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A MALLIAVIN-TYPE ANTICIPATIVE
STOCHASTIC CALCULUS

BY MARc A. BERGER

The Weizmann Institute of Science

Two extensions of the Itd integral are developed, and put in the perspec-
tive of derivative operators in the Malliavin calculus. The divergence oper-
ator, &, is constructed, and its properties and action on these two extended
integrals are described. Discussion of iterated stochastic integrals and the
extended stochastic integrals as functions of their upper limits is also in-
cluded.

1. Introduction. This work is concerned with the problem of extending
Itd’s stochastic integral, so as to be able to integrate certain processes which
anticipate the Brownian paths. The first to set up such an extension was
Skorohod [12]. Afterwards It6 [8], Berger and Mizel [2], [4] and Ogawa [10], [11]
considered different extensions. Skorohod and Berger and Mizel used the
It6—Wiener homogeneous chaos expansion to construct their extensions, and
Ogawa used orthonormal expansions on L2(0,1).

In order to make such a study of interest, one ought to explain how one is led
to this problem. The original motivation of Berger and Mizel was primarily
based on resolvent formula considerations for Volterra equations which also
contain stochastic integrals ([2]-[4]). When trying to interchange the order of
integration in what corresponds to the Neumann series expansion, anticipative
integrands pop up. Thus, along with extending the stochastic integral, the main
concern was to study Fubini-type results for interchanging the order of integra-
tion in a double stochastic integral over a triangular region of integwation
([1}-[4D.

In [4] Berger and Mizel introduced an “obscure operator” on stochastic
processes, denoted by 8 in this work, which was used to define that extension of
the stochastic integral used for inverting linear It6—Volterra equations. It turns
out that & is the divergence operator in the Malliavin stochastic calculus, as
explained in Section 2. At the same time Gaveau and Trauber [5] showed that
the Skorohod integral corresponds to the dual of the Frechét derivative in the
Malliavin calculus. Thus it became clear that the extension problem amounts to
the problem of identifying the domains of these differential operators and
developing their rules of manipulation. The extension problem, then, became
significant for reasons other than those to do with Ito—Volterra equations. It is
surprising that the study of extensions of the stochastic integral, in fact,
amounts to the study of derivatives in the Malliavin calculus; yet this is clearly
apparent in the nature of the domains of definition D and D in Section 2.
Recently, Nualart and Zakai [9] carried out a systematic study of the Skorohod
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and Ogawa extensions in the light of the Malliavin calculus. It is delightful how
this light makes many of the results concerning the extensions more meaningful
and apparent.

This work can be viewed as a complement to [4], although it is self-contained.
Its purpose is to continue the lines set forth in [4] and to develop the 8-operator.
In Section 2 the two extensions are defined, some of their basic properties are
derived and they are identified within the Malliavin calculus. The development
here is a simpler one than in [4], and carries the analysis further. The chaos
expansion is still being used to define the extensions, since I believe this is the
best way to understand their domains of definition, and since it dictates a nice
framework for stating and proving results. This is an easy way to find the “right
hypothesis” for a theorem. The theory throughout is an L%theory. In Section 3
iterated stochastic integrals are studied (a unique feature of the Berger and
Mizel program [1]-[4]), and the action of the §-operator on the two extensions of
the stochastic integral. Theorem 3.V(b) is related to what was referred to as the
“correction formula” in [1]. This formula was studied extensively in [2], [3]. It is
also shown that if one wants to consider the extended stochastic integrals as
functions of their upper limits, then one is forced to set them up as [{y(s, t) d0(s),
where y(s, t) is measurable w.r.t. o(8(u): u < t), 0 <s < ¢t. Of course, this is
exactly the integral one is led to through resolvent considerations for the
It6—Volterra equation. Finally, in Section 4 the action of § on certain stochastic
processes is studied.

A word about the notation! Although it may not seem so at first glance, the
notation used in this work is well defined, and each equation has a well-
determined interpretation. It is easy to get wrapped up in cumbersome notation
and lots of irrelevant variables when working around the homogeneous chaos,
and this has the detrimental effect of hiding the real points to be made. Once all
the extraneous stuff is removed, the emphasis on these points becomes auto-
matic. Furthermore, the manipulations are then easier to follow. So, for example,
most of the time differentials (dt or ds) are left off from ordinary (as opposed to
stochastic) integrals, variables of integration, indices on sums, etc., whenever
these can be easily (and uniquely!) inferred from the text of the equation or the
hypothesis of the theorem.

2. A review of [4], Section 3, with some new perspective. Let O =
(Cy(J), #,%") be Wiener space, where J is some finite interval [0, M]. L% ©)
has the orthogonal decomposition @ °Z(™), where Z(™ is the subspace of n-fold
multiple Wiener integrals:

ZO =R, Z".= {f fdo™: f e I",Z(J")}, nx>1.
Jn

Here L? denotes the symmetric functions in L% When dealing strictly with
progressively measurable processes it is usually preferable to deal with multiple
Wiener integrals over triangular domains, Iz, f o™, T,=(0<m < - <

n

< M}, since (i) these integrals constitute an isometry L%(T,) - Z™; and (ii)
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they are defined by iterated integration. On the other hand, the multiple Wiener
integrals over square domains, [;-fd6™), do not quite form an isometry,

E fJ fdom [J gdd™ = n! f,, e

and they are not defined iteratively—rather, they are defined in terms of the
integrals over triangles,

(2.1) f fdo™ = n! f fdom.
J" T’l

When dealing with anticipative processes, however, the integrals over squares
have definite advantages over the integrals over triangles (not the least of which
is the ease of changing the order of integration), as will soon be apparent, and so
we are willing to make this choice and live with the two drawbacks mentioned
above. It is clear, though that L%(J") and L*(T,) are isomorphic, and so these
two approaches really are the same. We observe here that if f: J — LZ( J™) is
Bochner integrable, then so is [, f(-, t) d8‘™, and

(2.2) fJ[fJf( t) da<n>] = fJ[fJf( t)] dom.

For any f: J" - R let f: J” > R denote the symmetric function f( Ty eeny Tp) =
aQ/nDL, S, f(Tgs---5 7, ), S, being the permutation group on n letters. Observe
that f— f is the orthgonal projection L2(J™) — L J™).

Let a: J — L%*(®) be a stochastic process on (0, #, #"). Then it has a unique
expansion

(2.3) a(t) = f(t) + L [ 1(:,1) 6,

where f,: J — L*(J™), ¥ n, and znl|| f.(-, t)||%z(Jn) < 00. Many measurability
properties of a translate directly into support properties for the kernels f,,. Thus
a is progressively measurable if and only if f,(-, ¢) = f,(-, £)I}y ,q», ¥ 1, ¢, if and
only if

(2.4) f=nf I, .o Vn,

where I denotes the indicator function. [N.B. Although f,(-, ¢) is a symmetric
function of n variables, V ¢, in general f, is not symmetric in all n + 1
variables.] Similarly, a(¢) is measurable w.r.t. o(6(u — 0(¢t): M > u > t),V t,if
and only if f,(-, ) = (-, O, py ¥ 1, ¢, if and only if

(2.5) fo=nlfr ., Vn,

where T,,, = {M>m > -+ >1,,, >0}. We also see that « € L%(J X 0) if
and only if f, € L%(J"*"), V n, and Zn!|| f,|| 721y < 0.
Based on (2.3) we introduce a domain

D:= {a: J - L¥®): f,€ L}(J"*'),V n,and ¥ (n + D f,13egmer) < oo}.
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For a« € D we can define

(2.6) f adf =Y fJ _ Fdo,

If either (2.4) or (2.5) holds, then it is easy to see that
~ 1
(2.7) [ fn”L2(J"+‘) = ﬁnfn“ﬁ(w“), vV n.

Thus [|afl32xe) = (7 + DI f,I32yn+1), S0 that in particular D contains all
progressively measurable a € L%(J X ©). Furthermore it follows from (2.1) and
(2.4) that for such « the integral defined above in (2.6) agrees with the classical
Itd integral. In other words (2.6) is a genuine extension of the Itd
integral—“genuine” meaning that if we restrict to progressively measurable a,
then its domain is precisely L?(J X @), and it coincides with the It6 integral.

On the other hand, it is clear (e.g., by taking all the f, symmetric) that there
are processes in L2(JJ X ©) which are not in D. In fact, neither of our extensions
of the stochastic integral are defined on all of L?(J X ©). One reason why we
cannot expect to extend the stochastic integral to all of L%(J X ©) is discussed
below. This extension (2.6) is originally due to Skorohod [12], and will be referred
to as the Sk-integral in what follows.

We define now a derivative type operator, 8, on stochastic processes a:
J — L?(0), in terms of the expansion (2.3), by

(2.8) Salt) = f(t+.,6) + Tnf L(.e+,0)dsn.

The domain of definition for 8 is
D(8) = {a: J - L*®): f,(-,¢) has a trace belonging to f,z(J”‘l) on
each (n — 1)-dimensional hyperplane 7, = const., ¢ < const.< ¢ + ¢,
and f,(-, 7}, t)2n-Of(-,t+,t) as j— o whenever 7/ |t, V n.
Furthermore, Znn!|| f,(-, t + , t)||32( -1y < 00.}.

Observe that if « is progressively measurable, then a € D(8) and §a = 0. We
next define a new extension of the stochastic integral by

(29) - [ads = fada+[,sa.

Again in terms of (2.3) it follows from (2.2) that the domain of definition for this
extension is D = {a € DN D(S): f,(-,t+,t)is Bochner integrable, V n, and
Tnn!|| ff.(-, t + ,8)||* < co}. This integral originally appeared in [2]. We remind
the reader of the following two examples from [4].

ExampLE I. () = 0(T):

fTada =6%T)-T;  [Tadé=6%T).
0 0
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ExampLE II. «(2) = 0(8)6(T):
[fado = 36%(T) - s78(T) - [To(s) ds,
0 0

fTada = 10%(T) — 1T6(T).
0

We move now to the abstract Wiener space set-up ®* c H C 0, where H is
the Hilbert space

H:= {0 € 0: 0 is absolutely continuous, and f 62 < oo},

with (8., 6,) := [6,6,. It is clear that the inclusion i: H — © is continuous. Let
2: WY0) —» L%, H) be the H-Frechét derivative. Then 2 *: dom(2*) —
L?*(0) is given by 2* = —div + (6, - ). This is essentially the identity

./,.<V¢(x), Y(x)ye /2 gy
(2.10) R

=f o(x)[—divy(x) + (x, ¥(x))] e /2 dx,
R”
V=~0y...,¥,)fore, ¢,,..., ¢, € CHR").Givena € LA J X ©)set B(t) = o

Then B € L*(©, H). If « is progressively measurable, then 8 € dom(2 *) and
2*B = [adf. To see this we use simple processes. Let a(t) = Ya(t) ], o,

Then B(¢) = Et;,, — t;a(t;)e(t), where e(t) =1/ t;11 — ;)[4 ) Ob-

serve that the e; form an orthonormal system in H. Thus
divB =) /t;\, — ¢, d.a(t;),
(0,8) = Ta(t)[0(ti1,) - 0(2)] = [aas,

where J, denotes the directional derivative in the direction e;.
Since a(t;) is measurable w.r.t. 6(6(u): 0 < u < t;)and e, (¢) = 0,0 < t < ¢, it
follows that a(t;, 0 + he;) = a(t;, 8), 6 € ©, h € R. Thus

d.a(t)=0, Vi,
and divB = 0. The analogue to (2.10) here is
(2'11) diV(COIlSt., ‘P2(x1), t1’3(x1’ x2), RS ¢n(x1’ ceey xn—l)) = O’

since d/dx; acts on a function which only depends on x,,..., x;_;.
In Example I we have 8(t) = (T VT e(t), where e(t) = (1/ \/T)fO‘I[Q ry- Thus

divg = VT 9 8(T) = VTe(T) = T,
(6,8) = 6%(T).

In Example II we approximate by a step process a(t) = X0(t)0(T)H,, o,
where 0 = ¢, < --- < ¢, = T is a partition. Then

B(t) = ZJt;, — t,0(£,)0(T)e;(2),
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where e; is as above. Thus
divB = Y|ty = & 0,8(2)6(T)
= Lftiy — £:60(t)e(T) = Lo(t)(tir — 1),
(6,8 = L0(£,)8(T)[0(¢,,,) — 6(¢)]

= 0(T)z6(¢)[6(¢:,,) — 6(2:)]-
Here = signifies equality in the limit as the mesh of the partition tends to zero.
In general, if a: J - Z(™, a € D, is a simple process, a(t) = [, f(+, t)d8™,
fG,t) =2Xf(C, ti)I[t,,t,»H)’ then

n t
) - - i+1 . ) (n—l)
dealti) = == L[ft feor, t‘)] @

where e; is as above. Thus

‘B = -0 = [sa
(2.12) divB=n /J Gas [ 8a,
where G = L[/ 'f(-,7,t;) = [f(-, t + , t). Furthermore,
(2.13) (8,By = La(t)[6(t:,,) - 6(2,)].

We use 1td’s Lemma 2.2.I11 in [7] which asserts that

fj” dof gdo™ = [ ogdsV+ n[,n_l[[,¢(¢)g(-,¢)] g,

Thus

a(t)[0(t.,) —6(¢)] = ./:,,mf(" ti)I[z,»,z,.+1)d0("+l)

tiv1 —
+n ST, 8) | deTY,
L[ )
Substituting back into (2.11) and (2.12) we see that

D*= | Fder+D
Jn+1 ’

where F = L f(-, t)I;, , ., = f. Tosummarize, then, if « € D is a simple process
a(t) = Xa(t)I,, .. ) then

(2.14) Jadd =278,

(2.15) Jadd =<0, 8y = La(t)[6(¢:.,) - 8(2)].

We see then that the Sk-integral corresponds to 2 *, a fact which Gaveau and
Trauber [5] discovered. Furthermore, [a df corresponds to the Ogawa integral
described in Nualart and Zakai [9], Section 6.
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The fact that divB = 0 whenever a € L%(J X ©) is progressively measurable
explains why we cannot expect to extend the stochastic integral to all of
L%*(J X ©). Somewhere there must be a condition that 8 € dom(2*). If « is
progressively measurable, then on account of the analogy to (2.11), the differen-
tiability condition is overlooked. Indeed, any function (x) = (const.,
Yo(X1), Yo X1, Xg)ye vy Yp(Xy,..., ¥,_1)) is in the domain of the divergence oper-
ator, regardless of differentiability of the functions ¢,,...,¢,. On the other
hand, when we leave the class of progressively measurable processes, then it is
clear that a differentiability condition on a must necessarily arise. In the
framework of the expansion (2.3) this is precisely the condition

Y (n+ DU Fl2eqmey < co.

The result (2.15) reminds us of the classical “backward” approximating Riemann
sum for It integrals, and leads us to consider sample path representations for
fadf. By a “sample path representation” we mean a measurable mapping
Q: 0 xR? - R such that Ja df = Q(8,a(-,0)) as. [#7] for some class of
a € D. For any a: J - Z™, a € D, say a(t) = [;f(-, t) d0™, it follows from
(2.9) and (2.15) that

—_ 2

E Za( i) 0( i+1) - 9(ti) - |adf
oy BN 000 foct
= (n+ 1)!Ln+l(ﬁ—f)2+nn![]n_l[a_ [iCes ,t)]‘{

where F = X f(-, t)I}, 1. 5 G =L[5f(-, 7, t;). Since a € D(8) it follows that
G- [;f(-,t+,t) in L*J" ') as we take finer and finer partitions 0 =
ty < -+ <t, =M with max(¢;,; — ¢;) = 0. Furthermore, if « is right mean-
square continuous, then F — f in L%*(J"*!) in this same fashion. Thus, in
general, if a € D is right mean-square continuous, then we have the sample path
representation

(2.17) Jdt = tim Ta(4)[0(28) - 6(t0)],
in L%(©), where 0 = ¢t{¥ < --- < ¥ = M and lim ,;max (¢, — ¢{®) = 0. This

is [4], Theorem 3D.

The problem of sample path representation is more complicated for the
Sk-integral. Since it extends the It6 integral it is clear that (2.17) holds for the
Sk-integral as well, whenever a € L%*(J X ©) is progressively measurable. On
the other hand, the mapping 6 — 6,, where 0.(t) =0(M) - (M — t), is
measure preserving on (0, 4, #”). For any f: J* > R let R, f: J” > R denote
the function

Rﬂf(Tl""’Tn) = f(M_Tl’“"M_ Tn)'
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It follows from (2.1) that for f € L3(J™),

(2.18) fdo™ = j R,fdog.
Jn "

Thus if a: J — L%*(©) has the expansion (2.3), then

a(t) = fo(8) + L [ Ruful-> ) A0,
Since

(2‘19) n+1f( ) f( - t)’
it follows that

fa(t) do(t) = /a(M — t) dO(¢).

Now if a(t) is measurable w.r.t. o(8(u) — 0(t): M > u > t), V t, then a(M — ¢)
is measurable w.r.t. 6(0.(u): 0<u<t), V ¢t. Thus fa(M —¢t)df.(t) is a
classical It integral, and .

Jadt = tim (M - ¢)[8.(t65) - 0.(t)]
- tim Ze(s)[o(u) - ()],

in L%*(®). This is [4], Theorem 3.G. The Sk-integral, then, is sometimes given by
a limit of “backward” sums (2.17), and sometimes given by a limit of “forward”
sums (2.20). This explains why the sample path representation problem is more
delicate for the Sk-integral. _
Finally, I point out that (2.17) leads to a nice formula for evaluating [a df in
terms of a classical It integral, when a is of the form a(t) = y(¢, X). If y:
R — L%J X ) is such that y(x) is progressively measurable, V x, and if X is a
random variable measurable wr.t. #, and if ¢(X) € L*®), where ¢(x) :=
[v(x) df, then y(X) € D and [y(X)d# = ¢(X). This is [4], Theorem 3.A.

(2.20)

3. Anticipative calculus. We begin our development of the integration
theory described above by proving Fubini-type theorems in this framework.

THEOREM 1. Let y: J — D(8) be Bochner integrable, [;y € D(8). Then
8,7 = [;6Y.

PROOF. For y,(s) = [nf(-, s, £)dO™, f(-,s,t) € L (J™),V s, ¢, this follows
directly from (2.2). In general, write

(6.) 7(5) = o5, )+ £ [ fi(cr,0) a6,
where f.(-, s, t) € L*(J™), V s, t. By assumption
Yanl|lff.(-, s+ ,8,t) dt||fz gnry < 0.
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Since
2

L]

Ls[f}[] s, t) dﬂ(")] dt

Znn'

L¥(®)
2

L*(@)

-0,
L2(Jn l)

ff( ,s+,8, t)dt

the desired conclusion follows. O

THEOREM II. (a) Let y: J — D be Bochner integrable, [;y € D. Then

(3.2) f(ny)d0= /J(fyda).

(b) Let y: J — D be Bochner integrable, |,y € D. Then

(3.3) 7(/ )do— f(fydo)

PRrOOF. (a) For y,(s) = [;nf(-,s,t)d0"™, f(-,s,t) € LY(J"), V s,t, (3.2)
follows directly from (2.2) and the fact that symmetrization commutes with
Bochner integration. In general, in terms of the expansion (3.1),

Z(n + 1)'"fan( , t)dt"i2(dn+l) < o0.
Since

2

H/ [L% [1os, t)d0<">dt] d(s)

L*(®)

o0

fJ[fo fs s, t)d0<">d0(s)]dt

N

L*(®)

-0,
L2(Jn+l)

}:(n + 1)v”ff( t)dt

the desired conclusion follows.
(b) Having proved (a) it suffices now, by (2.9), to show that

[aldr)= Lo

and this follows at once from Theorem 1. O
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REMARK. If y: J2 — L*®) is such that y(s, t) is Bochner integrable in ¢,
for each fixed s, then [;y(-,t) € D (resp. D) implies that y(-, ¢t) € D (resp. D)
for a.e. ¢. This is a consequence of the inequality

fJf

for f: J — L%(J") Bochner integrable.

There is an interesting consequence of Theorem II(b) in the special case
Y, = B(t)y/, where y”: J — L%(J X ©) is such that y, is progressively measura-
ble, V t, and B: J X ® — R is a stochastic process. Then, on account of the
remark at the end of Section 2, (3.3) becomes

)= fpto feao).

Observe that the stochastic integral on the right is the classical 1td integral.

2

2
< M[11f120m
) J

LZ( Jn

THEOREM III. Let y: J%— L%®) be such that y(-,t) € D; V t, and
¥(s, -) € D(8), V s. If the process s — 8,y(s, t) isin D,V t, and y(t + , t) exists
in L*(@), V t, then the process t — [y(s, t) d0(s) is in D(8), and

(3.4) Btfy(s,t)d0(s)=f8ty(s,t)d0(s)+y(t+,t), v t.

PROOF. For y(s,t) = [;f(-,s,t)d0™, f(-,s,t) € LAJ"), V s, t, (3.4) fol-
lows from (2.6) and (2.8). The rest follows as in the proof of Theorem II, using
the expansion (3.1). O

THEOREM IV. Let y: J? - L% @) be such that y(-,t) € D(8), V t, and
Y(s, -) € D(d), V s. If the process s — 8,y(s, t) is in D(8), V t, then the process
t— 8.y(s, t) isin D(J), V s, and §,8,y(s, t) = 88,v(s, t).

PROOF. For y(s, t) = [;nf(-,s,t)d0"™, f(-,s,t) € L¥J"), V s, t, this fol-
lows from (2.8) and the symmetry of f. The rest is as above. O

REMARK. It follows from Theorems I, III and IV that (3.4) holds for | as
well. That is, if we replace D by D in the hypothesis of Theorem III, then

(3.5) Stfy(s, t)do(s) = /s,y(s, t)do(s) +y(t+,t), V¢

THEOREM V. (a) Let y: J2 - L¥®) be such that y(-,t) € D, V t, and
Y(s, ) € D, V s. If the process s — [y(s, t)d0(t) is in D, then so is the process
t— [y(s, t)dl(s), and

(3.6) /[/y(s, t) d0(s)] do(t) = f[fy(s, t) d0(t)] do(s).
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(b) Let y: J? —» L¥©) be such that y(-,t) € D,V t, and y(s,-) € D,V s. If
y(t+,t)and y(t, t + ) existin L*(®), and if the process s = [Y(s, t) dO(t) is in
D, then so is the process t = [y(s, t)d0(s), and

7[77(8, £) d0(s)] ao(e) + [+(t,6+)
(3.7)

_ 7[7}'(3, ) d0(t)] d(s) + [y(t+ 1),

PROOF. (a) For y(s, t) = [uf(-,s,t)d0"™, f(-,s,t) € LA J™), V s,t, this
follows at once from (2.6). The rest is as above.

(b) Having proved (a) this follows now from (2.8), (3.5) and Theorems II(b)
and IV. O

We move on now to consider the stochastic integrals described in Section 2 as
functions of their upper limits. If « € D, 7 € J, we would like to define
Jgadl == [al}, ., d0, but there is an inherent problem here. In terms of domains
of definition the problem is that, in general, alj, ,; need not be in D, even
though a is. If « has the expansion (2.3), then alj, ,1(¢) has the expansion

“(t)I[o,7](t) = fo(t)I[o,T](t) + ZLnfn(" t)I[o,v](t) o™,

The condition that alj, ,y € D is then
————————ree
L (n+ DY fu(e, ) 1y(2)

and this does not follow from the condition a € D. To see this use, for example,
kernels f, satisfying f, = 0,V n, but f,(-, t)I, ,,(£)# 0.

More fundamentally, in terms of measurability, the problem is that
a(t)Ip, ,1(t) need not be measurable w.r.t. o(f(u): u < 7). Let us introduce the
notation /", #, and A7 for o(6(u): u < 1), o(8(u) — 6(n): n <u < M) and
o(0(u) — 6(n): m < u <), respectively. The Sk-integral [jad@ is really only
designed to integrate processes a: [0, 7] — L?(©) for which a(t) is measurable
w.r.t. A7,V t. In other words, the integrand should not anticipate further than
the upper limit of integration. On the other hand, if this is the case, and a(t) is
measurable w.r.t. #7,0 < t < 7, then the kernels f,(:, t) above are all supported
on [0, 7]" 0 < t < 7. In particular,

(3.8) fo(s ), () = f(+, ) (-5 8),  Vom,

and we see here at once that alf, .; € D as long as a € D. Furthermore, since
any nonrandom function factors in and out of 8, we have

8("‘1[0, T]) = (80‘)1[0, ]

so that al, ., € D here as long as a € D. Even more, there is consistency here,
and [alp, ,,d@ (resp. [aly, ,;df) coincides with [a|y ,jdf (resp. [a|p .jd0)
when we work on Wiener space (Cy[0, 7], Z,#").

2
L2(Jm+1) < o0,
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The upshot of this is that if « € D and if a(¢) is measurable w.r.t. /7,
0 < t < 1, then we can define [ja df. In particular, if we want to define [ja d@ for
every T € J, then under these conditions a would have to be progressively
measurable. To get around this we study two-parameter processes y: J2? —» L%(@)
for which y(s, ) is measurable w.r.t. #7, s <7. Then we can talk about
fg¥(s, 7) dO(s) for every T € J. This is precisely the set-up we were led to in
[2]-[4] when inverting the Itd—Volterra integral equation.

The general condition on a: J — L*(®) for which the Sk-integral fal, ,,d6
can be used to define a process 7 — [jadf from J — L), is fairly compli-
cated. For example, if we want this process to be an element of D (so that we can
further integrate it), then the condition on « [in terms of its expansion (2.3)] is
E(n + 28,1 32gn+2y < o0, where g, (-, t,7) = f(-, )}y 1(2); and if we want
this process to be an element of L2(J X ©), then the condition on « is
L(n + DYk, |2 gney < 00, where h,(-,7)=H, ., H, (-,8) = f(:, ) (8.
(The g, are also symmetrized in 7, the h, are not.) Using the projection
property of symmetrization it is easily seen that this last condition is equivalent
to

(3.9) (n+ DU D, OO = 1) [ < 0.

It follows from (3.8) that if a € L%(J X ©) is progressively measurable, then
[ dB is defined for every T € oJ, and the process 7 — [ja df is also progressively
measurable. The condition for this process to be in L%(J X @) is then simply the
condition that the process ¢ = a(¢)yYM — t be in L%(J X 0); i.e.,

(3.10) Yn!| f.(, e)VM - t||2L2(J"“) < .

Using (2.7) one sees that (3.9) and (3.10) are equivalent here.

A similar problem arises when we try to introduce [Ma df, a € D. In terms of
the expansion (2.3), we could require that the kernels f,(:, t) be all supported on
[r, M]", V t; and then it would follow that al, 5, € D. This would effectively
be setting up the Sk-integral on Wiener space (Cy[ 7, M1, 4, #"). However, this
is too restrictive, as it would automatically rule out progressively measurable
integrands, a: J — L% ®). Instead, we can simply define [Madf := [adf —
[qe d@ whenever «a is such that «(¢) is measurable w.r.t. #7, 0 < ¢t < 7. In fact,
this is equivalent to defining [Ma df == [al}, ,, d8, since in this case, on account
of (3.8),

(3.11) £ O 2y (8) = £, 0)[1 = I o (-, )], Vo

What we conclude from the above discussion is that for a« € D (resp. a € D),
JJe df (vesp. [ja df) can be defined through [al, ,d0 (vesp. [al, ,;df) as long
as a(t) is measurable w.r.t. #", 7 < ¢ < 7. Similarly, this definition is valid if
«(t) is measurable w.r.t. /#,, n < t < 7, as can be demonstrated by running the
above discussion in reverse. If «(t) is actually measurable w.r.t. #7, n<t<r,
then, in fact, this definition coincides with [a|;, ,;df (resp. [a];, ,;d8) on
Wiener space (Cy[n, 71, &, #°). Of course, the condition that a(¢) be measurable
wr.t. A7, q < t <7, or measurable w.r.t. #,, n < ¢ < 7, is not the most general
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condition for defining [/a df, « € D. What one really wants is

¥ (n+ DY f(, O, (2)

in terms of the expansion (2.3).

2
L2(Jn+l) < w’

THEOREM VI. Let y: J% — L% ©) be such that y(s, t) is measurable w.r.t.
Mt s<t, and y(-,t) €D,V t, and ¥(s,-) € D(8), V s. If the process s —
8,v(s, t) isin D, then [§y(s, t) dO(s) is in D(8), and

(3.12) 8, fo “Y(s, t) db(s) = jo ‘8,7(s, t) dO(s).

Proor. This follows at once by applying Theorem III to y(s, ), ,(s). O

REMARK. Again, if we replace D by D in the hypotheses of Theorem VI,
then, on account of (3.5),

(3.13) 8,7;7(3, t) dé(s) = TO‘s,y(s, £) dé(s).

4. The 8-operator. We recall now the Malliavin Zoperator #: dom(.#) C
L2%(®) —» L%(®), defined in terms of the chaos expansion L*(®) = ®;°Z™ by
ZX = —(n/2)X,V X € Z™. (The subspaces Z™ are defined above in Section
2.) Thus if Y € L?(®) has the expansion

Y= gO + Zf gn da(n),
J’l
then Y € dom(%) if and only if ¥n’n!||g, |72y < oo; and
£Y=—1¥n( g,do™.
J’l

In terms of the H-Frechét derivative operator 2 introduced above in Section 2,
&= — 19*9. See Ikeda and Watanabe [6] and Stroock [13] for a discussion of
this operator.

It follows from (2.6) that if

(4.1) Y nPnl| foll3z gy < o0,
then
(4.2) Zfadd - [(Za~}a)do=0

(and, of course, both terms above are defined). This is essentially the identity [cf.
(2.10)]

ju;n<vg¢(x)’ 1P(x)>e-lx|2/2 dx
(4.3)

= fnn(mb(x),gxp(x) — 1y(x)ye "2 d,
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v=p...,¥,) for ¢ € CYR™ and ¢,...,¢, € CJ[R"), where ¥ is the
Ornstein—Uhlenbeck generator

d v 1Z 92 ad
(4.4) 2 dx? _x"ax,. ’

and 9y = (9Y,,..., 9Y,). Similarly, it follows from (2.9) that if, in addition to
(4.1),
2

(4.5) Y n’n! ff,,(-, t+,t) < o0,
J LZ(Jn—l)
then
(4.6) ,?fadﬂ— f(,‘?a— 1a)do = Lb‘a
(and again all terms above are defined). This is essentially the identity
(4.7) g(x,¥(x)) — (x,99(x) — 3¥(x)) = divy(x),

for ¢,,..., ¥, € CYR™). Incidentally, using (2.10) and (4.7) we see that (4.3)
really amounts to the identity

(4.8) @ div = div ¢ + 3div.

Using the framework of the Malliavin calculus, it is very straightforward to
evaluate the action of § on a wide variety of processes. The basic identity here is

(4.9) jJ 8a = limY. 9, a(t;),

where h(t) = [¢I}, ;) and the limit is taken in L%(®) as the mesh size,
max(¢,,, — t;), of the partition 0 = ¢, < ¢, < -+ <, =M goes to zero. This
was proved above in Section 2 when we established (2.14), (2.15) and (2.17).

Let a(t) = ¢(By(2),..., By(t)), where ¢ € Ci(R*) and B,, ..., B € D(8). Then
it follows from (4.9) that if each 8B; is Bochner integrable, [;08; € L%®), then

[da= [T (g ()., Bu0) 8.(0) s
J J X;

Since nonrandom functions factor in and out of 8, we can replace a with aA for
any test function A € Cy(J); and in this way conclude that

I
(410)  86(Bi(2),-., Bul(8)) = L= (Bu(0),., Bul2))8Bi(2),
for a.e. tJ. In particular, if a(t) = ¢(B(¢), 0(T)),...,0(T,)), where ¢ =

(%, ¥1,..., ¥p) € CR*Y) is differentiable in y,,..., y, with bounded deriva-
tives, B is progressively measurable and T},..., T} € J, then

Sal) = zj—j_(/su),a(crl),...,om))r[o,T,.](t),
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for a.e. ¢t € J. Still more specifically,

59(6(t), 0(M) — 6(2)) = %(ou),o(M) ~o(e)),

for a.e. t € J, a result which was mentioned in [4].

In follow-up papers I will try to further develop these extensions of Itd’s
integral, concentrating on their distribution, support and structure as semi-
martingales. I will also examine the action of Malliavin’s covariance operator on
them, and the calculus for processes

£(¢) = £, + Ead0+ fO‘ﬁ.
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