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ASYMPTOTIC OPTIMALITY AND ASYMPTOTIC
EQUIPARTITION PROPERTIES OF
LOG-OPTIMUM INVESTMENT

By PauL H. ALGOET! AND THOMAS M. COVER?

Boston University and Stanford University

We ask how an investor (with knowledge of the past) should distribute his
funds over various investment opportunities to maximize the growth rate of
his compounded capital. Breiman (1961) answered this question when the
stock returns for successive periods are independent, identically distributed
random vectors. We prove that maximizing conditionally expected log return
given currently available information at each stage is asymptotically opti-
mum, with no restrictions on the distribution of the market process.

If the market is stationary ergodic, then the maximum capital growth rate
is shown to be a constant almost surely equal to the maximum expected log
return given the infinite past. Indeed, log-optimum investment policies that
at time n look at the n-past are sandwiched in asymptotic growth rate
between policies that look at only the k-past and those that look at the
infinite past, and the sandwich closes as £ — oo.

1. Introduction. Suppose an investor starts with an initial fortune S; = 1.
At the beginning of each period ¢ (where ¢ takes on discrete values 0,1, ...), the
current capital S, is distributed over investment opportunities j=1,...,m
accordmg to some portfolio b, = (b/ i< j<m» @ vector of nonnegative welghts
summmg to 1. Let X/ >0 denote the return per monetary unit allocated to
stock j during period ¢, and X, = (X/),. j<m the vector of returns. The yield
per unit invested according to portfolio b, is the weighted average of the return
ratios of the individual stocks, i.e., the inner product

(1) (bt’Xt)= Z bthtj-

1<j<m

Given that S, units are invested at the beginning of period ¢, the total amount
collected at the end of the period when the random outcome X, is revealed is
S,.1 = Si(b,, X,). This capital is redistributed at the beginning of the next round,
and the compounded capital after n investment periods is

(2) S, = I_[ (bt’ Xt)‘

0<t<n
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Portfolio b, must be chosen on the basis of %#,, a o-field that embodies what is
known at the beginning of period ¢. It obviously makes a difference whether
decisions may depend on the history of an aggregate quantity like the Dow—Jones
average, on detailed records of the past, or perhaps on inside information or help
of a clairvoyant oracle. Our default assumption is that &%, = o(X,,..., X,_,) is
the information contained in the past outcomes. We wish to distinguish an
optimum strategy {b*},.,.,, among all nonanticipating strategies {b,}o ;<
such that b, is %,-measurable for all ¢ > 0.

We are dealing with a sequential version of the portfolio selection problem
that has received much attention in the literature (not to speak of financial
practice). Economic theory promotes the maximization of subjective expected
utility as a guiding principle toward its solution, and this is certainly appropriate
if the investor’s preferences are sufficiently well elucidated so that they can be
captured in a well-defined utility function. But subjective utilities are difficult to
assess and many investors may prefer a less elusive and more objective criterion
if there is some rationale for its use. The mean-variance analysis of Markowitz
(1952, 1959) trades off expected return with risk as quantified by the standard
deviation of the return. This approach is mathematically and computationally
tractable, but it lacks generality [cf. Samuelson (1967, 1970)] and it fails to single
out an optimum among the portfolios located on the efficient frontier. However,
its economic foundation becomes more solid when cast in the form of the capital
asset pricing model [cf. Sharpe (1985)]. Breiman (1960, 1961) considered a market
with m stocks and independent, identically distributed discrete-valued return
vectors X, = (X}),.; jem and proved asymptotic optlmahty of the portfolio b*
that attams the maximum expected log return w* = sup,E{log(b, X)}. Thorp
(1971) exhibited certain optimality properties of the log return as a normative
utility function, and Bell and Cover (1980, 1986) proved that log-optimum
investment is also competitively optimum, from a game-theoretic point of view.
Although some authors [e.g., Samuelson (1967, 1971)] have suggested that the log
return should be considered just one among many possible utility functions, we
hope to convince the reader of its more fundamental character.

We consider arbitrarily distributed outcomes { X,} and prove that maximizing
the conditional expected log return given currently available information at each
stage is optimum in the long run. A nonanticipating portfolio b* =
b*(X,,---, X,_,) is called log-optimum (for period ¢) if it attains the maximum
conditional expected log return

(3) w* = E{log(b}, X%} = b(Xsup . E{log(b, X)X, ,,..., Xo}.
= 0r°c» t—l)

Such b also attains the maximum (unconditional) expected log return

(4) W =E(wr} = E(log(b?,X,)} =  sp  E{log(b, X,)}.
b=b(Xg,--+» X,_1)

A log-optimum portfolio b* always exists, and is unique if the conditional
distribution of X, given %, has full support not confined to a hyperplane in 2™
In any case, the return (b*, X,) is always uniquely defined, even if b* is not.
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The results of Breiman (1960, 1961) and Finkelstein and Whitley (1981) for
independent, identically distributed {X,} are enhanced by the following theorem,
which proves that b} is optimum to first order in growth exponent.

THEOREM (Asymptotic optimality principle). LetS}* =TI1,_,.(b*, X,) and
S, =y, < (b, X,), respectively, denote the capital growth over n periods of
investment according to the log-optimum strategy {b}},.,.., and a competing
strategy {b,}o <1< - Then {S,/S¥, Z.}o < n <o IS @ nonnegative supermartingale
converging almost surely to a random variable Y with E{Y} < 1, and

(5) limsupn~'log(S,/S*) <0 a.s.

Thus S, < exp(ne)S} eventually for large n and arbitrary ¢ > 0, which means
that no strategy can infinitely often exceed the log-optimum strategy by an
amount that grows exponentially fast.

The asymptotic optimality principle will be deduced from the Kuhn-Tucker

conditions for log-optimality using Markov’s inequality and the Borel-Cantelli
lemma.
_ Now suppose {X,}_, ;<. is a two-sided sequence of return vectors, and
bF =b%(X_,,..., X_,) is a log-optimum portfolio for period 0 based on the
t-past %, =o(X_,,..., X_,). Portfolio b* attains the maximum conditional
expected log return for period 0 given %,,

(6) w* = E{log(b*, X, )%} = sup  E{log(d, X,)|X_,,..., X_,}.
b=b(X_1,...,X_)

The maximum expected log return for period 0 given %, is given by

(7) W*=E{w*} = E{log(b7, X,)} = sup E{log(d, X,)}.
b=b(X_1,..., X_})

The supremum is taken over a larger set of portfolios as ¢ increases, so that w,*
is monotonically increasing and {w,*, #},.,<, is a submartingale [strictly
speaking only if all W;* are finite].

_ The information fields &, = o(X_,,..., X_,) increase to a limiting o-field
Fo =0(X_;, X_,,...). Any accumulation point of {5} is a log-optimum port-
folio for period 0 based on %, and b = b*(X_,,..., X_,) almost surely
converges to b} = b*(X_,, X _,,...) if the log-optimum portfolio for period 0
given % _ is unique. Furthermore, W,* increases to the maximum expected log
return given the infinite past,

(8) W 2 W =E{log(b%, X,)} = sup E{log(?, X,)}.
b=b(X_1, X_5,...)

We may use the expanded notation W,* = W*(X,|X,_,,..., X,) and W,* =
WH*(XolX_y, ..., X_,). Setting E{log S*} = W*(X,,..., X,,_,) yields the chain
rule
9) WH(Xo,..., X,_1) = Z WH( X X,_1y-- -5 Xo)-

0<t<n
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If {X,} is stationary, then W,* = W*(X,|X_,,..., X_,) is equal to W,* =
W*(X,|X,_,,..., X;) and these definitions are equivalent:

Wr=WH( XXy, Xgyoe) = im T WH( XXy, X))

(10) = ﬁgnTW*(XtIXt_l,.,,, X,)

= lim 1 n”'W*(X,, X,,..., X,_,).
n

These identities for maximum capital growth rate generalize those for relative
entropy rate in information theory. Indeed, suppose one stock will return m
times the amount invested in it, whereas all other stocks return 0. Thus we must
gamble against uniform odds, on the identity of the winning stock (indicated by
the direction of X,). Placing proportional bets, b/ = Prob{ X/ + 01X, _1,..., X}
is log-optimum, and W*(X|X,_,,..., X;) = logm — H*(X|X,_,,..., X,), where
H*(X,|X,_,,..., X,) is the conditional entropy of X, given X, ,,..., X,. Now
H*(Xo|X_,, X_,,...)=lim,| HY(X,X,_,,..., X,) is the entropy rate of {X,},
and

(11) WH(XolX_1, X_y,...) = logm — HN(XX_,, X_,,...).

The following AEP for log-optimum investment in a stationary ergodic
market generalizes the Shannon-McMillan-Breiman theorem of information
theory.

THEOREM (Asymptotic equipartition property or AEP). If {X,} is sta-
tionary ergodic, then S* =T1,_,.(b*, X,) grows exponentially fast with con-
stant asymptotic rate almost surely equal to the maximum expected log return
given the infinite past, i.e.,

(12) n"logS¥ » W* = W*(Xy|X_,, X _,,...) a.s.

Equivalently, S;* = exp[n(Ww* + o(1))], where o(1) = 0 a.s. The rate W.* is
highest possible.

The AEP is an immediate consequence of the ergodic theorem if {X,} is finite
order Markov. A sandwich argument and the asymptotic optimality principle
will reduce the proof of the general case to applications of the ergodic theorem.

In the first half of the paper we discuss log-optimum investment for a single
period. The Kuhn-Tucker conditions for log-optimality of a portfolio b* are
recalled in Section 2, and in Section 3 we examine log-optimum portfolio
selections and the maximum expected log return as functions of the distribution
P of the random outcome X = (X7), j<moOn I To simplify the analysis we
use a divide-and-conquer approach. Namely, we consider the decomposition
X = (B8, X)U, where 8= (,Bf)lsjsm is a fixed reference portfolio and U =
X/(B, X) is the scaled outcome in the simplex % = {u = (U icjcm € R
(B, u) =1}. The return (b, X) factors as (8, X)(b,U), and the maximum
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expected log return w*(P) = sup,Ep{log(b, X)} decomposes as the sum of a
reference level r(P) = Ep{log(B, X)} that is affine in P and an extra term
w*(Q) = sup,Ey{log(b,U)} that depends on P only through the marginal
distribution @ of U. The term w*(Q) is nonnegative, bounded and continuous in
@ when the space of probability measures on % is equipped with the weak
topology, whereas the irregular term r(P) = Ep{log(B8, X)} is irrelevant for
portfolio selection.

We need the decomposition w*(P) = r(P) + w*(Q) to show that the maxi-
mum conditional expected log return w,* is always attained by an %,measurable
portfolio b;*. Furthermore, the nonnegativity and lower semicontinuity of w*(Q)
are essential in Section 4 when we argue that the maximum expected log return
given the ¢-past converges to the maximum expected log return given the infinite
past (i.e., W,* » W* at ¢t - o).

The asymptotic optimality principle is proved in Section 5, for an arbitrarily
distributed sequence of return vectors. In Section 6 we argue that S* has a
well-defined growth rate if {X,} is stationary ergodic, and in Section 7 we
examine whether the same is true if the market is stationary, or stationary in an
asymptotic sense. Although the ergodic theorem is generally valid for asymptoti-
cally mean stationary processes (whose definition is recalled in Section 7), the
AEP will hold for an asymptotically mean stationary market only if the investor
can recover from transient losses before reaching the asymptotic regime. Finally,
in Section 8 we specialize the investment game to gambling on the next outcome
of a random process.

2. The Kuhn-Tucker conditions for log-optimality. When managing
funds during a given investment period, an investor may diversify his risk by
building a portfolio that includes several assets. The allocation of one unit of
capital over elementary investment opportunities j = 1,..., m is conveniently
described by a vector of weights b = (b7), . j<m- The weights must be nonnega-
tive (since no borrowing is allowed) and sum to 1. Thus a portfolio is a vector b
in the unit simplex

(13) B={b=(b)icjem €ERT: b + --- +b™ =1},

Let X/ > 0 denote the return per monetary unit invested in stock j, and let
X = (X’),j<m denote the vector of returns. Capital invested according to
portfolio & will grow by the factor (b, X) =X, _;_,,0’X", that is, the weighted
average of the per-unit returns of the individual stocks. Portfolio & must be
selected at the beginning of the investment period, before the actual value of the
random outcome X is revealed. However, the distribution of X on £ is
assumed to be known.

Let the expected log return of a portfolio b be denoted by

(14) w(d) = E{log(d, X)}.

We set w(b) = — oo if the expectation is not well defined in the usual sense.
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DEFINITION. A portfolio b* is called log-optimum if no competing portfolio
b can improve the expected log return relative to b*, i.e., if
(b, X)

(15) E{log(m)} <0, forall b € A.

Every log-optimum portfolio * attains the maximum expected log return
(16) w* = sup E{log(b, X)}.
bez

Conversely, if w* is finite, then every portfolio b* attaining w* = sup,w(b) is
log-optimum. However, condition (15) may single out a unique log-optimum
portfolio b* even if w(b) is infinite for all b € %.

We recall the Kuhn-Tucker conditions for log-optimality derived in Bell and
Cover (1980). Let the expected score vector be defined for each portfolio b as

(17) o(b) = E{X/(b, X)}.

THEOREM 1. Let o* = a(b*) denote the expected score vector for portfolio
b*. Then b* is log-optimum iff the Kuhn—Tucker conditions a*’ < 1 hold for all
1 <j < m, or equivalently, iff

b, X
(18) (b,a*) = E{ﬁ} <1, forallbe A.
ProoF. Forbe Zand0<A=1-X<1let b, =Ab* + Ab. Then
A
(b)\’X) X (b,X) (baX)
=A+A——=1+2]A here Z = —— — 1
(b*,X) A A(b*,X) + AZ, where (b*,X)

Using a Taylor series expansion we obtain, for any a > 0,
AZz=log(1 + AZ) > log(1 + AM(Z A a))

=MZ A a) — 0N(Z A a)® (for some 0 < 6 < 1)
>NZ A a) — N2

Choosing a = a(A) so that a(A) - o and Aa(\) = 0 as A \, 0, we see that
AT'E(log(1 + AZ)} » E{Z) as AN\ O. But E{Z} = (b,a*) — 1, so the right
derivative at A = 0 of w(b,) = E{log(d,, X)} is given by

1 A
(19) %w(bx)ko = lim E °g(1}\+ 2)} = E{Z)} = (b,a*) — 1.

The Kuhn-Tucker conditions assert that b* is log-optimum iff the directional
derivative of the expected log return is nonpositive when moving from b* to any
competing portfolio b (in particular, when moving from b* to any extreme point
of #). The infinitesimal conditions dw(d,)/dA|,_,,< 0 are necessary for log-
optimality of b*, and they are also sufficient because w(b) is concave
in b. O
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The set B* of log-optimum portfolios is never empty [cf. Cover (1984)]. In
fact, let .Z denote the linear hull of the support of the distribution of X, that is,
the smallest linear subspace of 2™ such that X € % with probability 1. Then
w(b) is strictly concave when restricted to % and constant along fibers per-
pendicular to .Z. It follows that B* is a polyhedral set (the intersection of %
with a fiber orthogonal to .#), and the log-optimum portfolio b* is unique if X
has full support (£= #£™). The return (b*, X) and log return log(d*, X) are
unambiguously defined, independent of the choice of log-optimum portfolio * in
B*.

3. Continuity and attainability of the maximum expected log return.
We make explicit how various quantities depend on the distribution P of X on
R Let w(b, P) = Ep{log(b, X)} denote the expected log return of portfolio b,
w*(P) = sup,w(b, P) the maximum expected log return and B*(P) the set of
log-optimum portfolios. It is clear that w*(P) is convex in P, since w*(P) is the
supremum of functions E{log(b, X)} that are affine in P.

The direction of the return vector X embodies everything an investor needs to
know in order to maximize the expected log return. To justify this. claim, we
choose a fixed reference portfolio 8 = (87), . j<m With B’/ > 0 for all j, and we
define the scaled return vector

(20) U=u(X), whereu(x)=x/(8,x).
Thus U is obtained by projecting the return vector X on the simplex
(21) Y= {u=(uj)15js,,,€9?1":(/3, u) =1}.

If X =0, then we set U = u(0) = u, for some arbitrary u, € %.

The distribution @ of U = u(X) on % is obtained by integrating out the
distribution P of X along rays through the origin. All mass accumulated along a
ray is collected at the point where the ray crosses the simplex %, except that
mass found at X = 0is transferred to u(0) = u,. Thus @ is the image measure of
P through u: 27— %, and for any Borel subset A C  we have

(22) Q{U € A} = P{u(X) € A} = P(u"Y(4)).

_Since X = (B8, X)u(X), the expected log return may be decomposed as the
sum Ep{log(d, X)} = Ep{log(B, X)} + Ep{log(b, u(X))}, or equivalently,

(23) w(b, P) = r(P) + w(b, Q).

Here r(P) = w(B, P) denotes the expected log return of the reference portfolio
B. We interpret r(P) as a reference level for the expected log return, since it is an
inherent property of the market over which the investor has no control. Whereas
r(P) = Ep{log(B, X)} is affine in P, it is also a very irregular function of P,
possibly infinite or ill defined. Since our choice of b cannot affect its value, we
shall subtract r(P) from the expected log return w(b, P). The remaining
quantity w(d, Q) = Ey{log(b,U)} depends on P only through the marginal
distribution @ of the scaled outcome U, and represents the relative improvement -
in expected log return that results when portfolio b is chosen instead of 8. The
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maximum expected log return can be expressed as the sum
(24) w*(P)=r(P)+ w*(Q), wherew*(Q) = sup E,{log(b,U)}.
be#

Maximizing w(b, P) or w(b, Q) are equivalent operations, so that B*(P) =
B*(Q). Notice that w*(Q) = w*(P) — r(P) = 0, with equality iff the reference
portfolio 8 is log-optimum.

It is an interesting fact that the maximum expected log return w*(Q) is
always attained by some portfolio choice. However, we need a stronger result,
namely, the existence of log-optimum portfolios 4*(Q) that depend measurably
on Q. To prove the existence of a measurable selection of log-optimum portfolios,
we make use of topological properties, including compactness of # and upper
semicontinuity of the expected log return w(b, @) = E4{log(d,U)} in (b, @).

The space 2 of probability measures on the compact metric space # is
compact and metrizable when equipped with the weak topology [that is the
weakest topology on 2 such that @ — E4{ f(U)} is continuous in @ € 2 for all
bounded continuous functions f: % — #]. Its Borel o-field is the smallest o¢-field
on 2 such that A — Q(A) is measurable in @ for all Borel subsets A C %.

THEOREM 2. The maximum expect log return w*(Q) = sup, c gE{log(b, U)}
is convex, bounded [between 0 and max (—log B’)] and uniformly continuous
when the space 2 of probability measures on % is equipped with the weak
topology. The set of log-optimum portfolios B*(Q) is a nonempty compact convex
subset of & for every distribution @ on %, and a log-optimum portfolio b*(Q) €
B*(Q) can be selected for each @ € 2 so that b*(Q) is measurable in Q.

Proor. Clearly w*(Q) is convex in @ for the same reason that w*(P) is
convex in P. We argue that w*(Q) is bounded below and lower semicontinuous
on 2, because (B, u) is bounded below on % and (b, u) is concave in b € & and
lower semicontinuous in u € %. We also prove that w(b, @) is bounded above
and upper semicontinuous, using compactness of # and boundedness above and
upper semicontinuity of (b, u) on % X %. Boundedness and uniform continuity
of w*(®) and existence of a measurable selection of log-optimum portfolios
b*(Q) will follow automatically.

First, we argue that w*(Q) is nonnegative and lower semicontinuous on 2.
ForO<A<land be %, let A=1—-A, by=AB+ Ab, B, = {by: b € #)} and

(25) w¥(Q) = sup Ey{log(b,U)} = sup Eg{log(b,,U)}.
bea, be@

Observe that w¥(Q) is monotonically increasing in A, since the supremum is
taken over a larger set %, as A increases. Furthermore, #, = %, %, = {8} and
(B,u) =1 for all u € %, so that

w*(@) = wX(Q) = w¥(Q) = we*(Q) = Egflog(B,U)} = 0.

If A <1, then log(d,, ©) is bounded below (by log \) and lower semicontinuous
in u, so that w(d,, @) = Eyflog(b,,U)} and w¥(Q) = sup,. zw(b,, Q) are
lower semicontinuous in . On the other hand, the inequality (b,, u) > A(b, ©)
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implies that
w(Q) < w'(Q) < w¥(Q) — logA,

and hence w¥(Q) 7 w*(Q) as A 7 1. Since w*(Q) is the supremum of lower
semicontinuous functions w*(Q), it follows that w*(Q) is lower semicontinuous
as well.

The expected log return w(b, @) = E{log(b, U)} is bounded above and upper
semicontinuous on # X 2, since (b, u) is bounded and upper semicontinuous on
# X U. Since # is compact, it follows [cf. Bertsekas and Shreve (1978), Proposi-
tion 7.33] that w*(Q) = sup, c zw(b, @) is bounded above and upper semicon-
tinuous on 2. Furthermore, log-optimum portfolios 5*(Q) € B*(Q) can be
selected in a measurable fashion for all @ € 2 by the measurable selection
theorem of Kuratowski and Ryll-Nardzewski (1961). The upper bound w*(Q) <
max ;(—log /) holds since (b,u) <X u’/ < max;1/B’) for all be B if u
satisfies (8, u) = 1. O

It is impossible to select a portfoho b*(Q) € B*(Q) for all distributions @ on
% so that b*(Q) is continuous in Q. However, if @, > @, and b* € B*(Q,) for
all n, then any accumulation pomt b* of the sequence {b*} is a point in
B*(Q,,). Furthermore, (b*,U) — (5%, U) almost surely under @_. These con-
tinuity properties of the multivalued correspondence @ — B*(Q) follow from the
following.

THEOREM 3. The set Gr(B*) = {(Q, b*): b* € B*(Q)} is closed in 2 X %.
Consequently, any selection of log-optimum portfolios @ — b*(Q) € B*(Q) is
continuous at any @ € 2 such that B*(Q) = {b*(Q)} is a singleton set.

ProOF. Since # is compact, the theorem will follow from the following
claim: If @, - @, in 2, b* > b* in # and b} € BXQ,) for all n, then
b* € B*(Q,,).

To prove the claim we consider the sequence of maximum expected log returns
w*(Q,) = w(b}, Q,). It is clear that w*(Q,) —» w*(Q,,) since @, » @, in 2
and w*(Q) is continuous in @. On the other hand (see the proof of Theorem 2),
w(b, Q) is upper semicontinuous on % X 2 and hence

limsupw(b},Q,) < w( limd}*, lian) =w(?2,Q,).
The claim b* € B*(Q,,) and Theorem 3 follow, since

w(d%,Q,) > limsupw(b},Q,) = imw*(Q,) = w*(Q,,) = supw(d,Q,)). O
n r b

The maximum expected log return w*(P) is neither bounded nor continuous
(for the weak topology) as P ranges over the space of probability measures on
7. But if the support of P is constrained to a closed subset )" of #7 then
w*(P) is lower semicontinuous and bounded below iff " is bounded away from
0, upper semicontinuous and bounded above iff »¢#" is bounded, and bounded and
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uniformly continuous iff 2" is bounded away from 0. In particular, if #'= % (i.e.,
if X is distributed on the simplex %), then P= @ and w*(P) = w*(Q) is
bounded and continuous.

Some of the conclusions of Theorems 2 and 3 continue to hold if the investor
may distribute his funds over a countable set or even a separable metrizable
space % of investment opportunities. Indeed, suppose every realization of the
return X is a nonnegative lower semicontinuous function x(a) on /. (This is no
restriction if ./ is a countable set with the discrete topology.) The average
return (b, x) = [,x(a)b(da) is then well defined for every portfolio b [i.e., for
every normalized measure b(da) on the Borel o-field of o/]. Further assume the
existence of a reference portfolio 8 such that (B8, x) > 0 is strictly positive for
any return function x(a) that is not identically 0. [Such B exists if &7 is locally
compact, and, in particular, if =/ is countable.] If P and @ denote the distribu-
tion of X and U = X/(B, X), then the maximum expected log return w*(P)
admits the decomposition r(P) + w*(Q), and w*(Q) is nonnegative and lower
semicontinuous by the argument presented in the proof of Theorem 2. If,
moreover, &/ is compact and the return functions x(a) are continuous and
bounded by a fixed constant, then w*(Q) is bounded and continuous and a
measurable selection of log-optimum portfolios b*(Q) exists by Theorem 2, and
Gr(B*) is closed by Theorem 3.

4. Martingale properties. It will be shown that the maximum expected log
return given increasing information fields tends to the maximum expected log
return given the limiting o-field. We assume that the random return vector
X(w) € ™ is defined on a perfect probability space (2, #,P), so that X admits
a regular conditional probability distribution given any sub-o-field of #. See
Jifina (1954) for a proof of this fact, and Ramachandran (1979) for a complete
discussion of perfect measures.

THEOREM 4. Suppose the random vector X is defined on a perfect probability
space (2, #,P), and {F,}_,<., is an increasing sequence of sub-o-fields of F
with limiting o-field ,, C F.

(a) If P, is a regular conditional probability distribution of X given Z,, then
(26) P,—» P, weaklya.s.

(b) If b*(+) is a measurable selector of log-optimum portfolios, then by =
b*(P,) is an Fymeasurable portfolio attaining the maximum conditional ex-
pected log return given %, Moreover, (b}, X) — (b}, X) a.s., and hence
(27) log(b, X) - log(?%, X) a.s.

If the log-optimum portfolio given %, is unique [B*(P,) = {b2})}], then b} — b
a.s. as well.

(c) If w*(-) denotes the maximum expected log return function, then the

maximum conditional expected log return given %, is given by

(28) @* = w*(P,) = sup E{log(d, X)|%,} = E{log(b}, X%} a.s.
beZ
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Furthermore, {W*, #,}o <, <., i @ submartingale and

(29) wr > wr a.s. (andin L' if W < o).
(d) The maximum expected log return given %, is given by
(30) W,* = E{w*} = sup E{log(b, X)} = E{log(5*, X)}.
bes,
Furthermore,
31 W*/’W*, ast— 0.
( t 0

PrOOF. Lévy’s martingale convergence theorem for conditional expectations
of a bounded continuous (or nonnegative measurable) function f(x) states that

[1dP.= B{{(X)F) > [{dP, = E{{(X)Z) as.

This proves (a), and assertion (b) follows in view of Thegrem 3. Notice that
br = b*(P) and w* = w*(P,) are Z,measurable, since P, is measurable on
(Q %,) and both b*( ) and w*(-) are measurable functions.

If 0 < s <t < oo, then & C £, so that every %-measurable portfolio (includ-

ing b*) is also & -measurable It follows that
E{log(d}, X )|#,} < w* = sup E{log(b, X)|%,}.

bes,
Takmg Z.-conditional expectations proves that w* = E{log(d*, X)|%) <
E{w*|%), and hence {*, %}y <., Is a submartlngale The max1mum ex-
pected log returns W* = sup, c z E{log(d, X))} increase with ¢ since the supre-
mum is taken over larger and larger sets (b € % = b € #,). More information
does not hurt! . .

It remains to show that W,* » W,* and w;* > @} as. (and in L' if W* is
finite). For this purpose we choose a reference portfolio 8 (with 87 > 0 for all
1 <j<m), and we recall the decomposition w*(P) = r(P) + w*(Q) of the
maximum expected log return into a reference level r(P) = E{log(f, X)} and a
relative improvement w*(Q) that only depends on the distribution @ of the
scaled return vector U = u(X) = X/(B, X).

Let @, designate a regular conditional probability distribution of U = u(X)
given 9}, for 0 <t< o. Then Q, - @, weakly almost surely and
{w*(Q,), Z,}o <t < 18 @ submartingale. Since w*(Q) is bounded and continuous
in @, it follows that w*(Q,) - w*(@,) as. and in L', and E{w*(Q,)} »
E{w*(@,,)}. The sequence (r(F,), #)o <., [where r(F,) = E{log(B, X)|#}]is
a martingale [at least if log(8, X) has finite expectation], and the martingale
convergence theorem for conditional expectations asserts that

r(P,) = E{log(B, X)I%,} - r(P,) = E{log(8, X)|%,} as.
[and in L' if E{log(B, X)} is finite]. Since w* = r(P,) + w*(Q,), we may
conclude that {w*, %), ., ., is a submartingale such that @ — @* a.s. (and in
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L' if W.* is finite). The expectations satisfy

W,* = E{log(B, X)} + E{w*(Q,)} » W.x = E{log(B, X)} + E{w*(Q,,)}.
O

The main conclusion of Theorem 4 is that no gap exists between lim, 1 W,*
and W_*. Thus the limit of the expectations W,* = E(log(b¥, X))} coincides with
W* = E{log(b}, X)}, which is the expectation of the limit log(b%, X) =
lim log(b*, X). o

We have shown that w,* - w} as. and W,* 7 W_*, using boundedness and
continuity of w*(Q). These convergence theorems also hold for a market with
infinitely many investment opportunities, when w*(@) is only nonnegative and
lower semicontinuous. Indeed, {@*, %}y ;<. is still a submartingale, so that
w* < E{(w}|%,) and lim,"E{w*} < E{w}} and hence, by Lévy’s martingale
convergence theorem for conditional expectations,

(32) lim sup @w* < u?lE{w;p'?‘,} = E{w} %} =0} as.
: .

Since {w*(®Q,), %,}o<:<w 1 @ submartingale also, one similarly obtains
limsupw*(é_Qt) < w*(@w) a.s.
¢
and hltn 1E{w*(Q,)} < E{w*(Q,)}
But @, » @, weakly a.s. and w*(Q) is lower semicontinuous in @, so that
(34) liminfw*(Q,) = w*(Q,) as.
¢

(33)

We conclude that w*(Q,) - w*(_é_;)w) a.s. Since w*(Q) is also nonnegative
Fatou’s lemma implies that E{w*(Q,)} / E{w*(Q,,)}. It follows that w,* —» wg
a.s. and W,* 7 W_*, at least if E{log(B, X,)} > — oo or sup, E{w*(@;)} < co.

5. The asymptotic optimality principle. We now prove the asymptotic
optimality principle for sequential log-optimum investment. The market is
described by a sequence of return vectors {X,},.,<, defined on a perfect
probability space (2, #,P), and capital invested according to a portfolio b, at
the beginning of period ¢ will grow by a factor (b,, X,) when the random
outcome X, is revealed at the end of that period. If the initial fortune is
normalized to S, = 1, then the compounded capital S, after n periods is given by
(35) S, = l_[ (bt’ Xt)’

0<t<n
The objective is to select portfolios b, so as to maximize the capital growth rate
liminf,n~'log S,. Portfolio b, must be selected on the basis of an information
field %, that embodies what is known at the beginning of period ¢. In other
words, b, must be % measurable (b, € %, for short).

Let P, denote a regular conditional probability distribution of X, given #,
and let b*(-) be a measurable selector of log-optimum portfolios. Then b* =
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b*(P,) is an Fmeasurable portfolio attaining the maximum conditional ex-
pected log retum

(36)  w*=w*(P) = E{log(d}, X,)|#,} = sup E{log(b, X,)|#,}.
€

The expectation of the log return log(b*, X,) and of its conditional expectation
w,* are both equal to the maximum expected log return for period ¢ given %,

(37) W,* = E{w;*} = E{log(d, X,)} = sup E{log(b, X,)}.
bes,
We argue that {b*},_,. ., is optimum in the long run.

THEOREM 5 (Asymptotic optimality principle). Suppose the random out-
comes {X,}o.,<o are defined on a perfect probability space (2, #,P), and
{F)o<t<w IS an increasing sequence of sub-o-fields of % such that
o(Xgy--.r, X,_1) €%, for all 0 <t< . Let the compounded capital after n
periods of investment according to the log-optimum strategy {b}}o ;<. and
some competing nonanticipating strategy {b,} ., ., be denoted by

(38) Sy= II (b#,%,) and S,= [ (b, X,).

0<t<n 0<t<n
Then {S,/S}, #.}0<n<s IS @ nonnegative supermartingale converging almost
surely to be a random variable Y with E{Y} < 1. Furthermore, E{S,/S*} <1
for all n, and

S,
(39) hmsupn 1log( ) <0 a.s.

S*

Proor. The log-optimum investor and his competitor start with equal
fortunes, so that S,/Sg* = 1. The ratio S,/S* =T1,.,..(b, X,)/(b}, X,) is
%,-measurable, and the conditional log-optimality of b} given %, is equivalent
to the Kuhn-Tucker condition

} <1.

. {( X,)
It follows that
S {( X,)

(b,
E&+1 S ( ) E&
E{ —|% E —\% < —.
{S;H n} {S* (her ) ( ’ S:
So {8S,/S*, Z#,}o<n<o i a nonnegative supermartingale. Any nonnegative su-
permartingale converges almost surely, and the expectations decrease monotoni-

cally to a limit no smaller than the expectation of the limit, by Fatou’s lemma.
Thus S,/S,* converges almost surely to a nonnegative random variable Y and

1= E{S,/S¢} = E{S,/S*} > lim | E{S,/S*} > E{Y}.
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Since E{S,/S;}} < 1, it follows from the Markov inequality that, for r, > 0,
P{S,/Sk¥>r,} <r,'E{S,/S*} <r, "
If r, increases sufficiently fast so that X,r, ' < oo, then

YP{S,/S¥>r,) < Yr'<ow,

and hence S,/S* < r, eventually for large n, by the Borel-Cantelli lemma. In
particular, choosing r,, = exp(ne) with ¢ > 0 proves that

P{n"'log(S,/S}) > « infinitely often} = 0.

Since ¢ > 0 was arbitrary we may conclude that lim sup,n~'log(S,/S*) < 0 a.s.
[This fact can be proved also by observing that S,/S* converges to a random
variable Y with E{Y} <1 and hence 0 < Y < « a.s. Indeed, S,/S* < (1 +7Y)
for large n and hence limsup,n~'log(S,/S*) < lim,n"'log(1 + Y) =0as.] O

Theorem 5 asserts that any alternative is dominated in the long run by the
log-optimum strategy. Indeed, E{S,/S*} < 1 for all n, and the Borel-Cantelli
lemma implies that S,/S* <r, eventually for any sequence {r,} such that
r.rt < oo (eg., r, = n'*¢or r, = e"¢). The maximal inequality for nonnegative
supermartingales [cf. Neveu (1972), Proposition II-2-7, page 23] asserts that

(40) P{ supS, /S > 7\} <1/A.

Thus with probability at least 1 — 1/A, a competing investor will never outper-
form S* by a factor greater than A. The random variable sup,S,/S* is finite
almost surely, although its expectation is generally infinite. A game-theoretic
sense in which S* dominates S, for games with payoff E{¢(S{"/S®)} with ¢
increasing is given in Bell and Cover (1980, 1986).

The conclusions of Theorem 5 hold if {%,} is an increasing sequence of
information fields with o(U,,...,U,_;) €%, for all ¢ Indeed, S,/S} =
[Ty << (b, U)/ (b, U, is completely determined by the history of the scaled
outcomes U, = u(X,).

6. The asymptotic equiparitition property. Breiman (1960, 1961) consid-
ered a market with outcomes {X,} that are independent and identically distrib-
uted according to an atomic measure, and he argued that repeated choice of the
log-optimum portfolio b* is optimum according to various criteria. In particular,
the capital S} =TI1,_,..(b*, X,) will grow exponentially fast almost surely
with limiting rate equal to the maximum expected log return w* =
sup, E{log(b, X)}, by the strong law of large numbers,

(41) n logSr=n"! Y log(b*, X,) > w* = E{log(b*, X)} as.
0<t<n

We prove an asymptotic equipartition property for log-optimum investment
in a market that is stationary ergodic. The successive outcomes X,(w) = X(T'w)
are defined in terms of a random vector X(w) € £ and an invertible measure-
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preserving and metrically transitive transformation 7T defined on a perfect
probablhty space (£, #,P). Since T is invertible, the returns can be embedded
in a two-sided sequence {X,}_, ., ...

Let b* be a log-optimum portfolio for period ¢ based on the t-past F, =
o(Xg,..., X,_;), and let b* be log-optimum for period 0 based on the shlfted
mformatlon field #,=T ‘.97 =o(X_, X _,). Portfolios b* and b} attain the
maximum conditional expected log returns w* = sup, c z E{log(b, X,)|#,} and
w* = sup, < 7 E{log(b, X,)|#). We denote by W,* = E{log(b*, X,)} and
W = E{log(b*, X,)} the maximum expected log returns. Then W* =
W*(X0|X 1eees X)) equals W* = WH(X,|X,_,,..., X,) by stationarity. If
b is a log-optlmum portfolio for period 0 based on the limiting o-field % =
o(X » X _5,...), then W* = W,* increases monotonically to W* =
E{log(d}, O)} This limiting expectation is equal to the maximum expected log
return given the infinite past, and is denoted by W* =W*(X|X_1, X_o,...).
It may be noted that W*(Xy|X_,,. r) 1S the maximum expected log
return given the infinite past under the statlonary kth-order Markov process
having the same (k + 1)st-order marginal distribution as {X AR .

Let S =1I,.,..(b* X,) denote the capital growth over n periods of
log-optlmum investment. The AEP asserts that the time-averaged growth rate

n~'log S* and its expectation n~'E{log S*} = n"'W*(X,,..., X,_,) converge
to the same limit.

THEOREM 6 (Asymptotic equipartition property). If the sequence of stock
return vectors {X,} is stationary ergodic, then capital will grow exponentially
fast under the log-optimum investment strategy, almost surely with constant
asymplotic rate equal to the maximum expected log return given the infinite past

(42) n~logS¥ > W*=W*(X,|X_,, X_,,...) a.s,
where
W*(Xo|X_, X _,o,...) = li?lTW*(XOIX_l,..., X_,)

(43) = lign TWH(X)X,_15..., Xo)
= limtn~'W*(X,,..., X,_,).

PrROOF. One potential approach to establish the AEP for log-optimum in-
vestment is to invoke the extended ergodic theorem that was used by Breiman
(1957 /1960) to prove the AEP of information theory. This extension of the
ergodic theorem asserts that
(44) n7'logS¥=n"' ) Wx(T'w)-> Wr=E{W}} as.andin L!,

0<t<n
it W,* =log(b*, X,) converges to W.* = log(d%, X,) and {W,*}.,.. is L“-
dominated. Theorem 4 asserts that w,* - W_* a.s., but it seems hard to check
the integrability condition E{sup,|w,*|} < co. We shall instead reduce the AEP
to direct applications of the ergodic theorem, using a sandwich argument.
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The information field %, = o(X,,..., X,_;) is approximated by a more re-
fined o-field %, and by less refined o-fields %, ¥, defined for 0 < k < oo as
follows:

o(X,,..., X, ), if0<t<ek,
(X, penn, X)), ifk<t<oo,

(46) FD=T'F =o(...,X_1,Xps---» X,_1)-

) EP-TF,, - {

Let b® and b{* denote log-optimum portfolios for period ¢ based on the
approximating o-fields %* and %), and let the corresponding capital
growths over n periods be denoted by
(47) SP= ¥ (6P, X,) and == T (5, X,).
0<t<n 0<t<n

Thus S{¥, §* and S{*’ denote the capital growth over n periods of log-optimum
investment when the investor is allowed to look back at each stage, respectively,
at the k-past (but not beyond period 0), up to time 0 and into the infinitely
distant past. .

Observe that b{¥)(w) = bf(T* *w) if ¢ > k. Given the expansion
(48) n~logS® =n"logSF +n~! Y log(d®, X,),

k<t<n

it follows from the ergodic theorem that
(49) n~'log S{¥ — W* = E{log(b}, X,)} as.

The sequence {log(5{, X,)} is stationary ergodic and b = b¥, so that again
by the ergodic theorem,

(50) n"ogS{™ =n"' Y log(b{, X,) » W = E{log(d%, X,)} as.
0<t<n
The log-optimum %,%-measurable portfolio b{*) is %, measurable since
F, B c %, and the log-optimum % measurable portfolio b} is #,*)-measurable
since &, C %,(). It follows from the asymptotic optimality principle that

S

(51) limnsupn‘llog( S ) <0 and limnsupn‘llog( S,(,°°)) <0 as.

n

Thus we obtain the chain of asymptotic inequalities
Wg*=limn " 'log S® < liminfn~'log S*

n n
(52) L
< limsupn~'log S} < limn~'log ;) = W as.
n n

The AEP follows since W* = W;* 2 W,* with no gap as £ — c. O

The sandwich proof of the AEP remains valid if the log-optimum portfolios
b} are based on information fields %, other than the history of past outcomes
o(Xy,..., X,_,). However, {#,}, ., ., must be monotonically increasing and the
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history of the scaled return vectors o(U,..., U,_;) must be contained in %, so
that the asymptotic optimality principle can be invoked. Monotonicity of {%,}
means that information available about the past should never be erased from
memory. In addition, one must assume that the shifted fields %, = T ‘%, are
monotonically increasing to a limiting o-field %, so that W,* » W.* by Theo-
rem 4. Monotonicity of {#,} means that later 1nvestors have an advantage in
information when compared on common grounds, after shifting back to the
reference period 0, where all face the same decision problem of selecting b,.

Suppose in particular that side information Y (w) = Y(T'%) is revealed to-
gether with the return vector X, at the end of period ¢ Then %, =
0(Xy, Y., X,_1, Y, ) and &, = a(X_t, Y ,...,X_,Y_))are monotomcally
increasing, and n~'logS* » W* almost surely where W* = W*(X,|X_,,
Y ,, X ,,Y_,,...)is the maximum expected log return given the infinite past.
The proof is 1dent1cal to that of Theorem 6, except that b* = b*(Q,) and

= b*(Q,) are now defined by applying a measurable selector of log-optimum
portfohos b*(-) to regular conditional probability distributions @, and Q, of
U, = u(X,) given %, and of U, = u(X,) given %,.

The true log return log(d*, X,) will generally differ from the conditional
expected log return w,* = E{log(b*, X,)|%,}. If conditional expected log returns
were always exactly realized then the capital growth over n periods would be not
S.* but rather
(53) §r= 11 exp[E{log(b, X,)I7}].

<t<n
If S, = I, <, < £xp[E{log(d,, X,)|%#,}] denotes the corresponding quantity un-
der the competing strategy {b,}, then S, < S* for all n, and hence

(54) limsupn~'log(S,/S¥) <0 as.

This may be called an asymptotic optimality principle for the hypothetical
growth rate S:,*. If the market is stationary ergodic, then an asymptotic equipar-
tition property for S* can be proved as well, under certain integrability condi-
tions. Let L log L designate the class of random variables g(w) such that

E{|gllog|g|} < .

THEOREM 7. If the market is stationary ergodic and E{log(B, X,)|%.)}
belongs to L log L, then

(55) n~logS* » W* a.s. andin L.

Proor. Breiman’s (1957/1960) extension of the ergodic theorem asserts that
n ') <1< n8(T'w) > E{g} a.s.and in L' if g, > g a.s. and E{sup,|g,|} < 0. In
particular, if {g,, %} <,<. i a martingale or a nonnegative submartingale with
limit g in L log L, then the integrability condition E{sup,|g,|} < oo is satisfied.
Indeed, Wiener’s dominated ergodic theorem [cf. Chung (1974), example 7, page
355] asserts that

E{Sl:plgtl} <

e
— [1 + supE{|g,log*|g,|}
t
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Consider the decomposmon w* = F, + w*(Q,), where 7, = E{log(B, X,)|%,}.
Since {7,, #,}o < s <o, is @ martingale with limit 7 = E{log(8,X,)|#,} in L log L,
Breiman’s extended ergodic theorem implies that

Y. E{log(B, X,)|#,} — E{log(B, X,)} as.andin L'
0<t<n
Since {w*(Q,)} is bounded and w*(Q,) » w*(Q,,) a.s., we also have
nt Y E{log(b*,U,)|%} - E{w*(Q,)} as.andin L.
O<t<n
By summation we may conclude that
n~logS*=n"! Y w*- E{w}*)=W}* as.andin L. m]
0<t<n

7. Stationary markets. We shall prove the AEP for markets that are
stationary but not necessarily ergodic. A stationary market is a mixture of
stationary ergodic modes [cf. Maitra (1977)], but no finite number of observa-
tions may suffice to exactly identify the (random) ergodic mode of {X,}. How-
ever, log-optimum portfolios based on the ¢-past are better and better suited to
the ergodic mode as ¢ increases, and the log-optimum portfolio given the infinite
past will be perfectly tailored because the ergodic mode is uniquely determined
by the infinite past. It is therefore not surprising that S* will grow with the
same asymptotic rate as if the ergodic mode were known to begin with.

The AEP may hold even if the market is stationary in an asymptotic sense
only. A dynamical system (2, #,P, T') asymptotically mean stationary (a.m.s.)
if the Cesaro averages n~'L,_,.,P(T ‘F) converge for any event F € %.
Setting the limit equal to P(F) then defines a stationary (T-mvanant) probabil-
ity distribution P on (2, %), and P is perfect whenever P is. P the stationary
mean of P, and expectations with respect to P are denoted by E{-}. The
measures P and P have the same restriction to the invariant o-field . = (FeZ:
T~'F = F}, so that E{:|.#} = E{-|#). See Gray and Kieffer (1980) for further
discussion of asymptotically mean stationary measures, and Section 34.2 in
Loéve (1978) for a proof that the following strong law of large numbers holds for
nonnegative measurable g(w):

(56) n7! Y g(T)- E{g|#f} =E{g|#)} as.(P)andas.(P).
O<t<n

A market asymptotically mean stationary if the underlying dynamical system

(2, #,P, T) is ams. As before we assume that T is invertible, P is perfect, and

X,(w) = X(T'w) for some random vector X(w) € #™ The AEP holds for an
asymptotically mean stationary market, unless the investor goes broke after a
few rounds and remains trapped in a state that is infinitely worse than any
other. The investor should not be completely ruined by the time he reaches the
asymptotic regime, so that he can recover from transient losses.

THEOREM 8. Suppose the market is stationary, and b* is a log-optimum
portfolio for period 0 given the infinite past %,. Then

(57) n~'log S — Eflog(b%, X,)|#} a.s.



894 P. H. ALGOET AND T. M. COVER

~ The same conclusion holds if the market is asymptotically mean stationary and
b is log-optimum under the stationary mean, at least if n™'log Sg = 0 a.s. for
some sequence {k,} such that k, 7 o and k,/n — 0.

Proor. We consider the asymptotically mean stationary case. Recall that
Sk =TIy, (b} X,), where b} is a log-optimum portfolio for period ¢ based
on the t-past &, = o(X,,..., X,_,). Portfolio b} is log-optimum with respect to
the true distribution P. Let b} and b} designate portfolios for period 0 that are
log-optimum with respect to the stationary mean P, based on the shifted
information field %, = o(X_,,..., X_,) and the limiting o-field %, =
o(..., X_,, X_). If an investor selects log-optimum portfolios b during the
first & periods 0 < ¢ < k, and in later periods ¢ > k switches to suboptimum
portfolios b} (T ‘w) (i.e., portfolios based on the %-past that are log-optimum with
respect to the stationary mean P), then capital growth over n periods will be
given by

Sk, if0<n<k,
k) _ —
S =18x TI (32(T%), X,), ifk<n<oo.

k<t<n

If the investor always selects the portfolio b*(T ') that is log-optimum based on
the infinite past with respect to the stationary mean P, then capital growth is
given by
s = T1 (B2(T'%), X,).
0<t<n
It is clear that E{S{*/S*} <1 and E{S*/S{”} <1, so that by Markov’s
inequality and the Borel-Cantelli lemma (cf. the proof of Theorem 5),

limnsupn_llog( Sr(i;)) <0 as.(P) and limnsupn'llog( s(:::)) <0 as.(P).
The ergodic theorem for a.m.s. measures implies that
n~'log S — Eflog(b#(T*w), X,)|#} = E{log(b}, X,)|.#} as. (P)
and
n~'log S — Eflog(d%, X,)|.#} as.(P).
Combining the previous results yields
E{log(b3(T*v), X,)|.#} = E{log(b, X,)|#} < limninfn‘llogSn* as. (P)
and
limsupn~'log S* < E{log(d%, X,)|.#} as. (P).

The last inequality also holds a.s. (P) since both sides are invariant (the
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left-hand side by assumption). We obtain the chain of asymptotic inequalities
E{log(i),’;, XO)IJ} < liminfrn~'log S*
n

< limsupn'log S* < E{log(3%, X,)|#} as. (P).
n

We claim that l_‘l{log(i),’:, X,)|#} is increasing in k. Indeed, if £ < [, then the
event where E{log(b}, X,)|.#} exceeds E{log(b}, X,)|.#} must have zero prob-
ability, since conditioning on this invariant event and taking expectations would
otherwise contradict the inequality W;* < W;*. The expectations W,* =
E{log(b#, X,)} increase to W.* = E{log(b*, X,)} as k — o, so that by the
monotone convergence theorem,

E{log(d}, X,)|1#} 7~ E{log(d%, X,)|.#} as. (P).

Convergence also holds a.s. (P) since we are dealing with invariant random
variables, and Theorem 8 follows since E{log(b}, X,)|.#} = E{log(d%, X,)|#}.0

8. Gambling as investment. We consider a market in which exactly one
stock will yield a nonzero return, the jth stock with probability q/. The random
outcome X is then oriented along one of the coordinate axes of #™, and the
scaled return U is an extreme point of the simplex # = {u € Z": (B, u) = 1}. As
observed by Kelly (1956), investing in such a market is like gambling on the
outcome of a horse race in which horse j has win probability g-. Since one unit
bet on horse j yields U’ = 1/ if horse j wins, we have

w(b, Q) = Eg{log(b,U)} = Y. q’log(b’/B’) = D(q||B) — D(q||d).

1<j<m

The information divergence D(q||b) = L, _ ;  ,q’log(g’/b’) is nonnegative, and
equal to zero iff b = q. It follows that the bet vector b = ¢ = (¢7), . j<m 18 the
unique log-optimum portfolio. Thus the gambler should ignore the odds 1/8/
and place an amount on each horse j proportional to its win probability g-. The
maximum expected log of the scaled return w*(Q) is precisely the Kullback—
Leibler divergence between the probability vector g and the reference portfolio 8
that defines the odds, i.e.,

(58) w*(@) =D(qlB) = ¥ q'log(q’/B’).

i<j<m

Gambling on a set of m stocks out of which exactly one will yield a nonzero
return is a most risky type of investment game. Least risky is a market whose
return vector has a fixed direction, so that the stock(s) with highest return can
be predicted with certainty. In general, we say that a distribution @ on % is less
risky than another distribution @’, and write @ < @', if there exists a dilation
['(du|p) of % such that Q" = T'Q, i.e., Q'(-) = [,T(:|u)Q(du).[A dilation of % is
a transition probability I'(du|p) from % to % such that p is equal to the
barycenter of I'(-|u) for all p € %.] See Alfsen (1971) for more discussion of this
so-called dilation or Choquet order on the space 2 of probability measures on %.
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If @ <@, then @ is less risky and more attractive than @’, in terms of
expected log return. Indeed, @ < Q' iff [,e(u)Q(du) < [,9(u)Q'(du) for all
lower semicontinuous convex ¢: % — (— o0, 0]. Choosing ¢(u) = —log(b, u)
proves that w(b, @) = Eg{log(b, U)} is increasing in Choquet order, and taking
suprema proves

THEOREM 9. The maximum expected log return w*(Q) = sup,E{log(b, U)}
is monotonically decreasing in Choquet order on 2, i.e.,

(59) if Q< Q in 2, thenw*(Q) > w*(Q’).

% is a Choquet simplex, so every distribution @ on % admits a barycenter
w(Q) € % and for every point p € % there exists a unique probability measure
m, on the set of extreme points of % that admits u as barycenter. Two measures
that are comparable in Choquet order have the same barycenter. The point mass
8, that is concentrated at p is minimal and the measure 7, on the extreme points
of % is maximal with respect to Choquet order on 2, among all distributions
that admit the point g € # as barycenter. Notice that 7@ = 11Q, where
II(du|p) = 7m,(du) is the maximal dilation that sweeps all mass to-the extreme
points of %; the minimal dilation is the identity kernel A(du|p) = 8,(du) that
leaves all mass put.

Among all distributions @ on % with a given barycenter u(Q) = p, the most
concentrated measure §, is best and the most dilated measure 7, is worst in
terms of expected log return. Indeed, let p = p(Q) and let g denote the
probability vector proportional to p [with components g/ = p//(L jp.j )]. Since
8, < @ < 7, Theorem 9 implies that

(60) maxlogu/ = w*(8,) > w*(Q),
J

(61) w*(Q) = w*(m,) = D(q||B) = YX.q’log q’.

J

The most natural choice for 8 is the uniform portfolio (1/m),_ ;_,,, which
allocates an equal amount to each of the m stocks and whose yield (8, X) is the
arithmetical average return m~%X'+ --- +X™). Then D(q||B) = logm —
H#(q), where #(q) = —L,;q’log ¢’ is the Shannon entropy of the probability
vector g. In general, one may interpret A*(Q) = logm — w*(Q) as the mini-
mum loss of expected log return relative to the ideal reference level r(P) + log m.
When the chain of inequalities 0 < w*(8,) < w*(Q) < w*(m,) < log m is rewrit-
ten in terms of A*(Q), one obtains

(62) 0< mjin(—log q’) = h*(8,) < h*(Q) = logm — w*(Q),
(63) r*(Q) < h*(m,) = #(q) = Lq’(~log ¢’).

If one starts with a point mass §, located at u € % and repeatedly dilates mass,
then @ traces out a linearly < -ordered chain of distributions all having
barycenter u(@) = p in %. Ultimately, one ends up with a measure 7,, when all
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mass is swept to the corners (extreme points) of the simplex #. Initially (when
Q = §,), one can place all bets on the stock(s) j for which the minimum
information loss (—log ¢’) is minimum, but in the end (when @ = 7,) one has to
place proportional bets and concede an average loss equal to the Shannon
entropy #(q) = L, ;. na/(—log ¢).

Gambling on the next outcome of a horse race is a special type of investment
game. Proportional betting is log-optimum, and the asymptotic optimality
principle and asymptotic equipartition property can be formulated in a way that
does not seem to involve a maximization, since the log-optimum strategy is
explicitly known. The same is true for proportional betting on the next outcome
of a random process with values in a Polish space. Indeed, let p(x,...,x,_;)
denote the marginal density with respect to some dominating measure of
the first n outcomes of a random process {X,}, and let ¢(x,,...,x,_,) de-
note the density under some alternative distribution. The likelihood ratio
q( Xy, ..., X, 1)/p(X,,..., X,_,) is then a nonnegative supermartingale con-
verging almost surely to a random variable Y with E{Y} < 1, and

9(Xy,---, X,_1)
64) lim sup n‘llog( <0 as.
( n p(XO""’Xn—l)
If, moreover, {X,} is stationary ergodic and densities are taken with respect to a
Markovian reference measure, then p(X,,..., X,_,) will grow exponentially fast

with constant limiting rate almost surely equal to the relative entropy rate of
the true distribution with respect to the reference measure, i.e.,

(65) n~'log p(X,,..., X, ;) = supE{log p(X,,..., X,,_,)} as.

See Barron (1985) and Orey (1985) for a proof of this generalized Shannon-—
McMillan-Breiman theorem using Breiman’s extension of the ergodic theorem
and Algoet and Cover (1988) for a sandwich proof.

Acknowledgments. We wish to acknowledge supporting discussions with
John Gill and David Larson.

REFERENCES

ALFsEN, E. M. (1971). Compact Convex Sets and Boundary Integrals. Springer, New York.

ALGOET, P. H. and COVER, T. M. (1988). A sandwich proof of the Shannon-McMillan-Breiman
theorem. Ann. Probab. 16 899-909.

BARRON, A. R. (1985). The strong ergodic theorem for densities: Generalized Shannon-McMillan—
Breiman theorem. Ann. Probab. 13 1292-1303.

BELL, R. and CoOVER, T. M. (1980). Competitive optimality of logarithmic investment. Math. Oper.
Res. 5 161-166.

BELL, R. and CoVER, T. M. (1986). Game-theoretic optimal portfolios. Preprint.

BERTSEKAS, D. P. and SHREVE, S. E. (1978). Stochastic Optimal Control, the Discrete Time Case.
Academic, New York.

BRrEIMAN, L. (1957 /1960). The individual ergodic theorem of information theory. Ann. Math.
Statist. 28 809-811. Correction 31 809-810.

BREIMAN, L. (1960). Investment policies for expanding businesses optimal in a long run sense. Naval
Res. Logist. Quart. 7 647-651.



898 P.H. ALGOET AND T. M. COVER

BREIMAN, L. (1961). Optimal gambling systems for favorable games. Proc. Fourth Berkeley Symp.
Math. Statist. Probab. 1 65-78. Univ. California Press.

CHUNG, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic, New York.

COVER, T. M. (1984). An algorithm for maximizing expected log investment return. IEEE Trans.
Inform. Theory IT-30 369-373.

FINKELSTEIN, M. and WHITLEY, R. (1981). Optimal strategies for repeated games. Adv. in Appl.
Probab. 13 415-428.

GRAY, R. M. and KIEFFER, J. C. (1980). Asymptotically mean stationary measures. Ann. Probab. 8
962-973.

JIRINA, M. (1954). Conditional probabilities on ¢-algebras with countable basis. Czechoslavak Math.
oJ. 4 372-380. (English translation in Amer. Math. Soc. Transl. Ser. 2 2 (1962) 79-86.)

KELLY, J. L., Jr. (1956). A new interpretation of information rate. Bell System Tech. J. 35 917-926.

KuraTowsKl, K. and RYLL-NARDZEWsKI, C. (1961). A general theorem on selectors. Bull. Acad.
Polon. Sci. 13 397-403.

LoEVE, M. (1978). Probability Theory 2, 4th ed. Springer, New York.

MAITRA, A. (1977). Integral representations of integral measures. Trans. Amer. Math. Soc. 229
209-225.

MARKOWITZ, H. M. (1952). Portfolio selection. J. Finance 7 77-91.

MARKOWITZ, H. M. (1959). Portfolio Selection. Wiley, New York.

NEVEU, J. (1972). Martingales ¢ Temps Discret. Masson, Paris.

OREY, S. (1985). On the Shannon-Perez-Moy theorem. Contemp. Math. 41 319-327. .

RAMACHANDRAN, D. (1979). Perfect Measures I—Basic Theory and II—Special Topics. ISI Lec-
ture Notes 5, 7. Macmillan, New York.

SAMUELSON, P. (1967). General proof that diversification pays. /. Financial and Quantitative Anal.
21-13.

SAMUELSON, P. (1970). The fundamental approximation theorem of portfolio analysis in terms of
means, variances and higher moments. Rev. Econom. Stud. 37 537-542.

SAMUELsON, P. (1971). The “fallacy” of maximizing the geometric mean in long sequences of
investing or gambling. Proc. Nat. Acad. Sci. U.S.A. 68 2493-2496.

SHARPE, W. F. (1985). Investments, 3rd ed. McGraw-Hill, New York.

THORP, E. O. (1971). Portfolio choice and the Kelly criterion. In Stochastic Optimization Models in
Finance (W. T. Ziemba and R. G. Vickson, eds.) 599-619. Academic, New York.

COLLEGE OF ENGINEERING DEPARTMENTS OF STATISTICS AND
BosToN UNIVERSITY ELEcTRICAL ENGINEERING
110 CUMMINGTON STREET STANFORD UNIVERSITY

BOSTON, MASSACHUSETTS 02215 STANFORD, CALIFORNIA 94305



