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NONUNIFORM ESTIMATES IN THE CONDITIONAL
CENTRAL LIMIT THEOREM

BY DIETER LANDERS AND LOTHAR ROGGE
University of Cologne and University of Duisburg

Let X,, n €N, be ii.d. with mean 0, variance 1, and E(|X;|") < oo for
some r > 3. Let B be a measurable set such that its distances from the ¢
fields o(X;,..., X,) are of order O(n~'/%(log n)~"/?). We prove that for
such B the conditional probabilities P(n~'/2X7 X, < t|B) can be ap-
proximated by the standard normal distribution ®(¢) up to the classical
nonuniform bound (1 + |¢")~'n~'/2, An example shows that this is not true
any more if the distances of B from o¢(X,..., X,) are only of order
O(n='%(log n)~"/%*¢) for some & > 0. For the case r = 3 one can obtain the
corresponding assertion only under a strengthened assumption.

1. Introduction and notation. Let X,, n € N, be a sequence of i.i.d. real
valued random variables with mean 0 and variance 1. Put S, = X ,X; and
S¥ =n"12%" X, Let Beo(X,: n€N) with P(B)> 0. The conditional
probabilities P(S* < t|B) play an important role in several fields of application
and have been investigated in a lot of papers (see e.g., [7], [2], [3], [4]). The
classical conditional central limit theorem of Rényi (1958) states that for each B

(1.1) P(S* < t|B) — ®(¢t) - 0,
neN

where @ is the standard normal distribution.

The convergence order in (1.1), however, depends critically on the special set
B: By suitable B you can make the convergence order in (1.1) as bad as you want
(see Example 1 of [1]). In [2] and [4] approximation orders and second order
expansions for the conditional probabilities P(S* < ¢|B) are given for special
sets B. It turns out that the distances

d(B,o(X,,..., X,)) = inf{P(B2A): A € o(X,,..., X,)}

essentially determine the approximation results for the conditional probabilities.
If, for instance, d(B, o(X,,..., X,)) = O(n"/%(log n)~#) for some 8 > 2, then

(1.2) sup |P(S;* < t|B) — ®(¢)| = O(n™"/?),

a result which fails if we replace 8 > 2 by B = 2 (see Corollary 3 and Example 5
of [2]).

In this paper we give for a large class of sets B a nonuniform estimate for the
conditional probabilities of the form .

(1.3) |P(S* < t|B) — ®(¢t)| < c(1 A |t| ")n" 12,
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Such nonuniform estimates have wider applicability than approximation results
of type (1.2), e.g., for obtaining inequalities for || ||, norms and for the theory of
moderate deviations. Until now nonuniform bounds of type (1.3) were only
known for B = { (see, e.g., Petrov (1975), Theorem 13, page 125).

If E(|X,|]") < o for some r > 3, we prove that relation (1.3) holds for all B
satisfying _
(1.4) d(B,o(X,,..., X,)) = O(n~2(log n) %),

where B(r) = r/2 for r > 3 and B(3) > 2. We show by an example that assump-
tion (1.4) cannot be weakened, even if X, is standard normally distributed.
2. The results. For a bounded random variable Y define
d(Y,e(Xy,..., X,)) =inf{E(Y - Z|): Zis o(X,,..., X,,)-measurable}.
Observe that
d,(1g,0(X;,..., X,)) <d(B,s(X,,..., X,)) < 2d,(15,0(X,,..., X,))

and that d(Y,0(X,,..., X)) 2,cn 0 for each o(X,: n € N)-measurable and
bounded Y.
In the following we write E(S;* < ¢,Y) instead of E(Y * 1(gs . 4)-

THEOREM. Letr >3 and X,, n € N, be i.i.d. random variables with mean
0, variance 1, and E(|X,|") < co. Let Y be a bounded random variable and
assume that

dy(Y,o(Xy,..., X,)) = O(n“‘/z(logn)‘/“’)),

where B(r) =r/2 for r > 3 and B(3) > 3. Then there exists a constant c such
that forallt e R, n €N

|E(S¥<t,Y)—®(t)E(Y)|<c(1 At ")n" V2
PROOF. According to Theorem 4 of [3] we may assume that |{| > 1. It is well
known that there exists a ¢(Xj, ..., X,)-measurable random variable Y, with
(2.1) E(IY - Y,|) = dy(Y, o(X,,..., X3)).

Put N, = {2 keN} and N,={r€N;: v<n/4}. Let Z,=Y, and Z, =
Y, - Y, , for 4 < » € N,. In the following c; denote constants depending only on
Y, r, and the distribution of X,. Using (2.1) and our assumption we have

(2.2) E(|Z,)) < e~ ?(logr) P, »veN,.
Let j(n) = max N,.Since Y = Y - Y}, + L, c v Z,, We have

E(Sy <t,Y) - ®(6)E(Y)| <|E(S¥ < t,Y - Yp) — (E)E(Y = Y,))|
+ X |E(SF<tZ)—-2(t)E(Z,)|.

vEN,
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Hence it suffices to prove
(23) |E(S*<t,Y-Y,,)-®)E(Y- Yim)| < (1 A 1] ")n"12,
(2.4) L |E(Sr<t,Z) - ®(¢)E(Z,)| < cs(1 A [t]")n" V2,

veN,
For the property (2.3) let ¢ < 0. Then
|@()E(Y - Y}(n))l <e 1A |t|")E(|Y— Y}(n)l) <@y (1A |87 )n 712,

Hence (2.3) is shown, if we prove
(2.5) |E(S* < t,Y - Y,))| < co(1 A |7 )n" 122,
Let —(2log n)/2 < ¢t < 0. Then

|E(S* < 6,Y = %)) | < B(|Y = Y0y |) <21y (1 A (log n) 2712

<c,(1 A~ )n"12,

Let ¢ < —(2log n)'/% then ®(¢) < cg(1 A |¢|~")n"'/2 Hence, by Petrov ((1975),
Theorem 13, page 125),

|E(Sr<¢Y- Yim)| < coP(SF < t) < ¢| P(S* < ¢) - ()| + c®(2)
S el A1) + eg®(¢) < ey(1 A 87" )n V2,

For property (2.4) let F, be the distribution function of Si, o, = o(X,,..., X,)
and ¢, (@) = (tn'? - S(w))(n — »)"/2. With S¥ =3 . X, we have
Sy, =48,-,,8¥, is independent of 7, and hence,

E(S} <t,2,) = E(E*g,_,Z,)
= E(2,P*(SF < t)) = E(2,P*(S, + §¢, < m'?))
= E(2,P*((n-»)"s%, < (V2 - 8,)(n - v)"7)
= E(ZF,_(¢,,))
Thus for » € N,,,
E(Sr<t2) - ®(t)E(Z,) = E(%,[F,_[¢,,) - ®(¢,,)])
+E(Z,[2(¢,,,) - ®(2)]).
Since furthermore (see Petrov (1975), Theorem 13, page 125)
1B tn,)) = @(8,,)| < eno(1 ALt | " )n72, ven,,

relation (2.4) is shown if we prove

(2.42) ()= T E(1Z,|(1 Alt,,,|77)) < el A 1477),
(2.4b) L E(1Z|2(¢,,,) - ®(£)]) < ca(1 A 18 7")n 12,

vEN,
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For property (2.4a) use
1Alt,, 17" < oL +]Sn7 2] ) A 1177);
hence, by (2.2),

a,() S el A 17) T [2(2,1) + E(js,2])]

<en(LA1H77) + el A 18772 ) v

veN,
el A1Y7).
For property (2.4b) let ¢ > 0 and put ¢(¢) = ®’(¢). As

T E(1z,]|@(m/2(n ~»)7") - 2(2)])

veN,

< Y t(nl/z(n -») V- 1)<P(t)E(|Z»|)

veN,

<ecn(lA 1Y) X E(1Z,])v/n

vEN,
<en(L A1)t Y »/%(logv) A7
VEN,
< el A g 7)n"2,
it suffices to prove

26) T E(Iz|

veN,

®(t,,,) - q)(ml/z(n - ")_1/2)|) < cog(L A |87 V2,

Let at first ¢ > ((r + 2)log n)"/2. Then @(¢/2) < cyi(1 A |¢|")n~ /% Hence,

Y E(IS|<im?, 17|

veN,

®(t,,,) — @(t*(n - ») "))

<y 3 n V%(t/2)E(|S,])
(2.7) "<

<A )nt Y E(]S,])

veN,
<cyu(1 A~ ")n" 12,
Furthermore (use, e.g., Theorem 2 of Michel (1976) for (+))
) E(IS,,l > im'2,|Z,||®(¢,,,) - (I)(ﬁll/Z(n _ l,)—1/2)|)

veN,

< e X P{IS¥]> tn'//(2v'%)}

veN,
<y E (t(n/p)l/2)_',,—(r—2)/2
(+) ;.e]\]’l
< cgo(1 A |70~ 22,
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Together with (2.7) this yields (2.6) for ¢ > ((r + 2)log n)'/2. Let finally 1 < ¢ <
((r + 2log n)/2. Put a = r'?[E(|X,|*)]*/® and A, = {|S,| > a(vlog »)/2}. Then
we have (as in the proof of formula 15, page 233 of [2]) that

(2.8) Y E(IS,|1,) < co.

veN,

Let
M,=M,(t) = {v € N,: a(vlogr)"” < tn1/2/2}.
Then
N, — M,(t) c {v € N,: » > nt*/(4a*logn)}

and hence

> £z

veEN,

< 21:»1 [(I)(tnl/z(n -»)"%

8(t,,,) - o(m2(n - ») ") |1z)

—&(m/2(n — ») "% — a(vlog»)*(n - ») )| E(1Z,)
+ X E(Z))

veN,— M,

< aV2n%(t/2) ZM (vlog»)?’E(|Z,))

+ Y »~12(log ») P
N, 2v>nt?(4a®log n)~!

<cu(1 A1 )n"2 Y (log u)_'g(r)“/2 + cg(log n/n)l/zt‘l(log n) PO

veN,
<cg(l A |g7)n"12,

where the last inequality follows from —B(r) + 3< —1 and 1 <1¢<
((r + 2)log n)/2. Consequently the proof of (2.6)—and hence the assertion—is
shown if we prove

b(t)= X E(|Zp|1A,|‘I’(t,,,,,) - (I)(tnl/z(n _ V)—l/z)l)
(2.9) veN,
<cyu(lA | ")n" 12
Let
M, = M,(t) = {"E N,: tn*? > 2(»(r — 1)log V)l/z}.
Then
N,— M,(t) € {v € N:v > *n(4(r — Dlogn) "'}
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and we have

b(t)< X E(|Z”|1A-1(|S..IS(l/2)tn‘/z)l®(tn,v) - ‘I’(tnl/z(n - u)'l/z)l)

vEN,

> E(|Z”|1{IS.I>(1/2)m1/2}|‘1’(tn,,,) - ‘I’(tn1/2(n _ V)—l/z)l)
ueM'l

+ Y E(IZ,;IlAqul(tn,y) — q)(ml/z(n _ u)_1/2)|)
veN,-M,

< C35 Z n_1/2¢(t/2)E(|Sp|1A,) + €3¢ Z P{lS,,*l > (l/z)ml/z”_l/z}
vEN, veM,

veN,—M,
Using (2.8) and Theorem 2 of Michel (1976) we obtain
b,(t) < ey (L A |t]77)n71/2 + ¢y Y v 2y (22
vEMn
+ Yy »~1%(log v)_ﬂ(r)
N,2v>2n(4(r—1log n)~}

<Scu(LA 1) 2+ (LA | )R"72 Y »
veM,

+eo(log n) 2t~ 'n"2(log n) "
<cy(L A ")n"12,
This proves (2.9) and hence the proof is finished. O

Example 5 of [2] shows that for r = 3 we cannot obtain the assertion of the
preceding theorem any more if we replace in the assumption B(3) > 2 by B(3) = 2.
The following example shows that for r > 3 we cannot weaken the assumption
from B(r) =r/2 to B(r) < r/2. The examples work with indicator functions

g=lB.

3. Example. Let X,, n € N, be i.i.d. standard normally distributed random
variables. Let r > 3 and 8 < r/2. Put N = {2%": £ € N}. Using Lemma 3 of [2]
and the theorem of Liapounov for nonatomic measures it is easy to see that
there exist constants c,, ¢, > 0 and disjoint sets B,, » € N, with

(3.1) B, eo(X,,...,X,),
(3.2) B,c {S* < —c,(log»)"?},
(3.3) P(B,) = c,r~2(logv) *.

Put B =%, gB,. By (3.1) and (3.3) we have
(3.4) d(B,o(X,,..., X,)) = O(n""*(log n) *).
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Furthermore, we have for all n € N and ¢, = —¢,(log n)"/2,
P(S} < t,, B) — ®(t,)P(B)
2 Z (P(Sn* <t, Bv) - <I)(tn)‘l:,(Bv))

Nowv<n
+P(Sr <t¢,,B,) - 9(t,)P(B,) - Y P(B).
Nowv>n

Since
P(S¥<t, B)—®(t,)P(B)=>0 forv<n,»eN,
P(S* <t, B,) - ®(¢,)P(B,) = (1 - @(¢,))P(B,) 2 }P(B,), neN,
and
T P(B)=o(P(B)), neK,

ﬁ5v>n

we obtain for all sufficiently large n € N,
P(S} <t,, B) - ®(t,)P(B) > {P(B,) = }c,n"/*(log n) "
> es(1 Alt,| " )n12e, 72,

Since r — 28> 0, |¢,| = oo, relation (3.4) with B < r/2 does not imply the
assertion of our theorem.
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