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A GENERALIZATION OF KOLMOGOROV’S EXTENSION THEOREM
AND AN APPLICATION TO THE CONSTRUCTION
OF STOCHASTIC PROCESSES WITH
RANDOM TIME DOMAINS

By K. Y. Hu
National University of Singapore

Kolmogorov’s extension theorem is generalized so that the time domain is
a random set. This is applied to the construction of stochastic processes with
random time domains, generalizing certain results of Dynkin and Kuznetsov.

1. Introduction. Let T be a set, F(T') be the set of all nonempty finite
subsets of T, and S, be a complete separable metric space for each ¢ € T. For
any F € F(T), let S be the product set II{S;: ¢t € F}, % be the Borel
g-algebra in S, and 7z S; — Sy be the projection map. Kolmogorov’s extension
theorem ([2], [5]) says that if P is a probability measure on (S;, 77 [ #y]) for
each F e F(T) and if {Pr: F € F(T)} satisfies the consistency "condition:
A € 7z [Br] N 75 [Br] = Pr(A) = Pp(A), then there is a unique probability
measure P on (Sy, #r) such that P .4 ;= Pf for each F € F(T), where %,
is the o-algebra in S, generated by U{m;[%;]: F € F(T)}. In this way
Kolmogorov’s theorem randomizes the graph of a function in the function space
Sz, which consists of functions with the same domain T. The first objective of
this paper is to extend Kolmogorov’s theorem so that the domain of a function is
also randomized. This is done in Sections 2 and 3.

The second objective is to introduce an application of this extension theorem
to the construction of stochastic processes with random time domains. We
formulate an easily recognizable theorem (Theorem 1’) which generalizes certain
results of [1] and [3].

2. Preliminaries and notation. Since we will have to consider o-algebras
of sets of sets, the notation will be somewhat complicated. As far as the index set
T is concerned, we shall adopt the following convention: We shall use ordinary
letters (like D, E, F, etc.) to denote subsets of T, boldface letters (like T, D, E,
F, etc.) to denote sets of subsets of T and script letters (like 2) to denote sets of
sets of subsets of T.

Let T be a nonempty set and T be a set of subsets of T. For each ¢t € T, let
(S,, #,) be a standard space (i.e., a measurable space which is isomorphic to a
Borel subset of a complete separable metric space). For any E c T, F(E) denotes
the set of all nonempty finite subsets of E, and S; denotes the product set
I{S;: t € E}. If F, € F(E), we let F(E) = {F € F(E): F > Fy}. For any two
subsets E, E' c T for which E C E’, let mg 5 Sg — Sp such that
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(g g(x)),=x, for all t€ E. ® denotes {(D,x): D€T, x €Sp}. For any
FeF({T), le¢t T,={DeT: DOF}, = {(D,x) € ®. De Ty}, D5 be a
o-algebra in Ty and Y5: @ — Tp X Sp be defined by Y (D, x) = (D, mp p(x)).
Let 9 =U{@;: F € F(T)}. For any class & of subsets of a set Y, let #(&) be
the o-ring in Y generated by &. If § is a ¢-ring in Y and D € &, we let &)
denote the set {E N D: E € &}. A nonempty class & of subsets of a set Y is
called a pre-ring if the intersection of any two members of & is a member and
the difference of any two members is a finite pairwise disjoint union of members.
Assume that {9y: F € F(T)} satisfies the following condition:

(C,) Forall F, F e F(T),DND € 9N Dy, for all D € D and D’ € Dy
ProposITION 1. (C,) holds if and only if S(D)|y, = D for all F € F(T).

PROOF. Assume (C,). For any F € F(T), it is clear that #(2)|g, D PDp.
(E €e#(2): ENTz€ Py} is a o-ring which contains 2, and hence equals
FL(2). Conversely, let F,F' € F(T), D € 9, D' € 95 be arbitrary. Then
D=ENT;,,D=ENTgforsomeE E €£(2).DND=EnNTNnE)N
Ty and hence D N D' € 9. Similarly, D N D’ € 9. O )

Here are some consequences of (C,).
PRrOPOSITION 2. Forall F, F' € F(T), 95N\ Dp = Dp, p-

PROPOSITION 3. For all F, F' € F(T), D\D' € @ for all D € 95 and
D' € 9.

For any F € F(T'), let %, denote the product c-algebra ® {%,: t € F} and
let oZp= (YD XT): De Py T By} Let &=U(Ayp: Fe FT)). From
(C,) and Proposition 3 we deduce

PROPOSITION 4. 9 is a pre-ring in T and &/ is a pre-ring in ®.
We shall need the following.

LEMMA 1. Let A be a o-finite measure on a pre-ring < in a set. Then A can
be extended in a unique manner to a measure A on the o-ring (/) generated
by &Z; the measure M\ is o-finite.

3. The extension theorem. Suppose for each F € F(T), P is a measure
on (®p, S () and assume that {Pg: F € F(T'))} satisfies the consistency
condition: A € &y N Ay = Pr(A) = Pp(A) for all F, F' € F(T). Then there is
defined unambiguously a map P: & — [0, co] such that P(A) = Pp(A)if A € <.

Let F € F(T). A countable collection {T®: k = 1,2,...} is called a proper
decomposition of (S, Br) with respect to Py if T'® € B for each k, T® N
I'® = g for k+k, UT®: k=1,2,...} =85, and Pp(y5'(- X T®)) is a
o-finite measure on (Ty, 95) for each k. If {T®: k=1,2,...} is a proper
decomposition of (Sp, #By) with respect to Pp and F C F’, then {m;'s(T®):
k =1,2,...} is a proper decomposition of (Sg., %) with respect to P.. Hence to
ensure that (Sp, #r) has a proper decomposition for every F € F(T) it is
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necessary and sufficient to require that (S,, %,) has a proper decomposition with
respect to P, for every ¢ € T, which we shall now assume.

Let F, € F(T) be arbitrarily fixed, and let {T®: £ =1,2,...} be a proper
decomposmon of (Sg,, #Br,) with respect to Pr,. For any F € FFO(T), {7 (TP
k=1,2,...} is a proper decomposition of (Sy, #r) with respect to P, and
p) = PF(prl( X 75 7(T®))) is a o-finite measure for each k. For any k
(pP: Fe FF(T)} satisfies the consistency condition: D € 25 N D

pED) = S{?)(D) for all F, F' € Fg(T). Hence there is defined unamblguously a
map p®: U{Dp: F € Fp(T)} [0, 0] such that p®(D) = p(D) if D € ;.
Since by (C,) U{(Zy: F € Fg(T)} = Dy, we can regard p® = uf®). We shall let
Br, = Li- 1#%? Pg(y7,(- X Sp,)) as a measure on (Tg,, Iy, ).

From (C,) it is easy to deduce

PROPOSITION 5. For any k = » F € Fg(T) and D € Dy, we have (i)
D € 95, and (i) (D, Z¢lp, %’)) and (D QFOID, p)) are identical measure
spaces.

For each k£ = 1,2,... and each F € Fy(T), let »{*(T|D) (T € %5, D € Ty)
take values in [0, 1] such that

@) for each D € Ty, »$)(-|D) is a probability measure on (Sg, Z5);
(i) for each T € %y, v{¥(T| - ) is a measurable function on (T, Z); and
(iii) for each T' € %y and each D € 9y, Pp(y5'(D X (I N my 5 (TM))) =

[p¥i (T | D) (dD).

The existence of (¥’ can be proved in a similar way as we prove the existence of
a regular conditional probability distribution.

LeMMA 2. For each k=1,2,... and each F,F' € Fg(T), there exists
E{fr € Dp,p such that pP(EPR) =0 and for all D € Tp,p\ Efp,
v (75 % o p(T)ID) = vi (75! p o p(T)|D) for all T € By, p

Proor. Forany I' € B,y and any D € D, p = D N Dy, we have
J AP e (D)D) (D)
= [ e p(TID)uf(dD)

= Po(47(D X (7 (1) 0 7 (T))))
= PF/(‘PE'I(D X ("E',lpnp'(r) N "F_",IFO(F(k)))))

= [7#(n! e (D)D) v((dD)

= fD w5 5 p(T)D)p(dD).
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Hence for arbitrary T € By, 7§(75 FnF(I‘)lD) = v (mp! g p(T)|D) for
almost all D in (Tz, p, Dryps u&w )- Smce B g 18 countably generated and

each of v{¥)(m; %% p(-)|D) and v}”)( 7 For(+)|D) is a finite measure, the result
follows. O

PROPOSITION 6. P is countably additive on <.

ProOF. Let I =(1,2,...} and suppose ¥5'(Dy X Tp) = U{Y5'(D; X T)): i €
I} is a disjoint union. It is clear that D, = U{D iel} and hence D,=D;Nn
D, € 95, N Dy, = Dr,ur, and Y'(D; X I‘) =YrurDi X 15Uk, F(F)) Fix a
proper decompos1t10n {I‘(k) k=1,2,...} of (Sg, %F,) so that we can apply the
results obtained in the earlier part of th1$ section. Let C = (U{F: i€ I})UF,
Then Fg(C) is countable. For any k, any F, F’' € Fp(C), by Lemma 2 there
exists E}!"" € g, such that p®(E{F);) = 0 and for all D € Ty, p \ E¥¥p,
v (15t p o (D)D) = vi(mp! pap(T)|D) for all T € By p. We let E® =
U{D, N E{¥y: F, F' € F(C)}. Then E® € 9, and p@E®) =0. Let D
D,\E® be arbitrary. For any F, F' € Fe(DN C), D€ Tp,p and hence
D € Tpup \E},) Moreover, for F, F' € FF(D NC), I'e B, and I" € %y,
'”Dnc r(D) =m500,p(I) =T =mg FnF(F) and I = =g, "¢ ap(T) for some

Te Brpnp = vl )(F|D) = ”}'k)(WF,FnF’(I‘ND) = VI(F‘k)(WF',FnF'(P)|D)
= v®(T"|D).
Hence we can define unambiguously for any D € D \E(”) a map Q¥ .
U{mphc rl#r)l: F € Fg(D N C)} - [0,1] such that Q¥ 0(7713(\0 () =
v(k)(F|D) For each F & F;(D N C), Q)¢ restricted to THhc, F[QF] is a
probability measure. Hence by Kolmogorovs extension theorem Q) . is

countably additive. For any D € D,\E®), let I, = {i€l: D< D;}. Then
{m5 ¢, rur TR UR, r(TD): i € Ip} is a pairwise disjoint family and

U{Wﬁrlwc,EUFO(WIELIJFO,F;(I‘i))i S ID} = m5he r(To)-

Thus X;c g, QE)nc("TDnc FuFr{TF, UFO (I = QY c(”ﬁnc r{To)) which im-
plies that &, g ku FO(WF UF,, F(F )ID) = v,%k’(l‘olD), orX;c IX D, (D)Vﬁ‘ UFO(WF UF,,

r(T)ID) = »{¥(T|D). By Proposition 5 and the monotone convergence theorem
we conclude that

ZIP( \P;',I(Di X Pi))
= Z,IPF,.( *PF_',.I(Di X Pi))
= ZIPEUFO( YEL Fo(Di X 75 & Ry, F(Fl)))

=X i PF;UFO(‘P;*iILJFo(Di X (WibFo,I«*,(Fi) N Wﬁbpo,po(r(k)))))
iel k=1
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= . ) _/;)”E‘kemo(ﬂp UF,, F, (I‘t)|D)l‘(I«I‘e)uFo(dD)
= . ) _/]‘)”}«{eu)mo(”pupo F(P)|D)H(k)(dD)

= i j;)X (D)”FUFO("TFUFO F(I‘)|D)p.(k)(dD)

ie Ik=1 0

= f‘. j;) XD(D)VFUFO(WFUFO F(I‘)|D)p,(k)(dD)

k=1"YieIl

= X [ s(ToiD)uk(dD)

= § 452000 x (1, 7))
=1
= PFO(‘PEOI(DO X 110)) = P(‘PF_'OI(DO X l-‘0))- o
We shall prove the following.

THEOREM 1. Let {9y F € F(T)} satisfy (C,). Suppose for each F € F(T)
there is defined on (®p, ¥ (y)) a measure Py with respect to which there is a
proper decomposition of (S, By). Assume that {Pz: F € F(T)} satisfies the
consistency condition: A € o, Ny = Pp(A) = Py(A) for all F, F' € F(T).
Then there is a unique o-finite measure P on (®, #(&/)) such that P| ety = Pr
for all F € F(T).

ProoF. P is countably additive on the pre-ring & by Proposition 6. It is
also o-finite on . By Lemma 1 there is a unique o-finite measure P on
(®, #()) such that P|d— P. For any F € F(T) it is clear that 5’(%) o)
V(MF) Hence P|y( «) 18 a measure on (®p, #(5)) which extends P|, .
P\, is o-finite the extension is unique and hence P, oy = Pp. O

We shall furthermore assume that {2: F € F(T')} satisfies
(Cy) T = U, D, where D, € 9, for some F, € F(T).

By Proposition 3 we can regard the D,’s as pairwise disjoint. Moreover, we
have the following characterization of (C,).

ProposITION 7. (C,) is fulfilled if and only if T € #(2).

Proor. Proposition 7 follows from the fact that the class of all subsets of T
that are covered by countably many members of & is a o-ring. O
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THEOREM 2. Let the assumptions in Theorem 1 be satisfied. If (C,) is also
fulfilled for some pairwise disjoint {D;}, then ® € ¥(&) and P(®) =
Egil”’i’,(])i)'

ProOF. @ =UX yz'(D; X S) € #(#) is a disjoint union. Hence

P(8) = ¥ P(47(D, x 1))

I
™8

Pe(v5!(D; x Sp))

g8 T

MF,(Di)- O
1

~
I

REMARK. (i) If T = (T}, 9p= {3,{T}} for each F € F(T), then (C,) and
(C,) are satisfied. If each Py is a probability measure, then each p, is a
probability measure and P(®) = 1. In this situation Theorems 1 and 2 reduce to
the usual Kolmogorov extension theorem.

(ii) If T is a subset of the real line and T is a set of intervals, (C,) is fulfilled
because T = U{T,,: r € T, r is rational}. If T is any countable set, (C,) is also
fulfilled.

4. Construction of a stochastic process with random time domains.
Let T = R (the real numbers) and let T be a set of subsets of T. For each
F € F(T) suppose 2y is a o-algebra in Ty such that {9;: F € F(T')} satisfies
condition (C,). We define a stochastic process with random time domains in T to
be a measurable map X: (2, 9, P) — (®, # (%)) for some o-finite measure space
(2,9, P). For any F € F(T), amap np: D5 X B — [0, 0] is called a bimeasure
if for each D € @, 1p(D, ) is countably additive on %, and for each I' € %,
np(+, I') is countably additive on 9. Let 0y be a bimeasure. A pairwise disjoint
family {T'®: & = 1,2,...} of members of %, is called a proper decomposition of
(S, Br) for g if for each k, ng(-,[®) is o-finite on Dp. A family {nz:
F € F(T)} of bimeasures is said to be consistent if for any F C F,
MDY, 75 p(T)) = np(D, T) for all D’ € 9y, and T € By If {ny: F € F(T)} is
consistent and if {T'®: k =1,2,...} is a proper decomposition of (Sp, %) for
Mg, then {mz1(T®): k =1,2,...} is a proper decomposition of (S, %) for
Mg, for any F' O F.

LEMMA 3. Let n, be a bimeasure for which there is a proper decomposition
of (Sg, Br). Then there is a o-finite measure Ay on (Ty X Sp, D ® By) such
that Ag(D X T) =0D,T) for all D € D and T € By, Ap is uniquely de-
termined by np.

ProOF. Let {I'®: k=1,2,...} be a proper decomposition of (Sg, %) for
np. For each % there is a pairwise disjoint family {D;: i = 1,2,...} C 9 such
that U{D;: i =1,2,...} =Ty and np(D;, T®) < oo for all i. Let 7% "®: 2, X
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By — [0, 0] be defined by 7§ *X(D, T') = np(D N D;, T N T®). Then n{* is a
bimeasure with 1% *)(Ts, Sp) < co. Since (Sy, By) is a standard space, by a
theorem due to Morando [4], page 222, there is a unique finite measure A% % on
(Tp X Sp, Dp ® Bp) such that ANG®(D X T) =MD, T). We let Ap=
,LN4%, Then Ay is o-finite measure on (Tp X Sp, Dp ® Bf). For any D € 9
and I' € %,,

Ap(DXT) =Y Y Xz (D xT)
k 1
=Y Xa¥®(D,T)
k1
=Y Yn(DNnD, T NIT®)
k i

= nF(D’ r )
The uniqueness is obvious. O

We can prove the following alternate version of Theorem 1.

THEOREM 1'. Let {Dy: F € F(T)} satisfy condition (C,). Suppose for each
F € F(T) there is a bimeasure np: Dy X Br — [0,00] for which there is
a proper decomposition of (Sgp, Br). Assume that {np: F € F(T)} satisfies
the consistency condition: For all F, F' € F(T) such that F C F',
(D, 75 p(T)) = np(D, T) for all D' € D and T € By. Then there is a
stochastic process X with random time domains in T so that for any F € F(T),
P(X Y yp'(D X T)) =D, T) forall D € 95 and T € %.

ProoF. For any F € F(T), let Py be the measure on (®, ¥ (#5)) such that
Po(A) = Ap(Y5(A)) for A € (). Then any proper decomposition of (Sp, )
for n is a proper decomposition of (Sg, %) with respect to Py. Let us prove the
consistency of {Pp: F € F(T)}. Suppose FNF' # &. Then A € &/ N Ap =
A=yr' D XT)=yp' (D' XT'), where D=D'" € 9N Dp = Dp,p and T =

77 pnp(D) and T7 = 751 5 p(T) for some

I'e Bpnp = Pe(A) = Pe(45'(D X T)) = Ap(D X T) = ng(D, T)

= "’F(D’ WFT,IFHF'(T)) = TIFnF'(D: F) = nF'(D" WFT',IFHF'(T))
= 7p(D, T") = Ap(D’ X I’) = Pp(yp1 (D' X IV)) = Pp(A).

Suppose FNF'= @. Then A € AN Ay = Pe(A) =Ap(D X Sp) =D, Sp) =
1pu p(D; Tl 7, F(Sp)) =gy p(D, 75 p, p(Sp)) = np(D', Sp) = Ap(D' X Sp) =
P, (A). Hence by Theorem 1 there is a unique o-finite measure P on (®, (%))
such that Py, = Pp for all F € F(T). If X: (®, #(¥), P) = (®, #(H)) is
the identity map, then P(X Y yzXD X T))) = nz(D,T) for all D € @, and
I'e %50

‘REMARK. Under consistency it is sufficient to assume that each (S, %,) has
a proper decomposition for 7 @y foreach t € T.
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5. Relation with a result of Dynkin. Let T= R and T = {(a,8): — o0 <
a < B < + o0} be the set of all open intervals. For each F € F(T') let ay = inf F,
bp=supF, 1p: Tp > [—00, ap) X (bg, +0] be the bijection which associates
each (a, 8) € Ty with the point (, 8), and 2, be the o-algebra (7' [ Z[ — 0, ay)
® #(bg, + 0o]]. In this situation Dynkin [1] gave the definition of a stochastic
process on a random time interval and conditions for its existence. His definition
coincides with ours and his result can be derived from Theorem 1'.

Formulated in the framework of this paper, Dynkin’s result reads as follows.

THEOREM (Dynkin [1]). For each F € F(T') let my be a o-finite measure on
(Sp,#r). Then there exists a stochastic process X on a random interval such
that mp(T') = P(X~ Yy Ty X T))) for all F € F(T') and T € A, if and only if
{mp: F € F(T)} satisfies the following conditions for all F, F' € ¥(T), T € &
and T € B

O) mpgp(T XS, XT)=mpeT XTI if F<t< F;
(i) m g (S, X T)Y T mp(T) as s 1 F, if mp(T) < oo;
(iii) mp (T X S))Tmp(T) asu | F, if mp(T) < oo;
(iV) msF(Ss X F) + mFu(F X Su) < mF(F) + msFu(Ss x I' X Su) lf s <
F<u.

Here mp, denotes mp, , p and F <t < F'meanss <t <s'forall se F
and s’ € F'. Similar meanings are attached to other similar expressions.

ProOOF. The necessity was proved in Dynkin [1] but the sufficiency was not
proved there. The author was unable to trace Dynkin’s papers for a sufficiency
proof. Let us prove it by using Theorem 1’. From Proposition 1 we see that
condition (C,) is fulfilled for {Zy: F € F(T)). For any F € F(T) let {T'®:
k=1,2,...}) be a family of pairwise disjoint members of % such that U{T'®):
k=1,2,...} = Sp and mp(T'®) < oo for each k. For an arbitrary & and any
I' € %, the function

k .
G(x, y) = {map—l/bup+1/y(SaF—1/x X (F n F( )) X pr+l/y)’ if X,y > 07

0, ifx<Oory<O,

is a two-dimensional distribution function by (i)—(iv), except for the normaliza-
tion condition: lim, , ,  G(x, y) = myx(I' N T®) which may not be 1. It defines
a finite measure (¥(-,T) on ([(—o0, ap) X (bp, +0], B[— 0, ay) ®
B(by, + ]) such that ([ — o0, s) X (4, + 0], T) = mp, (7,5, (T N TH)) if
s < F < u. For each B € #[— 0, a;) ® B(bg, + 0], {¥(B, ) is a finite mea-
sure on (S, %) because the class {B € B[ — o0, ap) ® B(bg, + 0]: (B, ) is
countably additive on %y} is a A-system and contains the #-system {[ — o0, ) X
(u,+0]: s<F<u) Welet ng: DX B [0,00] such that 7D, T) =

©_4B(pD), T). np so defined is independent of the choice of {I'®: % =
1,2,...} and is a bimeasure for which there is a proper decomposition of
(Sg, Br). As a matter of fact, np(-, I®) is a finite measure in this situation. If
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F’ > F, then by (ii), (iii) and induction m (! «(T™®)) < oo for each k£ and we
can regard {{{%: k=1,2,...} and 7. as constructed from the decomposition
{7l p(T®): k= 1,2,...} of (S, Bp.). Thus

$([ =00, 8) X (u, + 0], 77! p(T))
= msF’u(Ws;'l’u, (7t s(T) N m:t p(T®)))
= Mo Mo, (75 (T N TD)))
= msF'u(”s_Fl'u,F(F N F(k)))

= msFu(qrs_Flu,F(I‘ N l-‘(k)))

= g‘;’k)([_ 0, s) X(u, + °°]a F)
forall s < F’ < u and I' € @, which implies that {{¥(B, n;! () = {¥(B, T)
for all B € #[—o0,ap) ® #(by, + o] and I' € #,. Hence

Mp (D, 15t p(T)) = L ¢88(ep (D), 77 p(T))
k=1

Z §§,k)(¢F(D'), F) = nF(D’, F),
k=1

for all D’ € @, and T € %, and the consistency is concluded. By Theorem 1’
there exists a stochastic process X: (2,9, P) - (®, #(&)) such that for all
Fe F(T), P(X (5D X T))) = np(D,T) for all D€ P, and T € B; in
particular, :

P(X~'(45(Ty X T))) = np(Ty, T) = kgcﬁ"(w(m, r)

0
= Y my(TNT®) =my(T). O
k=1
Theorem 1’ is a generalization of Dynkin’s result in the following two aspects:
() T, {Z5: F € F(T)} (and even T) can be arbitrary; and (ii) the concept of
proper decomposition extends that of o-finiteness of m, allowing for a broader
consideration of the class of measures on the time domains.
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