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LOCAL TIME FOR TWO-PARAMETER CONTINUOUS
MARTINGALES WITH RESPECT TO THE
QUADRATIC VARIATION

BY MARTA SANZ

Universitat de Barcelona

In this paper we give the local time for some continuous two-parameter
martingales with respect to the quadratic variation (M ) and we study some
of their sample path properties.

Introduction and notation. In this paper we will deal with processes
defined on a complete probability space (2, %, P), indexed by R%, with the
usual partial order (s, t) < (s, t')if and only if s < s’ and ¢ < ¢. Given 2, 2, €
R%2, 2, < 25, (21, 2;] denotes the rectangle {z € R%, z, <z<z,} and R, =
[0 z]. If f is a map from R% to R, the increment of f on a rectangle (z,, 2,],

=(sply) 2= (32» ty)is f((21, 25)) = f(29) — f(51, t3) — f(89, 81) + f(29).

We consider an increasing family of sub-o-fields of #, (%), satisfying
conditions (F1)-(F4) of [3]. If M = {M,, z € R%} is a real valued lntegrable
and %-adapted process we recall that M is a martmgale if for any z < 2/,
E(M ]ﬁ) M Any two-parameter martmgale gives rise to the ma.rtmgales

{ st? soo’ S>0} and M = { st oot’ t>0} where Z _VyZO‘/
5";, :=Vis0% For p=>1, J/l » will denote the class of all continuous
martingales, vanishing on the axes, such that E[|M,|P] < oo for all z.

Given M € #?, p > 2, we can consider the quadratic variations (M),,
(M. ,>s {M,.), which, following [10], possess continuous versions. Associated to
M we shall consider a martingale M € #P/? which is defined as the L?/2limit
of sums ¥, . ynM(Al YM(A%), where & denotes an increasing sequence of
partitions of R, whose norm tends to zero, and if u = (s;t;) €4, A, =
(55,0, (5415 J)], A2, = ((0,¢;),(s;, t;41)]. All these processes appear in Itd’s
formula given in [4] and [11].

The purpose of this article is to study local time for two-parameter continuous
martingales M as a density of the ‘“measure of sojourn time” with respect to the
quadratic variation (M).

It is well known that It&’s formula provides a suitable tool to study local
times. However, in the two-parameter case this method leads to a local time as a
density with respect to the measure induced by the quadratic variation (M ).
The first results on local time for two-parameter processes are given in [3] and
refer to the Brownian sheet W= (W,, z € R%2}. These authors prove the
existence of a process {L(x, s, t), (x, s,t) € R X R2} as. jointly continuous in
x, s and ¢ such that for every bounded and measurable f: R — R,

[ f(W.)uodudo = [ L(x,s,8)f(x) dz, as.
Ry, R
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This is a local time with respect to the measure induced by the increasing
process ( W)z Imkeller [9] gives a rather complete study of local time for the
N-parameter d-dimensional Brownian sheet, also with respect to the measure
induced by the analogues of ( W)Z in his setting. Nualart [11] proposes a local
time for M € .#? with respect to (M), as an application of Itd’s formula.

A different approach is given in [13]. In this reference Walsh proposes a local
time for the Brownian sheet with respect to the Lebesgue measure on R?, the
measure induced by (W),. This local time is given by integration of the local
time on lines normalized in a convenient way. He obtains a process L(x, s, t) a.s.
continuous in the three variables, continuously differentiable in s and ¢, and
gives estimates on the moduli of continuity of L(x, s, ¢) and its partials. See also
[5, 1, 6, 12] for related results.

Following the ideas developed in [13] we propose and study in this article a
local time for a class of two-parameter continuous martingales with respect to
the quadratic variation. In the first part we state the main results, in the second
we present some examples.

1. As pointed out in [11], it is not difficult to give examples of two-parameter
martingales for which the local time with respect to its quadratic variation
exists. However it may have bad behaviour. The next example, closely related to
that given in [11], shows this possibility.

EXAMPLE 0. Let M' = (M}, s >0}, M% = (M2, ¢t > 0} be two continuous
independent martingales, bounded in L2, with respect to some filtrations
(£, s >0}, {#2 t=0), respectively. Consider the martmgale M={M,=
MIM?, s,t > 0} with respect to the product filtration %, = %! V %2 Denote
by L(x,s), Ly(y,t) the local times of M' and M? at x, y, with respect to the

quadratic variation (M'), (M?), respectively. Then, for every bounded and
measurable f: R —» R, we have

[, fo)acan, = [ ‘f:f(M;Mf)d<Ml>ud<M2>o
- /()‘(fRf(ng)Ll(x,s)dx)d<M2>O

= a0 [ 1)L 8) i = [ L, 0 (2)

where L(x, s, t) = [gLi(y, s)Ly(x/y, t) dy/|y!.
It is easy to see that lim, _, ,L(x, s, t) = oo a.s. Indeed,

dy
lim L(x,s,t) =L,0,¢) | L(y,s)—
lim L ) = Lo )'/;2 i )Iyl

s 1 L
Ly(0, t) /0 M e

Define A, = inf{s > 0, (M), > t}; it is well known that B, == M, 4, is a Brownian
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motion with respect to the time-changed filtration {%#, , ¢ > 0}. Therefore,
s 1 1y 1
——d(MY, = [M*—dt= as.
L= [ g,

THEOREM 1. Let M € #? be a martingale satisfying the hypotheses:

1. (M), = [g &(u,v)dudv a.s., where g(u, v) is a continuous measurable and
adapted process.
2. {M_,), = [5f(u,t)du a.s., (M,.),= [{h(s,v)dv a.s., where f and h are
- jointly continuous measurable and adapted processes, strictly positive on
(0, 00)%. Assume also that for each s > 0, t > 0,

sup E[If(u, t)|p] < o0, sup E[Ih(s,v)[p] < o0,
t

O<u<s O<v<
for some real p > 4.

Then there exists a process {L(x,s,t), x € R — {0}, (s,t) € R%} a.s. jointly
continuous and, for fixed x + 0, continuously differentiable in s and t on
(s, t) € (0, 00)?, which is a local time of M with respect to (M.

Before giving the proof of this theorem we present a useful inequality of
Barlow and Yor [2, 15].

PROPOSITION 1. Let M, N be local continuous martingales and denote by
LM LN their respective local times. For any p > 1 the following inequality
holds:

sup
x€R

up | L¥(x,2) = L'(x, )| < GIM ~ NIA(1MI4 + INI).

t

As a consequence we have

PROPOSITION 2. Letp € [1,0], A € (0,1] and {M*, a € R?)} be a family of
continuous local martingales such that
M = MP|| 4» < Cyla — B

Then, if Ap > 2(d + 1) and L* denotes the local time of M®, there exists a
version of {L*(x, t), (a, x,t) € R*X R X R +} continuous in the three variables.
Moreover, for any A >0, p>0 and y € (0,A\/2 — (d + 1)/p), there exists a
random variable H,,. , finite a.s., such that for each x, y, |x|,|y| < A and each
a, B, |af,|B] < p,

sup |12, £) = LA(y, )| < Hyp [(x = 2)° + 1 - B2]

In the following, unless we specify the contrary, local time will mean local
time with respect to the quadratic variation.
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PrOOF OF THEOREM 1. Let L, (resp., L,) be the local time associated to M,
(resp., M, ). Fix s, > 0, t,¢' > 0. For any p > 2, we have

t p/2
E[ sup M, - Msm] < GE (Mo~ Moo < GE( [h(sy, 0) do)

0<s<sg

< C, sup E[Ih(so, v) |p/2]|t’ tP/2.
t<v<t
The first factor of the last member of this inequality is finite for some p > 8;
therefore, applying Proposition 2 to the family of continuous martingales {M _,,
t€ R,) and A = 1, we obtain the continuity of {L(x, s, t), (x, s, t) € R X R%}
in its three variables.
Define

(1) L(x,s,t) = / O) L,(x, du,v)dv.

For any x #+ 0 the integral in (1) is finite. In fact, let § > 0 be such that
|x| > 8> 0; fix w &€ N, P(N) =0, N being the set where the continuity of M
fails. There exist ¢ > 0 such that if (s, t) € D: t = {(s tYER2,s<eg t<tyor
§< 8y t< e}, | M, (w)| < 8 Consequently in M(w) has not visited x;
therefore, L,(x, s, t,w) =

The continuity of L, in its three variables implies the same property for L.
On the other hand, if ¢: R — R is a bounded Borel measurable function we must
have

so ty’

j(.)s¢(Muo)f(u, v)du = /;Ll(x, s,0)o(x)dx as.

Consequently,

j;ej(Muu)g(u, v) dudv = j;eL(x, s,t)o(x)dx as.,

which says that {L(x, s, t), x € R — {0}, (s, t) € R?%} is a local time for M with
respect to its quadratic variation.
Analogously we could have proposed

/ g(u U)

(2) L(x,s,t) = L,(x,u,dv)du

as local time.
Notice that for x # 0 fixed, L(x, s, t) is continuously differentiable in s and ¢
on (0, 0)? and

+8(s,

—L(x, 5,t) = /
/‘tg(u t)

2(x,s, dv),

L(x s,t) = L,(x,du,t).
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In the case that M,, is the Brownian sheet {W,,, (s, t) € R?}, our local time
coincides with that given by Walsh in [13]. O

In order to study the modulus of continuity of L(-, s, t), we have to make
further assumptions on the processes g and f.

THEOREM 2. Let M € #? be a martingale satisfying the same hypotheses as
in Theorem 1. Assume that:

(a) For each v > 0, the processes g(-,v), f(:,v) are semimartingales. If
g(-,0)=my )+ ay ) and f(-,v) = n () + b () are their canonical decom-
positions, we assume that

(mo(u= [ £(0)do,
0
(no( = [ x,(0) do,
0
(M), n(-))u = [ 1(0) do,
0
where &, x, and n, are measurable, adapted and jointly continuous processes.
The total variation of a, and b, on intervals is integrable on [0, t) for any t > 0.

(b) For each ¢ >0, s > ¢, t > ¢ and p as in Theorem 1 we have
.

£.(u)
/Iﬁ,E” i(u, 0)° dudv < o,

&E[Mwmwmf

(3)

dudv < .

f(u, v)*

Then, for eachs,t>0,s <s,, t<t, 0<T, <T,< oo, there exists a random
variable B, finite a.s., such that

1 2
(4) |L(x,s,t) — L(x',s,t)| < Blx’" —x|]", y< 1
for all x, x’ € [T}, T,].
If (b) holds for any p > 1, then for every s,t> 0, s < sy, t <, 0<T, <
T, < o, there exists a random variable B having moments of any order such
that

(5) IL(x,s,t) — L(x',5,¢)| < Blx’ —x", y<},
for all x, x’ € [T}, T,).

Proor. Fix &> 0 and if s,¢> ¢ denote R%, = [¢, s] X [¢, t]. Consider the
local time of M on the set [¢, )2, which will be called Lt Observe that
g(u,v)
Li(x,s,t) = ——L%(x, du,v) dv,
(x,s,t) /R;tf(u,v) “(x, du, v) dv

where Li(x, s, t) = L(x, s,t) — L(x, ¢, t).
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It suffices to establish inequalities (4) and (5) for L* Indeed, given T) > 0,
w-a.s., we can find § which depends on w such that sup; , e 3, Mol < T3

consequently, L(x,s,t) =0 on Df, for any |x| > T). Let s, ¢t > 8’ and define
e=208 AJd; then L(x,s,t) = L¥x,s,t) for all |x| > T In the next lemma we
prove that, under our hypotheses an alternative expression of L® is

Le(x,s,t) = ftg(s Li(x,s,0)dv

© - [ 00| gy o) = £ 0
g(u,v) 1
+f(u’ )3x( u) du f(u,v)znv(u)du dv
Call
1
I(x) = L L(x, u,v)mdl'mv(u) dv
and
h(x) = [, i, u)g((:T”)) 1n(u) do.

Fix T, < x < x’ < T,, p as in hypothesis (b). Then
E[|5(x) - 1(=)["]

< Cp,e,,ftE

€

(Lel(x’ u, U) - Li(xl’ u, D))2£o(u) du

S 1
e f(u,0)
<C, ”,(/E[ sup |L(x,u,v) — Li(x', u, u)| ] )1/2
£.(u) v
x| [ E f(u";)z ]dudu) .

st
By Proposition 1 applied to the one-parameter martingales M = M., —
N=M._, - x'and x = 0, we have

p/2
dv

(7)

E[ sup |Li(x,u,v) — L’i(x’,u,v)|2p]

ESuU<s

1/2
< Clx — x’|”{|x|” + |x'|P + Cp,,{E[ sup |Ah(s,v) Ip]} }

D<v<t
<G, ¢, T,l% — x'|P.

Consequently, E[|I,(x) — I,(x")P] < C|x — x’|P/2. In a similar way we obtain
E[|Iyx) — I(x")P] < Clx — x'|P/2.
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Hence, for i = 1,2,
() — L(x")P )
[/ At
Call

1, (p)li(x) - L(x)P
B( )—/2'/;'12—7["72—&(& < 00 a.s.

Applying the Garsia~-Rodemich-Rumsey lemma [7], we have for every T, <
lx] < |x'] < Ty,

, lx—x'| 4Bi 1/p
lIi(x) —Ii(x)|58j(; —u? Efdu
< C,BVP|x’ — x|'/2~%P,

This gives a modulus of continuity for the paths of the stochastlc integrals
appearing in (6).

The other integrals of (6) are easy to handle. In fact, due to the properties of
f, & a, and b,, and Proposition 2 applied to the martingale M., each term is
bounded by

HTi, t, ylx - xlly’

where y < § —2/p and Hy, , , is a random variable a.s. finite.

The second part of the theorem is obvious. O

LEMMA 1. With the same assumptions as in Theorem 2, we have

(x,5,8) = ftg( yLix, s, 0) do

. 1 &(u,v)
(8) = f L w0)| oy g, ) = 2 df(a,0)
g(u,v) 1
+f(u,v)3d<f(.,v)>u_ f(u,v)2d<g(.’v)’ f(',U))u dv
PrOOF. The idea is the following. Formally
L¥(x,s,t) = ftg( Le(x s,v)dv — /R“ (x,u,0) aa %u D; dudv.

To give a meaning to this expression we replace d/du by the stochastic
differential obtained by using It6’s formula.

The proof will be done in two steps. In the first one we will see that the
right-hand side of (8) is well defined; in the second part we will prove that it
defines the local time of M on [¢, )2
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STEP 1. For any & > 0 consider a function g5 € C2(R), such that ¢x(x) =&
if |x] <6, ps(x) = x if |x| > 20, |ps(x)| = |x|. By It0’s formula we obtain

&(u, ) 8(0,0)g3(f(0,0))

u 1
os( f(u,v)) =/ o5 f (o, ”)) (. 0) - es( f(0,0))° df(a,0)
%( f(a,
%(f( ))2 < ( )’ f( ’D)>a
1 (0, 0)9¢( (5, 0))
PPV TIPS L
g(o 0)@4( f(a,0))’
d{f(-,0)), 1.
S R
Define
L*%(x,s,t) = ftg(s Li(x,s,v)dv — f,Li(x’ u,u)dlﬁ%)—) dv.
We claim that
08 +8(s, .
;I_I.I%)L (x,s,¢) = / Ll(x,s,v)du
©) —fRELi(x, u,v)[f( 5y e ) - ff(%‘—:))—d f(u, v)
+ g(u,v) d<f(':0)>u_ ——l-—d(g(',v), f(,D)) ]du'
f(u, )’ f(u, 0)* )

The convergence of the stochastic integrals can be proved by the following
argument. Let p > 1. We have .

1 1 D
E — e
R;,( o5( f(u,v)) f(u,v))Ll(x,u,v)dlm,)(u)do }
1 1 2 \ p/2
h E - 1 y Wy .
= G /R;,(%( (4, 0)) f(u,v)) Li(x,u,0)¢,(u)|  dudo
But

! ! 2Le 2
(%( f(u,v)) h f(U,v)) “(x,u,v)°€ (u)

f( ,D) ei"‘lgs’L (x, u, v)|||5 ()]



786 M. SANZ

and

p/2

ESUSLS

sup |L$(x,u,v) lp] dudv

£u(u)
fR;,E H f(u,v)*

1/2
< Cs,,_(ftE{ sup |Li(x, u, v)|2p} dv)

€ ESUSS

<[]

In fact, by Proposition 1 applied to M = M.,, N=0,

1/2
< o00.

£.(u)

——f(u 0)2 }dudv

E{ sup |L§(x,u,v)l2p} < CpE{ sup |Mm,|21’}
eSU<S

ESULS

< GE(M)? < Gy, sup E|lh(s,0)f] < co.

<v<
Consequently,
4
- 0.
50

E

1 1
j;e;,( o5 f(u,v)) " 1w, 0) )Ll(x, u,v)d;m(u)dv

The same argument applies to the integral

fR (g(u, v)/f(u, v)*)Li(x, u, v) dn (u).

E
st

On the other hand, since f(u, v) is jointly continuous and strictly positive on
(0, 0)2, there exists y > 0, which may depend on w, such that f(u,v) > y on
R¢,. Consequently for § small enough we have

(PB( f(u’v)) = f(u’v), <P§( f(u’ D)) =1

and @§(f(u,v)) = 0 for (1, v) € R%,. This ensures the desired convergence of the
remaining integrals, and hence (9) is proved.

STEP 2. lim,_ ,L%%x,s, t) = L¥(x, s, t). In order to establish this identity
we must check that if ¢: R — R is any bounded Borel function

(10) f lim Lo(x, s, t)é(x) dx = f o(M,)d(M)>, as.
R&—0 Re,
Using a Fubini type theorem for stochastic integrals and the identity

[ Li(x, 5, 0)0(x) dx = [6(M,,)d(M.,), as.
R €
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the left-hand side of (10) equals

[ ?E—zz—;( [¢(M,)d0 ), do

s f(ul,u) ([ 6(0,)a01.), ) diglu, o) do

(1) +f f((:’:))z ([ 6(3,)a0.), ) dy(u, 0) do

R f(u,v)’

(femp(Mw)d(M,v)d)d( £+, 0)y, dv

1 u
o oo [ #0000, e 0, o)
The following equality holds:
g(s,u) s
(o, 0) J, #Me)AML)
2 ([9(M,,)d(M.,),)
='/; 7, 0) d,g(u,v)
+/sg(u,0)¢(M Yd(M.,) _/sg(u,v)
(12) e f(u0) T f(u, 0)?
x( ["o(M,,)dM ), | dy f(u, 0)
s [Yp(M,, )d(M. ),
_f fe‘b( av) <2 o) d<g('7u)1f(',0)>u
€ f(u,v)
sg(u,u) u
+£ f(u’v)a(fe ¢(Mav)d<M.o)d)d<f(~,v))u,

In fact, this follows from Itd’s formula applied to Gs: R® > R, Gy(x, y, 2) =

xy/[@s(2)], letting 8 — 0 and using the same arguments as in Step 1. Substitut-
ing (12) in (11) we get

[ L5, 00 s = [ giar yau,y, o
R R:,

wf(u,0)

= [ #(M,,)d(M),, as. O
R,

2. There are two important classes of two-parameter martingales to which
the results proved in Section 1 may apply: (a) martingales with respect to the
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filtration generated by a Brownian sheet and (b) martingales with respect to the
product filtration generated by independent multidimensional Brownian mo-
tions. In this section we will present some examples in these classes.

(a) Let W= {W,, z<€ R%) be the Wiener sheet and (%), g2 its associated
filtration. Let M = {M,, z € R%} be a two-parameter martmgale with respect
to (%), < g2, vanishing on the axes and bounded in L?. By Wong and Zakai’s
representation theorem [14]

M= [ e dWo f[ (z2) dW.dW,,

where ¢ = {¢,, z€ R%} is a measurable and adapted process such that
E( /g, ¢2dz) < oo for all z,€ R%, and ¢ = {Y(z; 2'),(2,2) €ER2 X R%} is a
measurable and % ~adapted process, vanishing unless

(2,2)eD={(2,2);2=(x,9), 2 = (¢, y); x<x', y= ¥}
and such that E(ffRzoszozp(z;z’)zdzdz’) < oo for all z, € R2.
By standard calculations it follows that

<M>st= f g(u,v)dudv,
Rst
with
g(u,0) = ¢u,0) + [ ¥¥(x,0;u, y) dxdy,
R

M= [ “f(u, t) du,

where
2
t
f((u,t)) = f (¢(u, v) + f v(2'; u, v)dW’z,) dv,

0 Rut

and analogously
(M, = [h(s,v)dv,

0

with

h(s,v) = fos(qb(u,v) +/R Yv(u,v; 2’) dWZ,)2 du

In view of this expreséion for the quadratic variations associated to M, it
would be possible to exhibit Brownian martingales for which the results of
Theorems 1 and 2 apply. We next give two possible examples.

ExamMPLE 1. Let M, = [p W,dW,. This is a strong martingale with
(Mo, = (M), = (M, >z Iz, W2dz. That is, g(u,0) = W2, f(u,1)=
JEW2 dv and h(s,v) = [§W2 du.
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By the scaling property of Brownian motion we have that the processes
{(f(u,v), (v,v) € R2} and {h(u,v), (u,v) € R2} have the same law as
{uv?(fW2 do, (u,v) € R} and {u®v[{W, do, (4, v) € R}, respectively. Using
Kolmogorov’s continuity criterion, it is easy to check that f and & are jointly
continuous. Also the properties of Brownian motion imply that f and A are
different from zero in (0, 0)?, and for each s > 0, ¢t > 0, p > 1,

sup E[|f(u, t)|p] < o0, sup E[|h(s,u)|p] < o0.
O<v<t

O<u<s

Therefore, Theorem 1 applies; Theorem 2 in its second part version also does. In
fact, using It6’s calculus we obtain

mv(u) = 2/;:‘%0 dIMU’ av(u) = uv,
02

nw) =2[ [WodW,.dr,  b(u) =us;

(m( =4[ Wiodo,  &(0) = 40Wy,
ol Vu= 4 ([ [ Wz 8 ) do,
xo(0) =4[ [W. W, (x A ) drdr,
(m()n = (4] Woordr) do,

n(o) =4 W, W, rdr,

and the processes §,, x,, 1,, @, and b, satisfy the required properties. On the
other hand the random variable ( [{W2 do)~! has moments of any order, due to
the inequality P{/iW? do < &} < V2 exp[ —1/(2%?)] (see, for instance, Lemma
5.8.6 [8]). Therefore,

¢,(u)
f(u,v)"
< Co~%Py~>,

Analogously, E[|(x(u)g(u, v)?)/(f(u,v)*)|P] is bounded by a monomial in u
and v, and conditions (3) are fulfilled. Hence L(-, s, t) is a.s. y-Holder continuous
with y arbitrarily closed to ;.

1/2

" —_——}—___ 1/2
< E[|¢,(w)]"] E[f(u, 0)4,,]

ExXaMPLE 2. Let J,, = [[p xr10(2, 2') dW, dW,. This process is a
martingale which appears in the decomposition of W2 given by Itd’s formula.
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We have
s2¢?
(o= = / stuvdudv.
Therefore
g(u,v) = uv, m(u) =0=¢,(0) =1,0),
(T = [ (W= W,,)’ dudo;
Rst
thus
f(u,t) = [(W— W,,)" do.
0
Analogously

(), = jo’h(s,o)du, with A(s,0) = /OS(W;U-— W..)? du.

Using Itd’s calculus we get

nv(u) = 2'/(; /(; (vv:w - vv:rr)dl(w/w - w’o‘r) dT’
2

by(u) = u~
(1) =u—,

(n(-)0u = 4 [ xu(a) do,
with
xo(0) = [ [ (Woy = W, ) (W, = W,,)(0 =V v') drdr”

The process {f(u,v) = [§(W,,— W,,)>dr,u,v > 0} has the same law as
{uo®((W2 do, u, v > 0). Therefore, as in the preceding example,
E[|[x (u)&(u, v)*1/[ f(u, v)*]|]]? is bounded by something like Cu'v®, with
r,s € R, and conditions (3) are satisfied. The remaining hypothesis of Theorem
2 is easily checked, as in Example 1.

(b) Let {#!, s>0} and {#? ¢=> 0} be two families of increasing o-
fields generated by two independent multidimensional Brownian motions
{(B},..., Bl"), s >0}, {B;,..., B™), s> 0}, respectively. Define W,/ = B:B;,
i=1...,n, j=1,...,m, and %,=%'V %2 It is known that, if M is a
martingale with respect to the product filtration, vanishing on the axes and
bounded in L?, there exists a family of processes {h,(u,v), (u,v) € R%},
i=1...,n, j=1L...,m, #previsible and E([, h?(u,v)dudv) < oo for
any sy, ¢, i, j, such that o

My= 3 % [ hiu,v)awi.
i=1,=1"R,

t
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For such martingales, which are called “bi-Brownian”-martingales, we have

Myo= [ T T 1(u,0) duds,

sti=1 j=1

i=1

(M., = fZ( 1fh,,(u v)dBJ) du,

(M, ), = / Z‘, ( 1/h,,(u v)dB‘) dv.

j 1
Consequently, we can obtain in this class examples of processes which satisfy

Theorems 1 and 2, putting suitable conditions on the kernels occurring in the
representation of M.

EXAMPLE 3. Let n=m=1 and M,, = [p h(u)hy(v)dB,dB, with h,
(h,) continuous and % (%, ;2 ) adapted processes such that E( fg‘th(u) du) < o
[resp., E( [{oh2(v) dv) < oo] for any s, (t,). This is a particular case of Example
0. If h,, h, are bounded in L” for some p > 8 and p > 16, respectively,

hy(u) # 0 for u > 0, and [§hy(7T) dB. + 0 for v > 0, by Theorem 1 we have

hy(v)
L(x s, t) f‘(—m l(x,s,v)dv,

and, according to Example 0, we must have

¢ h3(v) _
! (ool aB ) oo o oo 2

REMARK. Comparing the local time L(x, s, t) of M with respect to { M y[11]
with ours we observe that the former is smoother in x, while the latter is
smoother in s, . The reason for this is essentially because L is derived by means
of Itd’s formula. It is difficult to exhibit in general the relation between L and
L; however, in some particular cases we can guess it. Coming back to Example 3,

(M), = /R R3(u)h3(v) dudo,

<M)s,=fR(M)(M2) R2(u)h%(v) dudo, where M} fhl(o)d

st

M2 = ["hy(7) dB,.
0

Consequently, formally, L(x, s, ¢) = [ 1 /[(MJ)Z(ME)Z]I.:(x, du, dv). In view of
this expression one can expect worse properties for L than for L near the axes.

Acknowledgment. I would like to thank the referee for a helpful comment
concerning the proof of Lemma 1.
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