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ASYMPTOTIC EXPANSIONS IN THE POISSON LIMIT
THEOREM

By A. D. BARBOUR

Universitdt Ziirich

Asymptotic expansions for the distributions of sums of independent
nonnegative integer random variables in the neighbourhood of the Poisson
distribution are derived, together with explicit estimates of the truncation
error. Expansions are also derived for the expectations of at most polynomi-
ally growing functions of such sums. Applications to the Poisson binomial
and Poisson negative binomial approximations are considered. The method
used is an adaptation of the Stein—Chen approach.

1. Introduction. In Chen (1975), Stein’s method of obtaining error bounds
for normal approximations was introduced in the Poisson context, and was used
to obtain rates of convergence in total variation to the Poisson distribution for
sums of stationary sequences of 0—1 random variables. Chen also observed that
Stein’s method is in principle suited to developing asymptotic expansions as well
as obtaining error estimates, and used it for independent 0-1 summands to
derive the second term in such an expansion, together with an estimate of the
remaining error: Kerstan (1964) had previously derived a similar result, with a
sharper error estimate, by a quite different technique. The Stein—Chen method
was refined in Barbour and Hall (1984) to yield the best known upper bounds for
the discrepancy between the Poisson distribution and that of a sum of indepen-
dent 0-1 random variables, as well as complementary lower bounds, and new
estimates for the error remaining after the second term in the asymptotic
expansion were also established. However, although Stein’s method was poten-
* tially applicable also to higher-order expansions, it proved in practice too
cumbersome to use.

In this paper, it is shown how, by means of a simple identity, the Stein—Chen
method can be made to yield a full asymptotic expansion with a minimum of
difficulty. The error estimates obtained perform well in comparison with other
estimates that are available. For sums of independent 0-1 random variables,
they agree with those of Barbour and Hall, when the series is truncated after one
term or after two. For the more general case of sums of independent nonnegative
integer valued random variables, the error estimates obtained after two terms in
the expansion differ only slightly from those in Barbour and Hall. Comparison
with Kerstan’s estimates, for integral nonnegative summands, of the error after
one term of the expansion is more complicated. By and large, the techniques of
this paper give better approximations, except when the summands themselves
are almost precisely Poisson distributed. In Section 3, expansions are also
obtained for the expectations of at most polynomially growing functions of the
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POISSON LIMIT THEOREM 749

sum, which can be used to derive nonuniform estimates of the rate of conver-
gence. Analogous results in the context of normal approximation are given in
Barbour (1986).

Deheuvels and Pfeifer (1986) have recently used an elegant operator technique
to study the error after one and two terms of the expansion in the case of 0-1
summands, but the only error estimates they give which are comparable with
those obtained here are those of Kerstan. They are mostly concerned with
asymptotic error estimates, valid when the mean of the distribution to be
approximated tends to infinity. This reduces the problem to a study of the
contribution of the first and second terms in the Poisson—Charlier measure
defined in (2.7) below, rather than of the whole discrepancy.

The principal tool in the argument is Lemma 1.1 below. Let X be
any nonnegative integer valued random variable, and let m;; and «;; denote
its jth factorial moment and cumulant, respectively. That is, m;; =
E{X(X —1)--- (X — j + 1)} is the jth derivative of E(2*) at z =1, and
the jth derivative of log E(2%). Set

v,=max{mg ;;; max (mp_gx }
1 { (4105 Osssl—l( t-s)®gs+11l)

Note that », is a maximum over quantities of degree / + 1 as moments of X, and
replaces the E|X|'*! error estimate available when ordinary, instead of factorial,
moments and cumulants are being used. Note also that

l

(1.1) My = ) (g)m[z-s]"[sn]-

s=0

[Kendall and Stuart (1963), Section 3.17 and Example 3.9].
For any function g: Z* — R, define

max |Ag(Jj)], rk,
Dk(g; r) = {OSer—k| g(])l
0 0<r<k,

and let g; be the function defined by g,(x) = g(x +j).
J J

LEMMA 1.1. Suppose that, for somel € N,
E{X"*",(g X)} < 0.

Then

) E(Xex) = T e+ 1) +ne)
where .

(1.9) [mu-+(&)| < B max |82(/)1(X)),

and

-1

b p(X) = Xp-l{x(X JY) e ¥ Mol X s)}-

!
s=0 S-
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REMARK. The conclusion of the lemma may be equivalently rewritten as

K s
E{Xg(X) - (EX)g(X + 1)} = L —SHE(N2(X + 1)} +n,_y(g).
s=1 *
ProoF. From Newton’s interpolation formula, for 0 <s <7 —1,
I-1-s

8f(x) - go( Jaresp@)| < (5 ,)  max |8()),

O<j<x—Il+s

for any function f and x € Z*. Hence

(14) [E(Xg(X)) - EE{X(X - U)ee)| < €{x( X 1 oles X))

and
g [0~ (X)) e <[, X Jouwms 1)
But 0<s<l-1.

T e(x(¥; 1)) et - T e E (e

s=0
because of (1.1), and the lemma thus follows from (1.4) and (1.5). O

The next two corollaries follow immediately from estimate (1.3). Let ¢, :=
Ev, (X), and note that ¢, < 2'v,/1!

COROLLARY 12. If, for some l€ N, |Alg| —sup120|A (J)| < o0 and
EX'*! < oo, then, forallj > 0,

E{Xg/(X)} - X K[:?ll'E{Asgj(X*' 1))

s=0

< ¢/lI8%| < 2% Agll/ 1!

COROLLARY 13. If X is a 0-1 random variable and ||Ag| < o, for some
le N, then, forallj >0,

E{Xg,(X)} - Z( 1)°p*HE{A%g, (X + 1)}| < p"* 1A%,

where p = P[X = 1].
COROLLARY 1.4. Suppose X has a factorial moment generating function with
nonzero radius of convergence, and let g satisfy

(1.6) sup |Mg(j)|<Crk, k=m,
Jjz0
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for some C, m > 0 and r < R, where R denotes the radius of convergence of the
factorial cumulant generation function of X. Then the identity

(17) E(Xg(X)} = T e (ag(X + 1))

§>0

holds.

Proor. The radius of convergence of the factorial moment generating func-
tion of X is no less than R. Hence, for I > m,

(l+1) l(s+1) 1 }

+ X

(r,)l+1 = (r,)s+1 (r,)l—s

< C'lz(—r—)l
rl

()] < c{

for any r < r’ < R and for suitable constants C’. Hence
lim |9,_,(g)| = 0. o
>0

REMARK. If A™g is bounded, it follows automatically that (1.6) holds with
r=2.

2. Expansions for distributions. In this section, it is assumed throughout
that (X,)N, are independent nonnegative integer valued random variables, the
distribution of whose sum W is to be approximated. The notation of Section 1 is
carried over in the natural way with m{};, «{%, ¢ and »{" referring to the
X;-distribution: define also k[, = LY k{*}, the jth factorial cumulant of W,
¢y = LN ¢, v;:=LN », A= EW and W, = W — X,. The symbol @ is used
throughout to denote a random variable with the Poisson distribution P, with
mean A.

Then the following lemma is a: consequence of Corollaries 1.2 and 1.3:

LEMMA 2.1. Suppose that g: Z* —> R satisfies |A'g|| < o for some I € N.
Then, if EX!*' < 0,1 <i<N,
-1
E(Wg(W) ~Ag(W + 1)) = T — s (K8(W + 1))

s=1

(2.1)
< ¢/llA%g]\.

Proor. From Corollary 1.2,
-1 i)
E(Xg(W) — (EX)g(W+ 1) - T SeUg (ag(w + 1))

s=1

< ¢{E|Agwl, 1<is<N,

(2.2)

and (2.1) follows by adding over i. O
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The first step in Chen’s (1975) approximation technique is to observe that, for
any function A: Z* — R such that A := EA(Q) exists, the function 8,4 defined
by 6,A(—1) = 0 and

0,h(m) = mA-m=1 T (M(h(j) - B) /1)

(23) .
= —mAmt Y (M(R(j) -R)4t),  m=0,
j=m+1
satisfies
(2.4) A0, h(m) — mO,h(m — 1) = h(m) — m > 0.

Hence the estimate (2.1) of Lemma 2.1 directly ylelds an asymptotic expansion
-1

(2.5) ER(W) - ER(Q) = - E "[s+1]|E{A 0\R(W)} + m,

where, for functions A such that ||A’0,‘h|| < o0,

(2.6) Inl < ¢//|AGAll,

from (2.1). By using the left-hand side of (2.5) successively to obtain expansions
of the right-hand side of (2.5), an asymptotic expansion for EA(W) can be

deduced.
To state the theorem, some extra notation is needed. Let the Charlier

polynomials C,(A; x) be defined by
n
C(hix) = X (F)(=D" Az,

o
where x(,; = x(x — 1) --- (x — r + 1) denotes the rth factorial power of x.
’ Then define signed measures @, / > 1,on Z* by

1) a(m) - | _W}{H Yy H{ ((—J”%)—,)r"}cms(x; m)},

s=1[s]j=1

where ¥, denotes the sum over all (r,...,r,) € (Z*)° such that X%_,jr;=s
and R =X5_,r.
Further, let
ey=A"11-e*) <min(A7},1),
and set

k
— k
po= maxietl, T]
(s) j=1

k+1 k
ex Sk+1 K
/= max
He (s) {(Sk+1 n!; I:I

where max, denotes the maximum over (k>0; s;>1, 1<j<k+1;
Thils; = 1).
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THEOREM 1. Suppose that h: Z* — R satisfies ||h|| < oo and that EX}*™! <
0,1 < i < N; then

(2.8) ER(W) = [hdQ, + m,
where
221 A,
(2.9) mi <, (1 101
2% 7t gsg s 2]l

REMARKS. 1. Inequality (2.12) below is sharper, but less convenient, than
(2.9).

2. The use of truncation can extend the range application of Theorem 1.
Thus, defining, for some m > 1,

Y,=

12

Xi’ Xi <m,
0, X, >m,

and letting Z = IV |Y,, it follows, as observed by Kerstan (1964) and Serfling
(1975), that, if ||A|| < oo, [ER(W) — ER(Z)| < 2||h|EN.,P[X; > m]. Theorem 1
is then automatically available for the approximation of EA(Z).

In order to prove Theorem 1, we need the following results:

LEMMA 2.2. Let h: Z* — R satisfy ||h|| < 0. Then ||A0, k|| < 2e,]|A||.

Proor. Define h*(j) :== h(j) — inf h(k) > 0. Clearly, 6,A* = 6, h. But also,
(2.10) O\h* = 3 h*()0)3;,

Jj=0

where 8;: Z* — R is defined by

1, j=m
5,(m) = {0’ .

J#+ m.

From the argument used to prove Lemma 4(ii) of Barbour and Eagleson (1983), it
now follows that

146, < ex{ suph* (4),
Jj=0

giving the required result. O

COROLLARY 2.3. Let ||A| < 0. Then, for any choice of r, sy, Sgy..., 8,21
such that X% _,s; =121,

l
el

A%0\)h| < 2
Jj=1
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ProoF. It is immediate, for any function g: Z* —» R such that ||g|| < oo,
that ||A%]|| < 27|gll. Thus

r r—1
1_[ (Ast}\)h < 28'_1 AGA l—[ (AS’O)\)h"
Jj=1 Jj=1
r—1
< 2%e,| T1 (Asfa,\)h.,
Jj=1

using Lemma 2.2; repeating the process, the corollary follows. O

PROOF OF THEOREM 1. Iteration of the relation (2.5) leads directly to the
formula

(211)  EA(W) = £(-1) ( I ‘;’“’) { l—[(A”fﬁx)h(Q)}+m,

(s) J*

where
k K(s.+1) k+1
LD H _sj_, D5y H (4%6,)h||;
s)|7=1 S; Jj=1

here, L ,, denotes the sum over {k > 0; s;> 1,1 <j < k+ 1; TkXls; = 1}.
It follows immediately from Corollary 2.3 that

l—[ +1]

j.

(2.12) I <2} ext'e,. Al

)17

whence

nd < 2'|ihlip, 01 = 22 ||l
(s)

and

il < 24| Allp) X0 syt 2%
(s)

1 1411
=22‘u'{—+—2 }uhn
0t 2,08

The proof therefore merely requires the identification of (2.8) and (2.11). How-
ever, it follows from the properties of the Charlier polynomials with respect to
the Poisson distribution that, for any function f: Z* > R for which the
expectations below exist, '

(213)  E{C,(A; Q)(A")(Q)} =E{C.in(A; QF(Q)},  n.m20,

and’

(2.14) (G QO1)(@) = - —E Gk QFQ),  n20.
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Thus

k k J -1
E{j_l—[l(As"ﬂx)h(Q)} = (—l)kj_l—ll(j+ )y sr) E{Ci+s(A; Q)R(Q)},

r=1

where S = Z§=ls » and the equivalence of (2.8) and (2.11) follows from a standard
combinatorial argument. O

In order to derive an asymptotic expansion for P[W € A], one uses A(m) =
I[m € A] — §, for which ||A|| = ;. When [ =1, the estimate (2.9) of the dis-
crepancy between P[W € A] and P,(A) is then very similar to (4.6) of Theorem
4 in Barbour and Hall (1984). Also in the case [ = 1, Kerstan (1964) proves that
(2.8) holds with

N
(2.15) | < min{5-4>\'1,2}( X di)”h”:

i=1

provided that max, _; . y{m{}} < }, where
. . . -\ 2 .
d;, = 2{(1 - m{) + im{ - P[X,=0]) + (1 - mf + 3(m)" - exp(—mﬂ)]))
+ Iexp(—mﬁ)]) - P[X,= O]|}
< i+ () = o

Whether estimate (2.15) is better or worse than (2.12) with / = 1 depends on
the distributions of the summands, though in both the particular cases consid-
ered below, of 0-1 and of negative binomial summands, (2.12) gives the better
estimates. However, for Poisson distributed summands, where the discrepancy
being estimated is zero, LY. d; < 2T (m{}) is an order of magnitude smaller
than the estimate (2.12).

An error estimate of similar order of magnitude can, however, be derived from
(2.12), by taking I = 2, in the form

N
(216) Ingl < dex X {miB(3md + 631) + 7 + exleail(mi@ + (m)’) 10,
i=1

where 1, = E{X;(X; — I)min(3(X; — 2),1)}. The estimate
€ [min{ X(¥X 7 Vo %),2x( ¥ o (e 1))

of the remainder in (1.4) has been used in the £ = 0 term 4e,¢,, in order to avoid
introducing moments of order three. For Poisson summands with means a;, in
Kerstan’s range of application, this yields

N
[ng) = Iny| < 4.5ey ) ad|A,

i=1

still not quite as good as his estimate, in which 4.5e, is replaced by min(4, 3.6A~1).
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However, a very small perturbation away from the Poisson distribution for the
summands, increasing P[X; = 0] and P[X; = 2] by a? and reducing P[X; = 1]
by 2a?, doubles Kerstan’s estimate (2.15), while (2.16) increases by less than
10e,IN ,a}; the estimate of error in (2.16) is then smaller in Kerstan’s range of
application than that of (2.15), for all A < 2.7. Of course, (2.16) is then estimating
the error in approximating EA(W) by (hdQ, rather than by [ dQ,.

In the case of 0-1 summands, we have the following corollary:

CoROLLARY 24. If p;=P[X;=1]=1-P[X,;=0], 1 <i< N, then (2.8)
holds with
gl < 2% e,

N
X pi*tllAll.
i=1

ProOF. Use estimate (2.12) and the evaluations

N N
K[m+1] = (_l)mm! Ep{”"’l’ ¢m = Zptm-‘.l’
i=1

i=1

to obtain

(2.17) Il < 2’2{[ﬁ

) \LJ=1

N
] 5 pfm“}ef“uhu-

i=1

N

Y pptt
13

i=1

Since the term in braces cannot exceed MXY ,p!*l the conclusion follows

directly. O

- ReMARk. Taking h(m) := I[m € A] — 3, Corollary 2.4 yields Theorem 1 of

Barbour and Hall (1984) when [/ =1, and an estimate similar to that of the
remark following their Theorem 3 when [ = 2. The sharper inequality (2.17)
implies, for [ = 2, that

N N 2
mi < 26, pP + 2( Ep?) ,
i=1

i=1

which is almost equivalent to their Theorem 3.

Another interesting example is that of negative binomially distributed sum-
mands. Suppose that, for each i,

PLX=m]=@-p)"pr(B ) om0,
Then each X; can itself be written as a sum of independent components,
X;=XF X, where

ir?

P[X,=m]=(1 _Pi)R_lkin"(R_lki ;m - 1), m>0.
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Now
i) = 1( ) R‘lki+j—1)
1-p; J
and
pi )
k(D = (j—1)!R lk( )
[#3] (J ) ~ s
giving

) pi V(R %+ J (R'1k~+t—1)
(ir) = R~ lk( ) * + i ,
¢j 1- b; {( J El t

and hence

N
A= ZEXir = E kipi(l - Pi)_l’

i=1

o= ot ) 4700

J t=1 t

We are now in a p031t10n to prove the following corollary:
COROLLARY 2.5. If, foreachl <i < N,
k,i+m-—1
P[X,=m] =1 -p)"p] ( " )

m
then (2.8) holds with

, mz>=0,

D; 1+1
n < 22 (Zk( ) )uhu.
i=1 pi

ProoF. It follows from (2.12) that (2.8) holds with

pt sj+1
Il <2'} [ 1'11( Yk ( iy ) )]ef”«bs,,ﬂ(R)uhu,
(s)L/=1\i=1 i
for each R > 1, and hence also
p sj+1
InJ < 2‘2[1'11( Lk ( > ) )]ef“«ps,“uhu,
s)L/= i=1 i .

where
D, Spe1+1
¢3h+1 = hm ¢3h+1(R) = Z k; ( - p; ) °

The argument is now completed as in Corollary 2.4. O
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REMARKs. 1. Taking N = 1, Corollary 2.5 yields the estimate
d(NB(k,1-p),P\) < (1-e)p(1-p)~',

where A = kp(1 — p)~! and d denotes total variation distance. This is better
than the estimate min(2.7, \)p(1 — p)~! obtained from Kerstan’s inequality
(2.15). However, the inequalities of Vervaat (1969), with Romanowska’s (1977)
improvement, provide better estimates of the distance between NB(k,1 — p)
and P,, except for small A. This is not too surprising, since they are developed
from exact formulae for the distributions being compared, and not merely from
the values of a few moments of the summands.

2. Let k;=1 for all i, so that the X, are geometrically distributed, with
parameters p;. From Corollary 2.5, the total variation distance from P, is at
most e, X {p,/(1 — p;))?, where A = ¥  p./(1 — p,). An alternative way of
approximating the sum of the X;’s by a Poisson variate would be to define

X _ Xi’ Xl=0’
i, X, >1,

so that d(TN X, IV  X;) < TN, p2 and then to use Corollary 2.4 to show that

N N N
d( >:x..,P,,) <o ¥,
i=1 i=1

where p=XN p.. To compare the error estimates with the two approaches,
consider the case when p;, = p, 1 < i < N; from the first,

N
d( XX, P)\) <(1-eMp1l-p)7,
i=1
whilst, from the second,
N
d( Y X, P”) <(1-e*)p + Np2

i=1

The second of the two estimates is only smaller than both unity and the first of
the estimates in the (approximate) ranges {N = 1, 0.35 < p < 0.77} and {N = 2,
0.45 < p < 0.55}.

3. Expansions for expectations of unbounded functions. The expansion
(2.8) of Theorem 1 can be extended to cover unbounded functions A, at the cost
of some extra effort, largely devoted to establishing a suitable analogue of
Corollary 2.3. The following lemma states some necessary estimates:

LeEmMMA 3.1. (i) The following upper estimates of

N mA+ )/ (m+j+s—1)
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are valid in the ranges indicated:
exp{_%(s_ 1)(3—2)}, 1<s<A+2, [Alsm<A+N2 j>0
ep(—3(A - D)2, sxa+2, smeA+ N2, j20;
exp{—z%(s—l)(m—k)}, s21, A+N2<m<2\, j=0

276D s>1, 2A<m, j=0.

(ii) Foralls >1,0<m<[A and 0 <j < I,
A 5(m + ) s
_ ——(s—1+2A-m-1)}.
(m+j—s) = exp{ 2\ (s (A= m ))}

Proor. In case (i), observe that, in j > 0,

XY m + j)! SI_'[ll m+1—-A+r—1\""
- < + .
(m+j+s—1) ,=1{ A }
The estimates now follow from the inequalities
-x/2
-1 e y 0<x<1,
1+=x) < {%, ‘> 1.

The proof of case (ii) is similar. O
The next lemma is analogous to Lemma 2.2.

LEMMA 3.2. Supposel€ N andp > 0.

() Let h: Z+ >R satisfy |Nh(m)| < H(1 + mP). Then, for all A <1,
|A'9\h(m)| < ¢;Hmin(1, m~'){1 + mP)} for a universal constant ¢, = ¢,(1, p).
(ii) Let h: Z* > R satisfy |A'h(m)| < H{1 + A"?/%|m — [A]P}, for some
A > 1. Then
)\1/2
A9, h(m)| < c,HN"Y?min|1, ——————
I A ( )l 2 ( Im _ [)\]l

for a universal constant c, = cy(1, p).

{1 + AP m — [A]Ip},

ProOOF. Observe first that
1
9>\Cn(}‘§ m) == ch-l(k; m)’ nx1l, mx=0,

and that
6,Co(A; m) = 0.
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Hence, for any polynomial 7 of degree [ — 1, 6,7 is a polynomial of degree / — 2,
so that

A(h+7)=An and AG,(h+7) = A6,\h.
Thus we may without loss of generality assume that
(38.1) AR([A])=0, O<r<lI-1.
Next, use Equation (2.3) to express 6,4 as

(3.2) 0,h(m) = sé::OA““’ (Tn_l—!s—)-!—(h(m -s)—h)

(3.3) = - sgl (—m—:;)TM l(h(m +s)— 71-),

so that

NG \h(m) = i AL-s Zl: (l.){Ajh(m -5) - I_zb‘jo}
(3 4) s=0 J=0v(-s) J
' s!(m + j)!
(s=1+)(m+1-3s)
l .

= Zx7 % (F) (hm + 0) = R} (-0

(3.5)

(s+1-j-1)(m+j)
(s=D!(m+1+s) °
For case (i), it follows from (3.1) and the bound on A’k that

-j

=J)!

(3.6) |a%h(m)| < m—=7H{1+mP}, 0<j<],

and so, in particular,
|h| < H{EQ' + EQ"*P} /1! < koH,

uniformly in A <1, where, here and subsequently, k; denotes a universal
constant, dependmg only on / and p. Hence the contnbutlon from % to the
expression (3.5) is no larger than

(s+1-1)m! 1

6 PPL G- S G 1)

s>1
<kH(m+1)™"
The' conclusion in case (i) will now follow from (3.5), if it can be shown that
(3+l J = )i(m +j)! -1
J + p
(3.8) Y |Am(m +s)] “Dim + 1+ 5)! < ky(m + 1) H{1 + mP},

s>1
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for 0 < j < l. However,
(s=1+1=j) (m+j) (s—1+1-j)" 1
(s=1)! (m+1+s) " (m+j+s)7 (-D(m+1+s)’
and hence, from (3.6), the left-hand side of (3.8) is majorized by
s!(s? + mP) k,H{1 + mP}
<
s—1)!(m+s+1) (m+1)

koH Y

s>1

’

as required.
For case (ii), we have

Im = [A1I"™
(-

in place of (3.6), and, in particular,

(3.10) |h| < He N2

Taking first the case m > [A], and using (3.5) and (3.9), it is necessary to bound

El}\s'l(m +s— [)\])l_j{l +A P2 (m+ s — [}\])p}

(3.9) |A/h(m)| < H{1+A 72 m-[A]f}, o0s<j<l,

(3.11) (s +1—j—D)l(m+j)

(s—1)!(m+1+s) ’ 0<j<i,
and, from (3.10),
(s+1-1)!m!
12 )\s—1+l/2 .
(3.12) z (5= Dl (m+1+3s)!

Now the expression in (3.11) is no greater than

{ »~Hm + j)! } {s-1)7+(1-)")

2 L (m+j+s—1) mtti=i

(3.13) sa1
X {(m— IAD + s'TH1 + AP (m — [A])? + A~P/%sP),

which can be estimated using Lemma 3.1(i). For instance, it follows from Lemma
3.1(i) that, for [A] < m < A + VA, the essential contribution to (3.13) comes from
terms with s = O(N/2), from which it follows easily that, for such m, (3.13) is of
order

}\1/2 . }\l—jm—(l—j+l) = O(}\—I/Z);

for A + VA < m < 2, the terms with s = O(A/(m'— A)) are important, and
(3.13) has order

el

<(m—=N)"Y1+ (m—-[A])"A22};

—— {1+ (m - [\])"A72)
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for m > 2\, the terms with s = O(1) are the essential ones, and (3.13) has order
m‘l{l + (m - [}\])p}\‘l’/z}.

The estimation of (3.12) is accomplished by a similar argument, and it follows

that, for m > [A],

AL/2

(3.14) |M9\h(m)| < k5H)\‘1/2min(1, m) {1+A72m - [A]f}.

For m < [A], use (3.4) and argue similarly. The principal quantities to be
estimated are no greater than

m A ¥(m +j)! s -j B .
B iy (N=-m)™
sgo}\ {(m+j—8)!}(m+1—s) {s A=m) }
x {1+ A=727 + A~2/2)m — [A]["),
and Lemma 3.1 (ii) is used to conclude that (3.14) holds also for m < [A]. O

COROLLARY 3.3. Suppose p>0 and I, r,s,...,s, €N are such that
L%_18; = L. Then there exist universal constants cy(l, p) and c (I, p) such that:

@) if h: Z* - R satisfies |A'h(m)| < H{1 + mP), then

thl(As’ax)h(m)

< ¢gHmin(1, m™!){1 + mP~"*1},

forall A < 1;
(ii) if h: Z* > R satisfies |A'h(m)| < H{1 + A"P/%jm — [A]|P} for some A > 1,
then

|m — [A]]
x{l + (A2m - [A]l)"_’“}.

}‘1/2
< c4H}\"/2min(1,——————)

ﬁ (4%8,)h(m)

Proor. Immediate, from Lemma 3.2 O

Having established a counterpart to Corollary 2.3, it is necessary to find an
analogue of Lemma 2.1. The following lemma is a preliminary step.

LEMMA 3.4. (i) Suppose A > 1 and EX}? < 00,1 < i < N. Then
E{(A?2W - AP} < (1+A"%,)™, foro<p<e2.
If, for somep > 2,EXP < 00,1 <i< N,

N
E(AP/4W - AP} < cs{l +ATP L EXP + ("_l”l)pﬂ}’

i=1

for a universal constant cy(p).
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(i) If A < 1, the inequalities

EWP)<(2+»)”?, O0<p<2,
and

N
E(WP) < cs{l + Y EXP+ v{’/z}, p>2,
i=1

are valid.
ProoF. By direct computation, in the case A > 1,
N N
i=1 i=1

and the inequality for p < 2 follows from Hélder’s inequality. For p > 2, use an
inequality of Marcinkiewicz and Zygmund (1937) form: For p > 2,

p/2
|

for a universal constant C,, from which the result now follows. The proof for
A < 1is the same. O

N
Y var X,

i=1

. N
E|W - AP < Cp{ YEIX,—EX,P+

i=1

We now prove the following counterpart to Lemma 2.1:

LEMMA 3.5. For somel € N and q > 0, suppose that EX? < 0,1 <i< N,
for a =1 + max(q,1). Suppose also that A > 1, and that v, <\, and let
g Z* —> R satisfy

|g(m)| < G min(1, ¥2m — [A]]7) {1+ A-|m - [A]["},
for some G < oo. Then

ex(€) = E(W(W) ~Aa(W+ 1)) = T ~q,, (X7 + 1))

s=1
satisfies
le(8)| < e,G{w, + A0 D2y, ],

for a universal constant ¢, = c,(l, q), where

N

> E{‘!’l,q(Xi)}1 q>1,
i=1

If A\<land v, <1, and g: Z* — R satisfies
|Alg(m)| < Gmin(1, m~*){1 + m?},

lq’

then
|ez(g)| < cG(r, + ”1,q)°
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REMARK. If », > A, no useful Poisson approximation can be expected.
ProoF. We prove only the case A > 1. The other proof is similar. Under the
given conditions on g, all the required expectations exist.
For the case g > 1, proceed as for Lemma 2.1, using inequality (1.3) of Lemma

1.1 and the given bound for |A%g(m)|, obtaining easily that the quantity to be
estimated is no larger than

N
koG X E{(1+ EIN2(W, = [AD[7 + 12Xy, (X)),
i=1
where
E[A2(W, - A" <31+ B (W - 0) 1 + EA-2/2X,)e71),

Now apply Lemma 3.4. For 0 < g < 1, Alg is bounded, and Lemma 2.1 can be
directly applied. O

The theorem can now be stated.

Define
. ATRED/2y Rk
I"‘I,O = max 1 1—[ 1 ’
) | (1= D! [j=1 8!
-p/2
. A Y it KLsi+1)
Lp™=
P | (e — D! =1 st )]

. where, as before, max ,, is taken over

k+1
{k20;8j21,15j5k+1; Zsj=l},

THEOREM 2. Suppose l€ N, p> 0 and EX? < 0,1 <i < N, where a =
! + max(1, p). Suppose also that A > 1 and that v, < X\. Let h: Z* — R satisfy
|A'h(m)| < H{1 + A"P/%|m — [A]|?}. Then

(3.15) ER(W) = fthz+ M
where
(3.16) Ind < cH{p}o + 1 5}

and ¢ = c¢(l, p) is a universal constant.
If A\<1land v, <1, and h: Z* - R satisfies |A'h(m)| < H{1 + mP}, then
(3.15) holds with

(3.17) i < cH{ph o + b5 ) -
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PROOF. As in the proof of Theorem 1,
k
s;+1]
er(w) - -0 {1152 e{ TT @@ + v,
(©)) = J =1
where

[s +1]

I}l < Z

7
As before, ¥ ) denotes the sum over

Jj=1

s,.“( If[ (Asfﬂh)h).

k+1
{kzO;sjzl,l <j<k+1; Zsj=l},
j=1

Using Corollary 3.3 and Lemma 3.5, it thus follows that
Kis.+1]

k
mil < 2 T1 =+~

(s)|J=1 S;’

=< CH{M)I\,O + I"‘)l\,p}’
from the definition of p*. O

c4(l’p)H>‘_(k+l)/2c7{Vs,, + A-(p—k-D/2, Vo, pm k}

REMARKs. 1. Forp <1, p} » = 0, and the error estimate is of a similar form
to that of Theorem 1. Note, however, that, in the definition of 1} o, there enters a
factor A~**1/2 in place of the factor e**! in the definition of p, which, for
large A, is of the smaller order A=+,

2. Suppose that, for some p > 1, EX?*! < 00,1 <i< N,and », <A > 1. Let
A = {j: P[W=j]2 P[Q =j]}, and take

h(j) =AP2j - [A]{2I[j e A] - 1}.
Then, using Theorem 2 with I = 1,
0 < ER(W) — EA(Q) < 2¢{A""2p, + A7/%, }.

Hence the total variation distance between the distribution of W and P,,
restricted to the set {j: A~V?%|j — [}\]| > m}, is no larger than a constant times
m=P(A"V2y 4+ NP2y, )
3. In the case of 0-1 summands, », is automatically less than A, and
< }\1/2—1 Zp‘+1

k+1
Wip < Blo = maX{R el Zps!“ }
i=1

(s) Jj=1
'I‘hus for example, in the binomial case, useful expansions for the expectations of
at most polynomially growing functions of B(n, p) are only obtained from
Theorem 2 when np? is small.
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