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NORMAL CONVERGENCE BY HIGHER SEMIINVARIANTS
WITH APPLICATIONS TO SUMS OF DEPENDENT
RANDOM VARIABLES AND RANDOM GRAPHS

BY SVANTE JANSON

Uppsala University

If the means and variances of a sequence of random variables converge,
and all semiinvariants (cumulants) of sufficiently high order tend to zero,
then the variables converge in distribution to a normal distribution. Thus no
information is needed on the remaining (finitely many) semiinvariants. This
is applied to give a new criterion for asymptotic normality of sums of
dependent variables. An example is included where this criterion is applied to
the number of induced subgraphs of a particular type in a random graph.

1. Introduction and main results. Marcinkiewicz (1939, Théoréme 2*)
proved the following theorem:

Suppose that a random variable X has a characteristic function bf the form
exp( p(t)) where p is a polynomial. Then deg(p(t)) < 2, i.e., X has a normal
distribution. ‘

(We regard a degenerate distribution as normal.)

An equivalent formulation using semiinvariants (see Section 2, in particular
Lemma 2) is:

If the semiinvariants k(X) vanish for all sufficiently large j, then X has a
normal distribution.

In Section 3 we will use this uniqueness result to prove the corresponding
convergence result:

If the semiinvariants x,(X) are close to zero for all sufficiently large j, then the
distribution of X is close to a normal distribution.

More formally:

THEOREM 1. Let X, X,,... be a sequence of random variables such that,
asn— oo,

(1.1) k(X,) = EX, - p,

(1.2) ky(X,) = var(X,) - o2,
(1.3) ki(X,) >0 foreveryj>m,
where —oo < p < o0, 62> 0, and m > 3. Then

(1.4) X, 4N(p,0%) asn - w.
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Furthermore, all moments of X, converge to the corresponding moments of
N(g, 0?).

Here (and in Lemma 1 below) it is not necessary that all variables X, have
moments of all orders, only that for every j, E|X,|” < oo (and thus K (X,) is
defined) for n > n;.

The theorem may alternatively be formulated as an approximation result.

CoOROLLARY 1. If ¢ > 0 and m > 3, then there exist 8 > 0 and M < o such
that EX = 0, var X = 1, and |k (X)| < 8 for m < j < M imply

sup|P(X < x) — ®(x)| <e.
X

REMARK 1. Our methods give no information on the rate of convergence.

REMARK 2. A symmetrization and Cramér’s decomposition theorem (Cramér
(1937, Théoréme 19)) show that it suffices in Marcinkiewicz’s theorem that the
semiinvariants vanish for all sufficiently large even j. Similarly, it is sufficient to
consider even j in Theorem 1 and Corollary 1.

When m = 3, (1.1)~(1.3) say that all semiinvariants of X, converge to the
semiinvariants of N(u, 62). This is obviously equivalent to the convergence of all
moments, hence Theorem 1 is, for m = 3, only a reformulation of the method of
moments. When m > 3, the situation is different. The conclusion of the theorem
implies that, in fact, k(X,) — 0 for every j > 3, and thus the theorem applies
only to the same sequences { X} as the method of moments. However, the point
of the theorem is that it is not necessary to actually check that « A(X,) = 0 for
small j, and that is sometimes a considerable simplification.

This is illustrated in Section 4, where Theorem 1 is used to prove the
following central limit theorem for sums of dependent variables. Before stating
the theorem, we introduce a convenient terminology.

DEFINITION. A graph T is a dependency graph for a family of random
variables if the following two conditions are satisfied:

(i) There exists a one-to-one correspondence between the random variables
and the vertices of the graph.

(ii) If V; and V, are two disjoint sets of vertices of T' such that no edge of T
has one endpoint in V; and the other in V,, then the corresponding sets of
random variables are independent.

Note that this definition does not define a unique dependency graph for every
family of random variables. For example, we may add any edge to a dependency
graph and obtain a new one (for the same family of random variables).

Recall that the maximal degree of a graph is the maximal number of edges
incident to a single vertex.
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THEOREM 2. Suppose that, for each n, {X,;}N» is a family of bounded
random variables; |X,;| <A, a.s. Suppose further that T, is a dependency
graph for this family and let M,, be the maximal degree of T, (unless T, has no
edges at all, in which case we set M, = 1).

Let S, = ™MX,; and o2 = var(8S,). If there exists an integer m such that

(1.5) (N/M,)""M,A, /o, >0 asn— o,
then
(1.8) (S,- ES,)/s, - 4N(0,1) asn — .

REMARK 3. By a standard truncation argument, it is possible to extend the
theorem to unbounded variables. We may, e.g., replace the condition |X ;| < A,
as. by M, . E(X2I(|X,;| > A,))/02—>0 as n— oo (for some sequence A,
satisfying (1.5)).

Since N,/M, > 1, the condition (1.5) gets weaker as m increases. It follows
from the proof that necessarily m > 3. )

The case m = 3 can be proved by the method of moments without recourse to
Theorem 1 and Marcinkiewicz’s theorem, but these results are an important
ingredient of the proof when m > 4.

Section 5 furnishes an application to random graphs of the latter case
(m = 4). Theorem 2 is used to show the asymptotic normality of a subgraph
count statistic also in a degenerate case.

Many theorems on asymptotic normality for sums have been proved by the
method of moments using, at least implicitly, dependency graphs and estimates
of the type used in the proofs below (for m = 3). Some such theorems are in fact
special cases of Theorem 2. For example, Noether (1970) studied the following
situation, which includes many test statistics: (We change his notation.) Let
S, = Xic1, jesXnij Where X,,; are uniformly bounded random variables such
that we obtain a dependency graph for {Xnijlier, je g, by joining every pair of
pairs (i, j) and (&, I) that contains a common subscript. Assume that #I, < CK,,
and #J, < CK, where K, » o0 as n = oo.

Noether proved that S, then is asymptotically normally distributed, provided
varS, > cK? for some ¢ > 0. Here

N,=#I#J,<C, K2, M,<C,K,, A,=C,,
and thus
(N/M,)" "M, A, /0, < CK Y™ (varS,) ™.

Consequently, Noether’s theorem follows from Theorem 2; in fact, the somewhat
weaker condition varS, > cK2** for some & > 0 is sufficient.

Chen (1978) has used a different method to prove asymptotic normality in a
general situation under conditions related to our use of dependency graphs. His
Theorem 4.2 contains, e.g., Noether’s theorem, but neither the improved version
thereof given above nor the example in Section 5.
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2. Semiinvariants. For convenience, we give here the definition and some
elementary properties of semiinvariants (cumulants); see, e.g., Cramér (1945).
Assume that X is a random variable with E|X)’ < oo for some j > 1, i.e.,
X € L. Then the characteristic function ¢ is j times continuously differenti-
able. Hence log (%) is a continuous, j times differentiable function in some open
interval containing 0. We define the jth semiinvariant «; (or x;(X) to be more
precise) by

(2.1) K;= (_l)Jdt’bg(p(O)

(ki(X) is not defined if X & L’) For example, if X ~ N(p, 02), then «, = p,
kK, =07% and k;=0, j>3. Recall that the jth moment a(X)—EXJ—
(—i)’d’ /dt’(p(O) It follows that «; is a polynomial function of a,,..., a;, and
conversely, a; is a polynomial functlon of ky,..., k;. In particular, «, = al EX
and k, = a, — a? = var(X). We have the followmg semiinvariant version of the
methods of moments.

LEMMA 1. Suppose that X, is a sequence of random variables such that for
everyj > 1, k(X,) = c; as n - oo, where c; are some real numbers. Then there
exists a random variable X with k(X) = ¢;, j = 1, and, if this determines the
distribution of X uniquely, then X, > 4, X and a(X,) = a(X) for every j.

PrROOF. ay(X,) = p(r(X,),..., k(X,)) = pi(cy,...,c;) for some poly-
nomial p;. Hence {X,} is tight, and every convergent subsequence converges (in
distribution) to a limit X with a(X) = p(c,,...,c;) for every j, and thus
k(X)=r¢c;. O

The sequence of semiinvariants determines the distribution uniquely iff the
sequence of moments does so. The following lemma gives one criterion.

LEMMA 2. Suppose that £2(|x|/j)r’/ < oo for some r > 0. Then the distri-
bution of X is uniquely determined by {x}7, and the characteristic function

o(t) = exp(i%(it)j) for |t| < r.
T J!

PROOF. Let F(t) = exp(Xyk,/j!(it)’). F(¢) is analytic for |¢| < r. By defini-
tion, log F(¢) and log ¢(¢) have the same derivatives of all orders at ¢ =0,
whence F(t) and ¢(t) have the same derivatives of all orders at ¢ = 0. Hence
Ya;/j!(it)’ converges for |t| < r, which implies that ¢ is analytic. Consequently,
o(t) = F(t) for |t| < r, and ¢ is uniquely determined by {x;}. O

For future reference we observe two simple consequences of the definition
(2.1). If X and Y are independent and a is a real number, then

(2.2) k(X +Y)=x(X)+x(Y),
(2.3) ki(aX) = a’k(X).
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3. Proof of Theorem 1. Suppose that (1.1)-(1.3) holds and define (for n
large enough)

(3.1) e, = Ssup |:cj(Xn)|1/f.

3<j<m

If m=3orif e, > 0asn— oo, then k(X,) >0 as n - oo for every j > 3,
which together W1th (1.1) and (1.2) yield the conclusions by Lemmas 1 and 2.

We complete the proof by showing that the assumptions m > 3 and ¢, » 0
lead to a contradiction. Restricting attention to a subsequence, we may assume
that ¢, > & for every n and some 8 > 0. Let Y, ~ N(0,(1 — (8/¢,)*)var(X,,)) be
independent of X, and set

8
(3.2) Z,= —(X,~ EX,) + ¥,

Then, by (2.2) and (2.3),
(3.3) k,(Z,) =0,

B0 ()= (2] )+ n(E) = va(x) + o

n

(3.5) K,.(z,,)=(i) (X)+n(Y)—(—) (X)), Jj=3.

Since 0 < §/¢, < 1, (3.5) and (1.3) give k,(Z,) = 0 as n — oo for j > m. Further-
more, (3.5) and (3.1) give

(3.6) sup |K,(Z,)1 = 8

3<j<m

In particular, |k/(Z,)| < 87, 3 < j < m. Hence we may select a subsequence of
{Z,} such that, along this subsequence, k;(Z,) — c; for some real numbers c;,
3 <j < m. Defining ¢, = 0, ¢, = o2 andc =0, ]Zm,weseethatn(Z)—>c
for every j > 1 as n — oo along the subsequence By Lemma 1, there exists a
random variable X with «,(X) = c;, but this contradicts (the second version of)
Marcinkiewicz’s theorem given at the beginning of the introduction, since c; = 0,
Jj = m, but, by (3.6), sup; _ ;< mlc;/'/ =8> 0.0

PRrOOF OF COROLLARY 1. Suppose that for some ¢ and m no such § and M
exist. Then, choosing 8 = 1/n and M = n, we may construct a sequence {X,}
that contradicts Theorem 1. O

4. Sums of dependent variables. We introduce mixed semiinvariants; see,
e.g., Leonov and Shiryaev (1959). If X,..., X; € L7, then their joint characteris-
tic function @y . x(,..., 1) is j tlmes contmuously differentiable and we
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define
Y
= (— J
(4.1) k(Xy,..., X)) = (—i) TR TS 57 log ey, .. x0,...,0).
It is easily seen that k(X,,..., X)) is a multllmear function of X;,..., X;, and
that it equals «(X) when X X2 -+ =X;=X. Hence, if S = ZlX then
N N

(4.2) k;(8) =«(S,...,8) =Y - ¥ x(Xil,...,Xij).

=1 ij=1

LEmMA 3. Suppose that {X,,..., X;} can be divided mto two independent
nonempty sets of random variables. Then k(Xy,..., X)) =

PROOF. Suppose, e.g., that X,,..., X, are independent of X, ,,..., X » With
1 <k <j. Then

log qJX“m,Xj(tl,..., t;)
..... X,,(tl"“’ tk) + log ‘PX,,+,,...,X,-(tk+1,~--: tj)

and it is clear that the mixed derivative in (4.1) vanishes. O

(4.3)

Furthermore, it follows from (4.1) that x(X,,..., X;) may be written as a
linear combination of terms IT,ETI;.,X;, where I,,..., I, is a partition of
{1,..., J}. (See Leonov and Shiryaev (1959 (ILc)) for the exact formula.) This
expansion and Hoélder’s inequality show that there exist some universal con-
stants C; such that

(4.4) k(Xpsenns X < GIXL -+ 11X

LEMMA 4. Suppose that T is a dependency graph for {X;}Y and that M is
the maximal degree of T. Suppose further that |X;| < A a.s., 1 <i < N. Then

J[3x)

for some universal constants C;.

(4.5) <C/N(M+1)Y7'A%,  j>1,

ProoF. We use the expansion (4.2). By Lemma 3, we only have to consider
terms x(X;,..., X; ) such that the corresponding j (not necessanly distinct)
vertices of I‘ form a connected subgraph. If v,,..., v; are j such vertices, then
it is possible to reorder them so that {v,, 02} {vl, Vg, Ug}y-vvs {O1 000, 05}
form connected subgraphs of T. We estimate the number of such sequences
v, may be chosen in N ways. Since either v, equals v, or is connected to v,
by an edge, there are at most M + 1 choices of v, for every v,. Similarly, v,
must equal v, or v, or be connected to one of them; hence there are at most
2(M + 1) choices of v;. Continuing in this way, we see that there are at most
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NM+1)2(M+1)---(j—1)YM+1)=(j— DIN(M + 1)’ such sequences.
Taking the j! possible orderings of each sequence into account, we see that there
are at most j!(j — 1)!N(M + 1)’~! nonzero terms in the sum in (4.2). Because of
(4.4) and the bound on X;, each term is bounded (in absolute value) by CjAf,
which gives (4.5) with C/ =j!(j — )!C. O

ProorF oF THEOREM 2. Replacing X,; by (X,; — EX,;)/0, (and A, by
2A,/¢,), we may assume that ES, = 0 and o, = 1. Then, since N, > M, (1.5)
implies that, for every j > m, (N,/M,)"/’"M,A, - 0 and thus N,M; 'AJ - 0 as
n — . By Lemma 4, ,(S,) = 0 as n — oo for j > m, and thus S, -, N(0,1)
by Theorem 1. 0O

5. Random graphs. In this section we give an application of the results
above to the theory of random graphs. We confine ourselves to a single example.

The random graph G, , has n vertices 1,2,..., n and the (’2‘) possible edges
occur independently with probability p. Define, for 1 <i<j<k<n, X;; =1
if exactly two of the edges (i, j),(i, k),(J, k) occur in G, ,, and X;; =0
otherwise. Let S, =X, ; ;X ;. Thus S, is the number of triads with exactly
two edges in the random graph G, .

Since EX,; = 3p%, with ¢ =1 — p, ES, = (2)3p%q. Let o? = varS,. It is
easily seen that
65 02 =varS, = (g)vaer + (g)(n —2)(n — 3)cov( X 93, X104)

5.1

= (g)3p2q(l - 3p’q) + 12(Z)p3q(3p - 2)".

Let p be fixed, 0 <p <1, and let n = oo0. Then, by Nowicki (1985, Corollary
10),

(5.2) n"%(S, - ES,) -~ , N(0, 1p%(3p - 2)’).
If p # 2, this may by (5.1) be written
(5.3) (8, — ES,)/0, = 4 N(0,1).

However, in the degenerate case p = %, (5.2) reduces to n~%(S, — ES,) — 205
while (5.1) gives 02 = O(n®). We will show that (5.3) nevertheless holds. Thus, by
(5.1),

n~¥*S, - ES,) » ;N(0,2%) asn - oo, p=2.

PRrOOF OF (5.3) FOR p = 2. Construct a graph T, as follows. The vertices of
T, are the ('3') triples (i, j, k), 1 < i <j < k < n, and an edge joins two vertices
(i, j, k) and (i’, j’, k') iff the (unordered) sets {i, j, &} and {i’, j’, k’} have two
common elements. (For example, there is an edge between (1,2, 3) and (1, 3,5).) T,
is a dependency graph for the family {X;;};<i<j<z<n and we apply
Theorem 2 (with a slight change of notation). We have N, = ( ;‘) <nd A,=1,

and M, = 3(n — 3) (provided n > 4). Furthermore, o2 = c(g) by (5.1), with
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¢ > 0. Hence, for n > 3, m > 0, and some constant C(m),
(N/M,)""M A, /s, < C(m)n¥™nn"%% = C(m)n¥ ™ 1/2,
Consequently, (1.5) holds with m = 5, and (5.3) follows by Theorem 2. O

Note that the variables X; ;, in this degenerate case, are pairwise independent
but not independent, e.g.,

EX 93 X104 X134 X034 = 355 # (EX123)4-
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