

(i) {e,} is any sequence such that as n — oo

(2.3) e, > 0 but n'%, > oo;
(ii) {8,} is any sequence such that as n >

(2.4) n'/?§, - 0 but ¢, = né, > .

Since [G,(t) — G(¢)] = o,(¢,) and G(¢,) = t,, it can be seen that with probability
— 1 as n — oo, all the crossings occur inside the shrinking neighborhoods
B(t; ¢,). Within these shrinking neighborhoods, we show that all the crossings
in fact occur in a §, -subinterval. Further, within these §,-subintervals, say
(T, ,,T,, + §,], we approximate n[G(t) — G(T; ,)] and n[F(t) — F(T, )] by
Poisson processes M, (-) and M,(-) with rates ; and 1, respectively. Fmdmg the
distributions of L, (n) and L¥(n) then reduces to ﬁndmg the distributions of
L, = number of times M,(u) equals M, (u) for all u > 0 and of L} = number of
tlmes M, (u) strictly crosses M, (u) for all u> 0. Similarly, if «, <1 orif ; > 1
and t,=0or 1, K,(n) reduces to K, = number of times M, ( u) equals u for all
u> 0 The case a; > 1 and 0 < ¢, < 1 is more complicated because in this case
when G, (¢) first crosses F(t) from below, it overshoots F(t). The distribution
of K (n) depends on the distribution of this random overshoot. However if
K, (n) 2 1, ie, G,(t) crosses F(t) again from above, say at T, ,, so that
G/T, ,) = F(T, ,) we can approximate n[G,(t) — G(T, ,)] by M, (+) and use
the same arguments as in the case «, > 1 and ¢, = 0 to get the results We use
renewal-theoretic arguments and the apphcatlon of Wiener-Hopf techniques to
obtain the distributions of K, L,, L¥ and to calculate lim,_ P{K,(n)> 1)
when ¢, > 1and 0 < ¢, < 1.

En route, we derive the following results on the boundary crossing probabili-
ties of Poisson processes. We show that for a > 1

P{M_(u) = u for some u > 0} = («)
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and

lim P{M(u) = a + u forsome u >0} = [1 — 6(«a)]/(a — 1).
These two results may already be known in the literature. Even if this is the case,
our method of proof based on Lemma 4.4 in Section 4 should be of independent
interest.

3. A stochastic dominance problem. We were led to the rv’s K(n), L(n),
and L*(n) while investigating certain types of stochastic dominance procedures
that arise in finance. In this section, we briefly describe the implication of the
results in Section 2 to an algorithm proposed by Bawa, Lindenberg, and Rafsky
(1979) for determining stochastic dominance. We start with some background on
the problem.

Decision-making under uncertainty may be viewed as choices between alterna-
tive probability distributions of returns. In the stochastic dominance (SD)
approach to this problem, one restricts an individual’s utility function to a
certain reasonable class and obtains the admissible set of alternatives for this case
[see Whitmore and Findlay (1978) and references therein]. The first-order SD
(SD,) admissible set is valid for all decision makers with nondecreasing utility
functions, the second-order (SD,) admissible set for the subset of risk-averse
individuals, and the third-order SD (SD,) admissible set for further subset with
decreasing absolute risk aversion.

The determination of the SD-admissible sets involves pairwise comparisons of
probability distributions. For example, if F and G denote the distributions of two
alternatives, it is known that F dominates G in the SD, sense if and only if
It [F(u) — G(u)] du < 0 for all ¢ with strict inequality for some ¢, and in the
< SDy-sense if and only if [* (% [F(u)— G(u)]dudv <0 for all ¢t with strict
inequality for some ¢ (Bawa, 1975). In practice, the distributions F and G are
unknown and are estimated by the edf’s F,, and G, based on past economic data.
The SD-admissible sets are then determined by comparing the distributions F,
and G, at the 2n jump points. However, there are typically a large number of
such distributions and it can be rather time-consuming to determine the SD-
admissible sets.

Recently Bawa, Lindenberg, and Rafsky (1979) introduced an efficient al-
gorithm for determining SD-admissible sets. Among other things, the algorithm
exploits a zero-crossing property which observes that the point ¢, where F,
crosses G, is a point of either local minima or maxima for H,(¢) = [* _[F(u) —
G, (u)] du. To determine SD,-dominance therefore it suffices to look at the L*(n)
points where F,(t) crosses G,(t). A similar property is used for SD,-comparisons.

At first glance one may speculate that if F crosses G at k points (and typically
k will be small), L*(n) will be close to % for large n so that the number of
computations does not grow with n. However, our results in Section 2 show that
the value of L*(n) can be rather large even if % is small. For example, let
F(t) = ®(t/0,) and G(t) = ®(t/0,) where ®(t) is the standard normal df, and
0, < o0,. Then F crosses G at t = +o0 and at ¢ =0, and G'(t)/F’(t) =0 at
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t = t+o0and = o0,/0, at t = 0. From Theorem 3 in Section 2 we note that if o, is
close to 0,, L*(n) can take on large values. For example,

E(L*) =0,/(0, — 0,),

which — o0 as o, — 0.

It is possible to construct smoothed edf’s for which the number of crossings
converges in probability to £ as n — co. The nearest-neighbor or kernel type
approaches to density estimation can be used to obtain such smoothed edf’s.
This suggests that one may gain by smoothing the edf’s before using them in the
algorithm of Bawa et al. (1979) to determine SD-admissible sets. However, to be
useful, these estimates need to be computationally simple.

4. Auxiliary results and proofs. Let {N;}*2, be a sequence of Poisson rv’s
which are independent of the underlying rv’s {U;} and {V;} with EN, = ;. Let
{e,} and {5,} be defined as in (2.3) and (2.4) in Section 2 with ¢, = nd,. We use
the notation I(A) to denote the indicator function of a set A. We start with
some results on the relationships between the edf’s and Poisson processes. The
following result is well known [see, for example, Kac (1949)].

LEMMA 4.1. For u € [0, n], Z?’;II(Ujs u/n) is a Poisson process with
rate 1.

Next fix ¢, and «, where G(¢,) = ¢,,0 < ¢, < 1,and a = G'(¢,) # 1. Let {¢,},
0 < ¢, < 1, be any sequence for which ¢, —» ¢{,asn — oo. Fort € [¢,, t, + 6,] we
can approximate n[G,(t) — G,(t,)] by a Poisson process M,.

LEMMA 4.2. There exists a Poisson process M, such that

lim P sup[n[G,(6) - G,(¢,)] - M(n(t - 2,)|> 0} =0.

n—x t,<t<t,+8,

ProoF. Let W, = G(V;) where V; ~ G. Consider M (u) = Zf’;ll(tn < W <
t, + au/n). It follows from Lemma 4.1 that M (u) is in fact a Poisson process
with rate a on [0, c,). So
> 0}

P«( sup

{ t,<t<t,+96,

n Nn
YIt,<Vi<t)- L I(t,<W,<t,+a(t—t,))
j=1

j=1

= [G(tn + 811) - G(tn)]Ean - nl

N, :
+ P{ sup Y [I(G(t,,) <W < G(t))
ty<t<t,+8,| =1

~I(t, < Wy<t,+a(t—1t,))]

>0}.
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The first term -0 as n — o since G(¢,+ 6,) — G(¢,) ~ 6,G'(t;,) and
E|N, - n|< JE(N, - n)® = n'/2 To show that the second term — 0, note that
sup;,_, | <slG(¢) — G(t,) — a(t — t,)| = 0(8) as 6 — 0. Bound this o(8) term
by & - B(8) where B(8) - 0 monotonically as & — 0. Now choose §,
with ¢, < y1/B(n"'/?). Then the second term is bounded by §,8(8,)EN, =

¢, B(8,) < B(8,)/ yB(n" %) < \/B(n"?) > 0asn > 0. O

Next we need some results on the boundary crossing probabilities of Poisson
processes. It is known that for a <1
(4.1) P{M (u) = uforsomeu >0} =1 — P{M,(u) <uforall u>0}

= .
The second equality follows from Theorem 1 in Chapter 3 of Takacs (1967). To
get the first equality, note from the strong law of large numbers that M (u)/u —
a <1 as u— . Hence if M (u) > u for some u, it must cross the line u from
above again, say at u*, so that M (u*) = u*. The following lemma gives the
probability for a > 1. Let 6(a) < 1 satisfy 6(a)e ) = qe™
LEMMA 4.3. Fora > 1,

P{M(u) = ufor someu > 0} = 6(a).

Before proving Lemma 4.3, we calculate
(4.2) f(z) = P(M(u) + z > uforall u> 0}.
Let {X;}* | be i.i.d. standard exponential rv’s, and let
P(a,t)=P(X,+ - +X;<a(j—-1)+¢ j=1,...,n}.
It can be checked that
(4.3) f(z) =P (a,az).

LEMMA 4.4.

0 ifa(j—1)+¢t<0 forsomej<N,

. _ n—1 ] .
(i) P(a,t) = 1— E e t(ja + t)’ 1/j! otherwise.

J=0

0 ifa<l1,"”
1 — e - 0@/ ey >,

(ii) P (a,t)= {

ProoOF. The easiest proof we know is by induction. Let B, = 1 and for j > 1,
[t a+t—x, (J=Dat+t—x; - -+ —x, ‘
B, = /0 da, fo dax, / dx;.

0



CROSSINGS OF EMPIRICAL DISTRIBUTION FUNCTIONS 883

Then if P, = P(a, t),
t o+ t—x; (n—Da+t—x;— - —x, . _
P = ['a dxy - dx, e

0
— _ —(n—Da-t
=P, _,—B, e .

We show that B, = t{(na + )" '/n! which immediately gives the expression for
P,. Integrating B, over x,,, it can be shown that

S B, ,[(j - Dal’/jt=[(n - Da + t]"/nl.

J=0
Now Abel’s identity (Riordan, 1968) gives

(44) x'(xtyenB) = ¥ (F)x+ k8) Ly + (n - h)p]" "

k=0
Setting x = ¢ y= —a, B =a,and £k = n —j in (4.4) we get
n t , —1)a]’ t+ (n—-1)al]”
Z . [t+(n_j)a]n—j—|[(] . ) ] — [ ( ) ] ,

2o (n=J)! J! n!

ie, B, ;=t[(n—j)a+ ¢]" /7' /(n — j)! as claimed. Now as n = o0, P, > P,_
where
< . .
Po=1-e'Y (t/a)(j+t/a)’ (ae ) /).
j=0

To show P_ is of the form claimed in (ii), let y = —n[1 — 1/6(a)], 8 = 11in (4.4)
and let n — 0. We get

e =x ¥ [0(a)] *(x + k)k_le“""’/k!.
k=0
Setting x = ¢/« gives the desired result. O

ProoF oF LEMMA 43. Let T =first u>0: M (u)> u. Since a>1,
P{T < w0} =1 by the law of large numbers. Let Z = M (T') — T, the amount of
overshoot at T, and let M/(u) be a Poisson process independent of Z. Then

P{M,(u) # uforallu >0} = P{M(u) > uforallu>T)
= P(M/(u) + Z > uforall u> 0}
= Ef(Z)

from the definition of f(z) in (4.2). The distribution of Z can be obtained from
the Wiener—Hopf results in Feller (1971). Let Y; = (X,/a) — 1 where the X,’s are
ii.d. standard exponential. Then Z can be represented as the ladder height
variable for the process S, = Y, + .-+ +Y,, S, = 0. The results on page 405 of
Feller (1971) show, after some algebraic manipulations, that Z has density

(4.5) h(z) = ae [e-0ll=2 (<> <1,
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From this we get

Ef(Z) = /le(a,az)h(z)dz
=1-6(a). |

LEMMA 4.5. Fora > 1,
lim P{M,(u) = a + u for someu >0} = [1 — 6(a)] /(a — 1).

a—oc

Proor. For fixed a > 0, let T, = first u > 0: M (u) > a + u, and let W, =
M(T,) — (a + T,). Then by the same arguments as in the proof of Lemma 4.3,

(4.6) P{M(u) # a + uforallu >0} = Ef(W,).

To obtain the limiting distribution of W, as a — oo, once again let Y, =
(X,/a) — 1, X;’s i.i.d. standard exponential. Note that W, has the same distri-
bution as the amount of overshoot for the process S, =Y, = --- +Y,, with
S, = 0, when it first exceeds a. Consider now the related renewal process
S,=2Z,+ -+ +Z, with §; = 0 where the Z;’s are the ladder height variables
that we considered in the proof of Lemma 4.3 for the process S,. W, also has the
same distribution as the amount of overshoot for the S, process when it first
exceeds a. Since the Z,’s are nonnegative, we can apply the results in Feller (1971,
page 369) to get the limiting distribution of W, as a — o as

(4.7) lim P(W, <z} =p~ / [1 - H(x)] dx

where H(x) = [§h(y) dy, h is given by (4.5), and p = [/[1 — H(x)] dx. From this
we see that the limiting distribution has density
" (4.8) w(z) = [a/(a—1)](1 — e lerb@a-2)) <z <1,

Since f(z) = P, («a, az) is bounded and continuous, we get

lim Ef(W,) = fP (a,az)w(z) dz

a—oC

=1-[1-6(a)]/(a—1).

The result now follows from (4.6). O

We study the crossings of F,, and G, in several steps. We start with the
crossings of F,(t) and ¢, + a(t — ¢,), the line through t, with slope a. Here ¢,
and « are fixed with0 < ¢, <1and 0 < a # 1. Let 71 (t(,) be the first time F,(t)
crosses t, + a(t — t,), i.e,

0 if ¢, =0,
(49) l(t,) = (firstt>0: F(¢t) <ty +a(t—1t,) ifty>0,a>1,
first ¢ > 0: F(t) > ¢, + a(t — t,) ift,>0,a<1.

Similarly define /(¢,) as the last time F,(¢) crosses ¢, + a(t — t,) with t/(1) = 1.
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From the fact that 1 — F,(1 — ¢) has the same distribution as F(t), it follows
that

(4.10) P(rl(t,) < ty+x} = P{1J(1 — t,) > 1 — ¢, — x}.

This observation will prove useful later. Consider the shrinking neighborhood
B(t,; €,). Since F(t) = F(t) + O,(n~'/?), it can be shown using Chebychev’s
inequality that for a > 1

(4.11) lim P{F(¢t) < ty+ a(t—t,) forallte [¢,+¢,1]} =1

n—oc
and

lim P{F(¢t) > t,+ a(t — t,) forall t € [0,¢,—¢,]} = 1.

n—oc

For a < 1, (4.11) holds with the inequalities reversed. Therefore

(4.12) li_{n P{[Tnf(tn)"rrf(to)] C B(ty; £n)} =1

We now show that

(4.13) lim P{tl(¢,) — 1/(t,) <8,} =1,

i.e., all the crossings occur in a §,-interval. This means that at most c, order
statistics around ¢, are involved in the crossings. Since this is true for any
¢, = nd, - oo with n'/2§, — 0, there is only a finite number of them.

LEMMA 4.6.

(i) lim P{F,(¢t) <t,+ a(t —¢t,) forallt>/(t)) +8,} =1 fora>1.

n— o

(i) lim P{F,(¢) > ty+ a(t —¢t,) forallt > 1/(t)) +8,} =1 fora <1.

n—xx

PROOF. Consider first the case a > 1 for which F(1/(¢,)) = ¢, + a(t/(¢t,) —
t,). So

P{F,(t) > t, + a(t — t,) for some t > 7/(t,) + §,}

(4.14) < P(E(t) = F(5{(t,) +8,) > alt = 5/(t,) = 8,)
. +8,(a — 1)/2 for some ¢ > 1/(¢,) + 8,

+P{Fn('rn/(t()) + 5n) - Fn(’rn’(t())) > 8,,(0( + 1)/2}

It follows from the strong Markov property of F, that F(t/(t,) +8,) —
F(1/(t,)) has the same distribution as F,(8,). So by Chebychev’s inequality, the
second term in (4.14) is less than 48,(1 — §,)/(n8*(a — 1)) which — 0 as
n — . To show that the first term in (4.14) — 0, consider the Poisson variables
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{N,}. Since P{(N, > n} - ; as n = oo,

lim P{F,(t) — F,(/(t,) +8,) > a(t — 1/(¢,) — 8,)
+8,(a — 1)/2 for some t > 1/(¢,) + 8,}
NII
Z I(Tnl(t()) + 811 < U/S t) - na(t - Tnl(t()) - 8n)

J=1

< lim 2P

n—oc

> Cn(a — 1)/2 for some ¢t > T,,’(to) + 8,,}

< lim 2P{ sup M (u) —au> c,(a — 1)/2},

n—x O<u<oc
which equals 0 from the following argument. Let
g(a)= P{ sup M,(u) — au > a}.

O<u<ox

If a’ < a,
(4.15) gla)=gla)Eg(a—a - Z),
where Z is the amount by which M (u) overshoots the line a’ + au at the point
of first crossing. Let g, = lim,_, g, (a). By letting a —» « and then ¢’ —» oo in
(4.15), we get g, = g2, i.e, g, = 0 or 1. But g (a) is monotone decreasing in a
and from (4.1) we see that g,(0) = 1/a < 1. Hence g, = 0.

When a < 1, F, overshoots the line ¢, + a(¢ — ¢,) at the time of crossing
/(t,). However, this overshoot is less than 1/n and so

P(F,(t) < ty+ a(t — t,) for some t > 7/(¢,) + §,}
< P(F(t) = F,({(t,) + 8,) < alt - 1/(t,)) - 8,)
+8,(a — 1)/2 for some ¢ > 7/(t,) +3,}
+ P{F,(1/(t,) + 8,) — F,(1/(t,)) < 8,(a+1)/2 - 1/n}.

The second term in (4.16) — 0 by Chebychev’s inequality. The first term — 0 by
an argument analogous to that for & > 1 but now based on Lemma 4.3. O

(4.16)

Next consider the crossings of F(¢) and Ah(¢) in B(t,; §) when h(t,) = t, and
h(t) is continuously differentiable in B(¢,; 8) with 0 < A’(¢,) # 1. Let v/(¢,) and
vl(t,) respectively be the first and last crossings defined as in (4.9). It can once
again be shown that

'}EI:CP{[v,{(tO), Vri(to)] = B(t0§ En)} =1.

Similar arguments as in Lemma 4.6 can be used to obtain the following.

LEMMA 4.7.
lim P{v,f(t()) —vi(t,) < 8”} =1.

n—x
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ProoF. We will consider just the case h/(t,) > 1 since the other case is
similar. There exists « with 1 <a < A’(¢,) such that h(t) > h(v/(¢,)) +
a(t — v’(to)) for v’(t()) <t<t,+4. Since F("f(to)) = h(v](t,)),

lim P{F,(¢) < h(t)forall t > v/(t,) + 8,

> lim P{F,(t) - F,(v/(t,)) < a(t = v/(t,)) forall ¢ > v/(£,) +38,)},
which can be shown to equal one by using arguments similar to those in Lemma
46. 0

Next consider the edf G,(t) with G(t,) = ¢, and G(¢) continuously differentia-
ble in B(t,; 8). Let p/(¢,) and p/(¢,) be respectively the first and last crossings of
G,(t) and the line ¢, + B(t — t,), B # G'(¢,), in B(t,; 8). Again we can show that

nli_)n:cp{[l",fz(to)’ P'ln(to)] < B(to; En)} =1

LEMMA 4.8.

nlingop{”ln(to) - ity < 8,,} =1

ProOF. Let v/(#)) and v)(¢,) be the first and last times F(t) crosses
t, + ,B(G '(t) — t,)in B(t,; 8). Since G,(t) has the same distribution as E(G(¢)),
(v/(¢,), v!(¢,)) has the same distribution as ( G(p, I(t0)), G(p (t())) The result now
follows from Lemma 4.7 and the fact that G(p’(¢,)) — G(pl(t,)) is of the same
order as (p'(¢,) — pl(t,)). O

We can now complete the proofs of the results in Section 2.
Proor oF THEOREM 1. We consider three separate cases.

Case (i) a;=G'(t;) <1. Let pl(¢;) be the first time G,(¢) equals ¢ in
B(t; 6). Note that p/(¢;) exists with probability — 1 as n — co. By Lemma
4.8, we can restrict attention to the number of times G,(¢) equals ¢ in
[w/(t,), pi(t;) + 8,]. In this interval, we can use Lemma 4.2 to approximate
G (t) — G (pl(t)) = G(t) — nl(t) by a Poisson process M, . Therefore, with
probablllty — 1 as n — oo, K;(n) is the same as the number of times M, (u)
equals u in [0, ¢,]. Since ¢, = o as n = o and «a, < 1, it can be shown that ‘the
probability M, (u) equals u for some u € (c,, oo) tends to 0 as n — 0. So we
may as well cons1der K; = number of times M, (u) equals u for all u > 0. Note
that K, > 1 since M, (0) 0. From (4.1),

P{K,=1} = P(M,(u) # u forall u > 0}
=1-a,.

From the strong Markov property and the stationarity of the increments of
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M, (u), it can be seen that
PK,=j+1}=(1-a)al, j=0,1,....

CASE (ii): &, = G'(¢,) > 1, ¢t,= 0 or 1. It suffices to consider the case ¢, = 0
since the case ¢, =1 can be obtained from this by considering the process
G, (1 — t). By Lemma 4.8, we restrict attention to the crossings in [0, §, ]. By
Lemma 4.2, with probability — 1 as n — oo, this is the same as the number of
times M, (u) equals u in [0, ¢,]. Again since ¢, > oo we may as well consider
K, = number of times M, (u) equals u for all u > 0. By Lemma 4.3,

P(K,=j+1})=[1-0(a;)]0/(a;), j=0,1,....

Case (iii): a,= G(¢;)>1, 0 <t;<1. Let pl(t,) be the first t € B(¢; 8)
such that G,(¢). By Lemma 4.8, we can restrict attention to the number of
crossings in [p/(¢), n/(¢;) + 8,]. The calculation in this case is a bit more
involved because G,(¢) overshoots ¢ at p/(¢,). If we condition on {K,(n) > 1} so
that there is a first ¢t* € B(¢; 8) at which G,(t*) = t*, we can use the same
arguments as in case (ii) to get

P{K,=j+ 1K, >1} =[1-0(a;)]6(e,), j=0,1,....
P{K (n) = 1}. Let

We now compute lim,, _,

R, =n[G,(rl(t)) - wi(2)].

By approximating n[G,(¢) — G (pl(t,)] for t € [ul(t,), u/(t,) + 6,] by the Pois-
son process M, , we see that

lim P{K,(n) = 0}

lim P{M,(u) + R, > u forall u > 0}

= lim Ef(R,),
where f(-) is given by (4.2). Let V,.,, < --- < V., denote the order-statistics

corresponding to {V;}7_, where V; ~ G. Let J, = first j > n(¢;, — ¢,): V., > j/n.
Then R,=dJ,—nV, , We know that V.., has the same distribution as
G (U, ,,) where U, , is the order statistic from the uniform distribution. Recall
also that pf(t ) € B(t e,) and that in this interval |G(t) — ¢, + a,(t — t,)| =
o(e,). By using these facts, it can be shown that the limiting distribution, as
n — o, of R, is the same as the limiting distribution, as a — oo, of W, =
M. (T,) — (a+ T,) where T, = first u>0: M,(u)>a+ u. It then follows
from (4.6) and Lemma 4.5 that

lim P{K,(n)>1} = lini P{Ma’(u) = a + u for some u > 0}

n—x

=[1-60(a)]/(a, = 1). o
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PROOFs OF THEOREMS 2 AND 3. Let «, = G(t;) and let p/(¢;) be the first
t € B(t,; 8) at which G,(¢) equals F,(¢). For a; > 1,

P{G,(t) > F,(¢t)forall t (p/(¢,) +8,, ¢, + 8]}
> P(G,(t) = G,(pi(t))) > (¢ — pl(2))(1 + a,) /2
forall t €(p/l(t,) +8,, ¢t + 8]}

X P(F,(t) = F,(pi(t) < (t = pi(t))(1 + ) /2
forall ¢ €(p/(¢,) +8,, ¢ + 8]}

— 1 as n — oo by Corollary 2. Similarly for «, < 1,

lim P{G,(t) < E,(t)forall ¢t €(p/(¢,) + 8, ¢ +6]} = 1.

h—oC
Therefore we need to consider only the number of crossings in [p/(t,), p/(¢;) + 8,]-
In this interval we approximate G,(t) — G (p(t,)) and F(t) — F(p(¢,)) by M,
and M,.

Therefore, with probability — 1 as n — o0, L,(n) is the same as L, = the

number of intervals for which the graph of M, (u) equals the graph of M;(u) for

all u > 0. Again we note that L; > 1 because M, (0) = M,(0) = 0. To compute
the distribution of L, let T = first u > 0: M, (u) # M,(u), and let

7(a;) = P{M,,’(u) = M,(u) forsome u > T}.
Then by the strong Markov property and stationarity of the increments of
Mn,(u) - Ml(u),
P(L;=j+1} = [t —a(a)]7/(e;),  j=0,1,....

To calculate 7(«,) first suppose a, < 1. Then 1 — 7(a,) = P{M, (u) < M(u) for
all u> T}. Let {X,}2, and {Y,}?°, be mutually independent i.i.d. exponential
rv’s with means 1 and 1/«; respectively, and let S, = ¥7_,(X; — Y,). Then

P{M,(u) < M(u)forallu> T} = P{S, <0}
xP{M,(u) < M,(u) forall u > 0}
= P(S, < O}P{ m’?xS,, < 0}.
If H denotes the distribution of S,, from Eq. (5.9) in Feller (1971, page 410)
we get
(4.17) P maxS, < 0} = a-(a),
where k(a) solves the equation [*_e**?Y dH(y) = 1. This gives k(a) = a~' — 1.

Also
(4.18) P(S,<0)=1/(1+ a).

Cémbining these results, we get
1-7(a)=01-a)/(1+a).
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The result for «, > 1 can be obtained from the fact the number of intervals for
which the graph of M,(u) equals that of M(u) for all u > 0 has the same
distribution as the number of intervals for which the graph of M,(u) equals that
of M, (u) for all u > 0. Therefore

1-7(a,) =[1-p(a)]/[1+p(a,)],
where
p(a,) = min(a;,1/a;).
To prove Theorem 3, observe that with probability — 1 as n — oo, L¥(n) is

the same as L} = the number of times M, (u) crosses M,(u) for all u > 0. Note
from (4.17) that for a; < 1

P(M,(u) < M,(u)forall u > 0} = P{ max$, < 0}

n
=1-aq;.
Similarly for «; > 1,
P{Ma,(u) > M,(u) forall u > 0} =1-1/a,.
Using this, it can be shown that
P(Ly =j+1} = [1 = p(a)] p/(a,). O
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